Water Resources Data Alaska Water Year 2001 By D.F. Meyer, G.L. Solin, M.L. Apgar, D.L. Hess, and W.A. Swenson Water-Data Report AK-01-1 ### **CALENDAR FOR WATER YEAR 2001** ### 2000 | | | 00 | тов | ER | | | | | N0 | VEM | BER | | | | | DE | СЕМ | BER | | | |----|----|----|-------|----|----|----|----|----|-----|------|-----|----|----|----|----|------|-------|-----|----|----| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 1 | 2 | 3 | 4 | | | | | | 1 | 2 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 29 | 30 | 31 | | | | | 26 | 27 | 28 | 29 | 30 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | | | | 2001 | | | | | | | | | | | | | | JA | NUA | RY | | | | | FEI | BRUA | RY | | | | | N | /IARC | Н | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | | | | | 1 | 2 | 3 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | | | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | | | ווחח | | | | | | | мал | | | | | | | LINIE | | | | | | | | APRIL | | | | | | | MAY | | | | | | | UNE | | | | | S | M | T | W | Τ | F | S | S | M | T | W | Т | F | S | S | M | Т | W | Т | F | S | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 22 | | 24 | 25 | 26 | 27 | 28 | 20 | 21 | | 23 | | | 26 | 17 | | 19 | | 21 | 22 | 23 | | 29 | 30 | | | | | | 27 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | JULY | | | | | | ٨١ | JGUS | т | | | | | QED1 | ГЕМВ | ED | | | | C | N | | | | Б | C | C | N | | | | Б | C | C | | | | | Б | C | | S | M | | W | | F | S | S | M | 1 | W | | F | S | S | M | 1 | W | 1 | F | S | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | _ | _ | _ | 1 | 2 | 3 | 4 | | | | | | | 1 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | | 5 | 6 | 7 | 8 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 22 | | 24 | 25 | 26 | 27 | 28 | 19 | 20 | 21 | 22 | | 24 | 25 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 29 | 30 | 31 | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | 30 | | | | | | | ### UNITED STATES DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Chief, Water Resources Office, Alaska Science Center U.S. Geological Survey 4230 University Drive -- Suite 201 Anchorage, Alaska 99508 - 4664 Electronic mail: ak_dc@usgs.gov See additional USGS information on water resources of Alaska on the World Wide Web at http://ak.water.usgs.gov #### **PREFACE** This volume of the annual hydrologic data report of Alaska is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. The report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey (USGS) who collected, compiled, analyzed, verified, and organized the data, and who revised, edited, typed, illustrated, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed, and processed from field offices. Chiefs-in-charge of the field offices are: Ronald Rickman, Anchorage Bruce Bigelow, Juneau Robert Burrows, Fairbanks The data were collected, computed, and processed by the following personnel: | M.L. Apgar | D.M. Evetts | J.A. McIntire | F.W. Sondrud | |-----------------|--------------|------------------|----------------| | P.K. Atkinson | S.A. Frenzel | D.F. Meyer | P.M. Strelakos | | T.P. Brabets | R.L. Glass | E.H. Moran | N.D. Stucki** | | J. Brinton | J.M. Goetz | Z.J. Munstermann | S. Swanner** | | R.L. Burrows | L.L. Harris | R.P. Murray | W.C. Swanner | | B.A. Carr** | D.L. Hess | E.G. Neal | W.A. Swenson | | M.R. Carr | R.H. Host | N. Oehler | D.S. Thomas | | M.E. Castor | G.R. Jackson | R.T. Ourso | D.C. Trabant | | C.H. Coffeen | M.C. Kane | L.D. Patrick | B. Wang | | J.S. Conaway | R.T. Kemnitz | J.A. Roberts | M.T. Walter** | | C.S. Couvillion | B.W. Kennedy | C.W. Smith | M.S. Whitman | | D.L. Curfew | E.L. Kletka | R.L. Snyder** | J.M. Wiles | | J.H. Curran | D.E. Langley | M.F. Schellekens | | | J.S. Drewel | D. Long | C.M. Severtson | | | J.D. Eash | R.S. March | G.L. Solin | | ^{**} Volunteer This report was prepared in cooperation with the State of Alaska and with other agencies under the general supervision of Gordon L. Nelson, Chief, Water Resources Office, and William Sexton, Regional Hydrologist, Western Region. ### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
October 2002 | 3. REPORT TYPE AND Annual October | DATES COVERED r 1, 2000 to September 30, 2001 | |--|---|---|--| | 4. TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | Water Resources Data for Alaska | , Water Year 2001 | | 3. FUNDING NUMBERS | | 6. AUTHOR(S) D.F. Meyer, D.L. Hess, M.F. Scl Solin | nellekens, C.W. Smith, I | E.F. Snyder, and G.L. | | | 7. PERFORMING ORGANIZATION NAME(S) AN | ND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | U.S. Geological Survey, Water R
4230 University Drive, Suite 201
Anchorage, Alaska 99508-4664 | esources Division | | USGS-WRD-AK-01-1 | | 9. SPONSORING / MONITORING AGENCY NA | | | 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | U.S. Geological Survey, Water R
4230 University Drive, Suite 201
Anchorage, Alaska 99508-4664 | esources Division | |
USGS-WRD-AK-01-1 | | Prepared in cooperation with the analysis of the American Statement of the Prepared in Cooperation with the American Statement of State | ENT
s report may be purchase | ed from National | 12b. DISTRIBUTION CODE | | Water-resources data for the 2001 streams; stages of lakes; and water water discharge at 112 gaging stations; and water levels for 30 obseditional water data were collected published as miscellaneous measing System operated by the U.S. George | r levels and water quality
tions; stage or contents or
rvation wells. Also included at various sites not invarients and analyses. T | of ground-water wells. only at 4 gaging stations ded are data for 51crest-olved in the systematic these data represent that | This volume contains records for s; water quality at 37 gaging stastage partial-record stations. Addata-collection program and are part of the National Water Data | | 14. SUBJECT TERMS *Alaska, *Hydrologic data, *Surf Gaging stations, Lakes, Chemical sites, Water levels, Water analyse 17. SECURITY CLASSIFICATION OF REPORT Unclassified | analyses, Sediments, W | | oling 16. PRICE CODE Unclassified | ### CONTENTS | Pretace | 111 | |--|------| | List of surface-water stations, in downstream order, for which records are published in | | | this volume | vi | | List of ground-water wells, by subregion, for which records are published in this volume | xii | | List of discontinued surface-water discharge or stage-only stations | xii | | List of discontinued surface-water-quality stations | xxiv | | Introduction | 1 | | Cooperation | 2 | | Acknowledgments | 3 | | Summary of hydrologic conditions | 4 | | Surface water | 4 | | Ground water | 5 | | Water quality | 5 | | General overview | 5 | | Remark codes | 7 | | Dissolved trace-element concentrations | 7 | | Water quality-control data | 7 | | Water use | 9 | | Special networks and programs | 12 | | Explanation of the records | 14 | | Station identification numbers | 14 | | Downstream order system | 14 | | Latitude-longitude system | 15 | | Local number | 15 | | Records of stage and water discharge | 16 | | Data collection and computation | 16 | | Methodology | 16 | | Computation | 16 | | Winter discharge measurements | 17 | | Estimates for periods of no data | 17 | | Data presentation | 17 | | Station manuscript | 18 | | Data table of daily mean values | 20 | | Statistics of monthly mean data | 20 | | Summary statistics | 20 | | Identifying estimated daily discharge | 23 | | Accuracy of the records | 23 | | Other data available | 23 | | Records of surface-water quality | 24 | | Classification of records | 24 | | Arrangement of records | 24 | | On-site measurements and sample collection | 24 | | Water temperature | 26 | | Sediment | 26 | | | | | Laboratory measurements | 26 | |---|-----| | Records of ground-water levels | 27 | | Data collection and computation | 27 | | Data presentation | 27 | | Records of ground-water quality | 29 | | Data collection and computation | 29 | | Data presentation | 29 | | Access to USGS water data | 29 | | Definition of terms | 30 | | Publications on Techniques of Water-Resources Investigations | 43 | | Station records, surface water | 50 | | $oldsymbol{c}$ | 358 | | C 1 | 358 | | | 370 | | Analyses of samples collected at miscellaneous sites | 387 | | Station records, ground water levels | 417 | | Index | 438 | | | | | FIGURES | | | Figure 1. Man showing locations of agains stations | 48 | | Figure 1. Map showing locations of gaging stations | | | | 356 | | Figure 3. Map showing locations of ground-water wells | 414 | | ILLUSTRATIONS | | | Graph of monthly mean water withdrawal rate for public supply in the Anchorage, | | | Fairbanks, and Juneau areas, 1990-2001 | 11 | | | 106 | | | 147 | | | 158 | | | 287 | | 1 . 5 1 | 416 | | map showing locations of wens in the Mendellian valley | 410 | ### SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME Note--Data for partial-record stations and miscellaneous sites for both surfacewater quantity and quality are published in separate sections of the data report. See end of this list for page numbers for these sections. [Letters after station name designate type of data: (d) discharge, - (c) chemical, (i) intragravel-water temperature, (m) microbiological, - (t) water temperature, (s) sediment, (e) elevation, gage height, - (b) biological or contents] Station number ### SOUTHEAST ALASKA | MAINLAND STREAMS | | |--|-----| | Tyee Lake Outlet near Wrangell (d) | 50 | | Harding River near Wrangell (d) | 52 | | Stikine River near Wrangell (d) | 54 | | Dorothy Lake Outlet (head of Dorothy Creek) near Juneau (d) 15039900 | 55 | | Taku River near Juneau (d, t, c) | 57 | | Gold Creek at Juneau (d) | 63 | | Salmon Creek near Juneau (d) | 65 | | Jordan Creek below Egan Drive near Auke Bay (d, t) | 66 | | Mendenhall River | | | Nugget Creek above Diversion near Auke Bay (d) | 69 | | Mendenhall River near Auke Bay (d) | 70 | | Montana Creek near Auke Bay (d) | 72 | | Duck Creek below Nancy Street near Auke Bay (d) | 73 | | Antler River below Antler Lake near Auke Bay (d) | 74 | | Kakuhan Creek near Haines (d, t) | 75 | | Kahtaheena River above Upper Falls near Gustavus (d, t) | 78 | | Kahtaheena River near Gustavus (d, t) | 81 | | STREAMS ON REVILLAGIGEDO ISLAND | | | Swan Lake near Ketchikan (d, e) | 85 | | Fish Creek near Ketchikan (d) | 86 | | STREAMS ON PRINCE OF WALES ISLAND | | | Staney Creek | | | North Fork Staney Creek near Klawock (d, t) | 88 | | Staney Creek near Klawock (d, t) | 92 | | Threemile Creek near Klawock (d) | 96 | | Halfmile Creek above diversion near Klawock (d) | 97 | | Reynolds Creek below Lake Mellen near Hydaburg (d) | 98 | | Old Tom Creek near Kasaan (d, t) | 99 | | STREAMS ON WORONKOFSKI ISLAND | | | Sunrise Lake Outlet near Wrangell (d, t) | 103 | ### SOUTHEAST ALASKA -- Continued | Indian River near Sitka (d, t, c, s) | 107
114 | |---|------------| | Sawmill Creek near Sitka | 121 | | Silver Bay Tributary at Bear Cove near Sitka (d) | 121 | | STREAMS ON BARANOF ISLAND | | | Green Lake near Sitka (d) | 123 | | STREAMS ON ADMIRALTY ISLAND | | | Greens Creek at Greens Creek Mine near Juneau (d) | 124 | | STREAMS ON CHICHAGOF ISLAND | | | Favorite Creek near Angoon (d) | 126 | | Kadashan River above Hook Creek near Tenakee (d, t) | 127 | | Middle Basin Creek near Tenakee (d, t) | 131 | | STREAMS ON DOUGLAS ISLAND | | | Peterson Creek below North Fork near Auke Bay (d, c) | 135 | | MAINLAND STREAMS | | | Alsek River near Yakutat (d) | 139 | | Situk River near Yakutat (d, t) | 140 | | Ophir Creek near Yakutat (d) | 144 | | | | | SOUTH-CENTRAL ALASKA | | | MAINLAND STREAMS | | | Copper River | | | Gulkana River at Sourdough (d) | 145 | | Nicolet Creek near Cordova (d) | 146 | | Solomon Lake (head of Solomon Gulch) near Valdez (e) | 148 | | Solomon Gulch tailrace near Valdez (d) | 149 | | Solomon Gulch at top of falls near Valdez (d) | 150 | | Solomon Gulch near Valdez (d) | 150 | | Wolverine Creek near Lawing (d) | 151 | | Resurrection River | 133 | | Salmon Creek | | | | | | Lost Creek Crowse Creek et Crowse Loke Outlet near Seward (d) 15227720 | 155 | | Grouse Creek at Grouse Lake Outlet near Seward (d) | 155 | | Spruce Creek near Seward (d) | 156 | | Upper Nuka River near park boundary near Homer (d) | 159 | | Battle Creek | 1.61 | | Battle Creek diversion above Bradley Lake near Homer (d) 15238978 | 161 | | Bradley River | 1.00 | | Upper Bradley River near Nuka Glacier near Homer (d) | 163 | | Bradley River near Homer (d, e) | 165 | | Bradley River below dam near Homer (d) | 166 | | Middle Fork Bradley River near Homer (d) | 167 | ### SOUTH-CENTRAL ALASKA-Continued | Middle Fork Bradley River below North Fork Bradley River near | | | |--|-----------|-----| | Homer (d) | 15239060 | 169 | | Bradley River near Tidewater near Homer (d) | 15239070 | 170 | | Ninilchik River at Ninilchik (d, t, c, s, b) | 15241600 | 172 | | Kenai River | | | | Snow River near Seward (d) | 15243900 | 178 | | Kenai River at Cooper Landing (d) | 15258000 | 179 | | Cooper Creek at mouth near Cooper Landing (d, t) | 15261000 | 181 | | Kenai River below Skilak Lake Outlet near Sterling (d, c, t, s, b) | 15266110 | 184 | | Kenai River below mouth of Killey River near Sterling (d) | 15266150 | 190 | | Kenai River at Soldotna (d, c, t, s, b) | 15266300 | 191 | | Sixmile Creek near Hope (d) | 15271000 | 200 | | Portage Creek at Portage Lake outlet near Whittier (d) | 15272280 | 202 | | Twentymile River below Glacier River near Portage (d) | | 204 | | Campbell Creek | | | | South Fork Campbell Creek near Anchorage (d, t, c, s, b, m) | 15274000 | 205 | | Chester Creek at Arctic Boulevard at Anchorage (d, t, c, s, b, m) | 15275100 | 212 | | Ship Creek near Anchorage (d) | 15276000 | 222 | | Eklutna Lake (head of Eklutna River) near Palmer (e) | 15278000 | 244 | | Matanuska River | | | | Knik River near Palmer (d) | 15281000 | 245 | | Camp Creek near Sheep Mountain Lodge (d, t) | 15281500 | 247 | | Moose Creek near Palmer (d, c) | | 250 | | Matanuska River near Palmer (d) | 15284000 | 254 | | Little Susitna River near Palmer (d) | 15290000 | 256 | | Susitna River at Gold Creek (d) | 15292000 | 258 | | Talkeetna River near Talkeetna (d) | 15292700 | 259 | | Willow Creek near Willow (d) | 15294005 | 260 | | Deshka River near Willow (d, t, c, s, b) | | 262 | | Johnson River above Lateral Glacier near Tuxedni Bay (d, c) | 15294700 | 269 | | STREAMS ON KODIAK ISLAND | | | | Terror River at mouth near Kodiak (d, t) | 15295700 | 272 | | SOUTHWEST ALASKA | | | | MAINLAND STREAMS
| | | | Russell Creek near Cold Bay (d, t) | 15297610 | 277 | | Kvichak River | 15257014 | 2,, | | Iliamna River near Pedro Bay (d) | 15300300 | 280 | | Kuskokwim River | 10000000 | 200 | | Takotna River | | | | Tatalina River near Takotna (d, t) | 15303700 | 281 | | Kuskokwim River at Liskys Crossing near Stony River (e) | | 284 | | Kuskokwim River at Crooked Creek (d) | | 285 | | Tubble and the crossed Crock (a) | 1550 1000 | 200 | ### SOUTHWEST ALASKA-Continued | Kuskokwim River at Aniak (e, t) | 15304060 | 286 | |--|-----------------------|-----| | YUKON ALASKA | | | | Yukon River | | | | Fortymile River | | | | South Fork Fortymile River | | | | Walker Fork | | | | Wade Creek | | | | Wade Creek Tributary Near Chicken (d) | 15320100 | 289 | | Yukon River at Eagle (d, c, s) | | 290 | | Porcupine River near International Boundary, Yukon Territory (d) | | 295 | | Yukon River near Stevens Village (d, c, s) | | 296 | | Tanana River | 1545550d | 270 | | Goodpaster River | | | | Liese Creek near Big Delta (d) | 15477730 | 301 | | Goodpaster River near Big Delta (d) | | 302 | | Upper West Creek near Big Delta (d) | | 303 | | Central Creek | 134///01 | 303 | | Sonora Creek above tributary near Big Delta (d) | 15/177768 | 304 | | Sonora Creek near Big Delta (d) | | 306 | | Central Creek near Big Delta (d) | | 308 | | Delta River | 13 4 ////u | 300 | | Phelan Creek near Paxson (d) | 15478040 | 309 | | Salcha River near Salchaket (d) | | 311 | | Tanana River at Fairbanks (d) | | 312 | | Chena River | 15405500 | 312 | | Chena River near Two Rivers (d) | 15493000 | 313 | | Little Chena River near Fairbanks (d) | | 314 | | Chena River at Fairbanks (d) | | 316 | | Tanana River at Nenana (d, c, s) | | 319 | | Nenana River | | | | Healy Creek at Suntrana near Healy (d, s) | 15518020 | 325 | | Lignite Creek above mouth near Healy (d,s) | | 330 | | Koyukuk River | | | | Middle Fork Koyukuk River | | | | Slate Creek at Coldfoot (d, t) | 15564879 | 333 | | Yukon River at Pilot Station (d,c,s) | | 336 | | NORTHWEST ALASKA | | | | Unalakleet River above Chiroskey River near Unalakleet (d, t) | 15565700 | 340 | | Dahl Creek near Kobuk (d) | 15743850 | 343 | | Kobuk River near Kiana (d) | | 344 | | | | | ### NORTHWEST ALASKA-Continued | Wulik River above Ferric Creek near Kivalina (d) | |--| | \mathcal{E} | | Wulik River below Tutak Creek near Kivalina (d) | | ARCTIC SLOPE ALASKA | | Nunavak Creek near Barrow (d) | | Kuparuk River near Deadhorse (d) | | Sagavanirktok River | | Sagavanirktok River tributary near Pump Station 3 (d) | | Sagavanirktok River near Pump Station 3 (d) | | * * * * * * * * * * * | | Discharge at partial-record stations and miscellaneous sites | | Crest-stage partial-record stations | | Miscellaneous sites | | Analyses of samples collected at water-quality miscellaneous sites | # GROUND-WATER WELLS, BY HYDROLOGIC SUBREGION, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME ### **GROUND-WATER LEVELS** | SOUTHEAST ALASKA | | |--|-----| | Juneau | | | WELL 582125134342401. Local number, CD04006631DBAD1022 | 417 | | WELL 582131134343101. Local number, CD04006631ACDC2002 | 417 | | WELL 582136134344802. Local number, CD04006631ACBC1015 | 418 | | WELL 582146134351701. Local number, CD04006631BBDD1016 | 418 | | WELL 582147134351401. Local number, CD04006631BBDB1017 | 419 | | WELL 582150134344501. Local number, CD04006631BAAD1021 | 419 | | WELL 582154134350501. Local number, CD04006630CDCB1027 | 420 | | WELL 582156134351701. Local number, CD04006631BBBA1018 | 420 | | WELL 582158134344101. Local number, CD04006630DCCC1034 | 421 | | WELL 582158134352001. Local number, CD04006630CCCD2017 | 421 | | WELL 582203134351601. Local number, CD04006630CCDB1028 | 422 | | WELL 582203134351701. Local number, CD04006630CCBD3015 | 422 | | WELL 582203134351901. Local number, CD04006630CCBD2015 | 423 | | WELL 582206134351401. Local number, CD04006630CCAC1029 | 423 | | WELL 582208134351201. Local number, CD04006630CCAB1030 | 424 | | WELL 582208134352601. Local number, CD04006630CCBB1031 | 424 | | WELL 582215134350501. Local number, CD04006630CBAD1032 | 425 | | WELL 582240134344501. Local number, CD04006630BADA2033 | 426 | | WELL 582240134352901. Local number, CD04006630BBCB1036 | 427 | | WELL 582256134340401. Local number, CD04006619DDBD1054 | 428 | | WELL 582306134344001. Local number, CD04006619DBCB1056 | 429 | | WELL 582314134344801. Local number, CD04006619BDDD1055 | 430 | | WELL 582314134351201. Local number, CD04006619BCDD2020 | 431 | | WELL 582322134341001. Local number, CD04006619ACAB1050 | 432 | | WELL 582326134341901. Local number, CD04006619ADBA1011 | 432 | | WELL 582359134352103. Local number, CD04006618CBCA3019 85177 | 433 | | SOUTH-CENTRAL ALASKA | | | Municipality of Anchorage | | | WELL 611725149335401. Local number, SB01400223BCCD1003 | 434 | | WELL 011/23149353401. Local number, SB01400223BCCD1005 | 434 | | YUKON ALASKA | | | Fairbanks North Star Borough | | | WELL 644400147151501. Local number, FD00200224ABBB1001 51659 | 435 | | WELL 644528147131201. Local number, FD00200307ACBD1001 51660 | 436 | | WELL 645434147385101. Local number, FB00100113DDBC2001 50673 | 437 | #### DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Alaska have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Short-term, seasonal, and fragmented records for data collected at 190 sites in Alaska west of 141 degrees longitude during water years 1906-14 have not been entered into NWIS and are not included in this list. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. [Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)] | Station name | Station
number | Drainage area (mi ²) | Period of record | |---|-------------------|----------------------------------|--| | SOUTHEA | AST ALASKA | | | | Salmon River near Hyder (d) | 15008000 | a94 | 1963-73 | | Davis River near Hyder (d) | 15010000 | a80 | 1930-40 | | Red River near Metlakatla (d) | 15011500 | 45.3 | 1963-78 | | White Creek near Ketchikan (d) | 15011870 | 2.70 | 1977-84 | | Keta River near Ketchikan (d) | 15011880 | 74.2 | 1977-84 | | Blossom River near Ketchikan (d) | 15011894 | 68.1 | 1981-84 | | Winstanley Creek near Ketchikan (d) | 15012000 | 15.5 | 1936-38
1947-75 | | Punchbowl Lake Outlet near Ketchikan (d) | 15014000 | a12 | 1924-30 | | Klahini River near Bell Island (d) | 15015600 | 58.0 | 1967-73 | | Short Creek near Bell Island at Short Bay (d) | 15016000 | a20 | 1922-26 | | Shelokum Lake Outlet near Bell Island (d) | 15018000 | 15.6 | b1915-25 | | Tyee Creek near Wrangell (d) | 15020000 | ar15.2 | c1922-27 | | Tyee Creek at Mouth near Wrangell (d) | 15020100 | 16.1 | 1963-69 | | East Fork Bradfield River near Wrangell (d) | 15020500 | 63.3 | 1979-81 | | Mill Creek near Wrangell (d) | 15024000 | a37 | 1915-17
c1923-28 | | Goat Creek near Wrangell (d) | 15024750 | 17.3 | 1976-86 | | Cascade Creek near Petersburg (d) | 15026000 | 23.0 | 1918-29
1947-73 | | Scenery Creek near Petersburg (d) | 15028000 | 30.0 | 1949-52 | | Farragut River near Petersburg (d) | 15028300 | 151 | 1977-93 | | Sweetheart Falls Creek near Juneau (d) | 15030000 | r36.3 | b1915-27 | | Long Lake near Juneau (e) | 15031700 | 30.2 | 1965-75 | | Long Lake Outlet near Juneau (d) | 15032000 | 30.2 | 1913-16 | | Long River near Juneau (d) | 15034000 | 32.5 | 1916-24
b1927-33
1952-68
R1969-73 | | Speel River near Juneau (d) | 15036000 | 226 | 1916-18
1960-75 | | Crater Creek near Juneau (d) | 15038000 | 11.4 | b1913-21
c1923-24
1927-33 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |---|-------------------|----------------------------------|-----------------------------------| | SOUTHEAST AL | ASKAContinued | | | | Dorothy Creek near Juneau (d) | 15040000 | 15.2 | 1929-41
c1942-44
1945-67 | | Carlson Creek at Sunny Cove near Juneau (d) | 15042000 | 22.3 | c1914
b1916-21 | | Carlson Creek near Juneau (d) | 15044000 | 24.3 | 1951-61 | | Grindstone Creek near Juneau (d) | 15046000 | r3.75 | 1916-21 | | Sheep Creek near Juneau (d) | 15048000 | 4.57 | 1911-14
1916-21
1947-73 | | Gold Creek near Juneau (d)** | 15049900 | 8.41 | 1984-97 | | Salmon Creek above Canyon Mouth near Juneau (d) | 15051008 | 9.50 | R1982-90 | | Lemon Creek near Juneau (d) | 15052000 | 12.1 | b1951-73 | | Lemon Creek near Mouth near Juneau (d) | 15052009 | 22.9 | 1983-86 | | Montana Creek near Auke Bay (d) | 15052800* | 15.5 | 1965-75
1983-87 | | Lake Creek at Auke Bay (d) | 15053800 | 2.50 | 1964-73 | | Auke Creek at Auke Bay (d) | 15054000 | 3.96 | 1947-50
1962-75 | | Herbert River near Auke Bay (d) | 15054200 | 56.9 | 1967-71 | | Bridget Cove Tributary near Auke Bay (d) | 15054600 | 0.95 | 1971-73 | | Davies Creek near Auke Bay (d) | 15054990 | 15.2 | 1970-72 | | Sherman Creek at Comet (d) | 15056000 | 3.65 | 1914-17 | | Dayebas Creek near Haines (d) | 15056070 | 9.33 | 1980-81 | | Goat Lake Outlet near Skagway (d) | 15056095 | 2.92 | 1991-97 | | Skagway River at Skagway (d) | 15056100 | a145 | 1964-86 | | West Creek near Skagway (d) | 15056200 | 43.2 | 1962-77 | | Taiya River near Skagway (d) | 15056210 | 179 | 1970-78 | | Upper Chilkoot Lake Outlet near
Haines (d) | 15056280 | 4.59 | 1993-97 | | Chilkat River at Gorge near Klukwan (d) | 15056400 | a190 | 1962-68 | | Chilkat River near Klukwan (d) | 15056500 | a760 | 1959-61 | | Klehini River near Klukwan (d) | 15056560 | 284 | 1982-93 | | Purple Lake Outlet near Metlakatla (d) | 15058000 | 6.67 | 1947-56 | | Whipple Creek near Ward Cove (d) | 15059500 | 5.29 | 1968-80 | | Perseverance Creek near Wacker (d) | 15060000 | 2.81 | b1932-39
1947-69 | | Ward Creek near Wacker (d) | 15062000 | 14.0 | 1949-53
R1954-58 | | Ketchikan Creek at Ketchikan (d) | 15064000 | 13.5 | R1910-12
bR1915-20
R1965-67 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |--|-------------------|----------------------------------|--------------------------------| | SOUTHEAST ALASK | KAContinued | | | | Beaver Falls Creek near Ketchikan (d) | 15066000 | 5.8 | c1917
1920-26
1928-32 | | Upper Mahoney Lake Outlet near Ketchikan (d) | 15067900 | 2.03 | 1977-89 | | Mahoney Creek near Ketchikan (d) | 15068000 | 5.70 | b1920-34
1948-58
1978-81 | | Swan Lake (Falls Creek) near Ketchikan (d) | 15070000# | 36.5 | b1916-34
1947-59 | | Ella Creek near Ketchikan (d) | 15074000 | 19.7 | 1928-38
1947-58 | | Manzanita Creek near Ketchikan (d) | 15076000 | 33.9 | 1928-37
1947-67 | | Grace Creek near Ketchikan (d) | 15078000 | 30.2 | 1928-37
1964-69 | | Orchard Creek near Bell Island (d) | 15080000 | a59 | 1915-27 | | Traitors River near Bell Island (d) | 15080500 | 20.8 | 1964-68 | | Staney Creek near Craig (d) | 15081500 | 51.6 | 1965-81 | | Bonnie Creek near Klawock (d) | 15081510 | 2.72 | 1981 | | Black Bear Lake Outlet near Klawock (d) | 15081580 | 1.82 | 1980-91 | | Klawak River near Klawock (d) | 15081620 | 46.1 | 1977 | | North Branch Trocadero Creek near Hydaburg (d) | 15081800 | 17.4 | 1967-73 | | Reynolds Creek near Hydaburg (d) | 15082000 | a5.7 | 1951-56 | | Perkins Creek near Metlakatla (d) | 15083500 | 3.38 | 1976-93 | | Myrtle Creek at Niblack (d) | 15084000 | | 1917-21 | | Saltery Creek near Kasaan (d) | 15085000 | 5.53 | 1962-64 | | Cabin Creek near Kasaan (d) | 15085300 | 8.83 | 1962-64 | | Virginia Creek near Kasaan (d) | 15085400 | 3.08 | 1962-64 | | Indian Creek near Hollis (d) | 15085600 | 8.82 | 1949-64 | | Harris River near Hollis (d) | 15085700 | 28.7 | 1949-64 | | Maybeso Creek at Hollis (d) | 15085800 | 15.1 | 1949-63 | | Wolf Lake Outlet near Hollis (d) | 15085900 | 1.64 | 1995-98 | | Karta River near Kasaan (d) | 15086000 | 49.5 | 1915-23 | | Neck Creek near Point Baker (d) | 15086500 | 17.0 | 1960-67 | | Big Creek near Point Baker (d) | 15086600 | 11.2 | 1964-81 | | Mill Creek at Wrangell (d) | 15087000 | 0.09 | 1965-67 | | Hammer Slough at Petersburg (d) | 15087200 | 1.46 | 1965-67 | | Municipal Watershed Creek near Petersburg (d) | 15087545 | 2.20 | 1979-88 | | No Name Creek near Petersburg (d) | 15087560 | 3.17 | 1971-73 | | Hamilton Creek near Kake (d) | 15087570 | 65.0 | 1977-86
1988-96 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |--|-------------------|----------------------------------|--------------------------------| | SOUTHEAST ALASKA | Continued | | | | Rocky Pass Creek near Point Baker (d) | 15087590 | 2.72 | 1977-88 | | Nakwasina River near Sitka (d) | 15087610 | 31.9 | 1977-82 | | Sawmill Creek near Sitka (d) | 15088000 | 39.0 | c1920-23
1928-42
1946-57 | | Green Lake (outlet) near Sitka (d) | 15090000# | r22.8 | 1915-25 | | Maksoutof River near Port Alexander (d) | 15092000 | a26 | 1951-56 | | Betty Lake Outlet near Port Armstrong (d) | 15093200 | 2.66 | 1978-81 | | Sashin Creek near Big Port Walter (d) | 15093400 | 3.72 | 1965-73
1975-80 | | East Branch Lovers Cove Creek Diversion near Big Port Walter (d) | 15093600 | | 1965-71 | | Deer Lake Outlet near Port Alexander (d) | 15094000 | 7.41 | 1951-68 | | Coal Creek near Baranof (d) | 15096000 | 28.5 | b1922-27 | | Baranof River at Baranof (d) | 15098000 | 32.0 | 1915-28
1958-74 | | Takatz Creek near Baranof (d) | 15100000 | 17.5 | 1951-69 | | Nichols Creek near Angoon (d) | 15100500 | a0.12 | 1981 | | Stephens Creek near Angoon (d) | 15100510 | a0.14 | 1981 | | Kalinin Bay Tributary near Sitka (d) | 15101200 | 2.28 | 1976-80 | | Greens Creek near Juneau (d) | 15101500 | 22.8 | 1979-92 | | Hasselborg Creek near Angoon (d) | 15102000 | 56.2 | 1951-68 | | Porcupine River near Chichagof (d) | 15104000 | 7.12 | 1918-20 | | Falls Creek near Chichagof (d) | 15106000 | 6.48 | 1918-20 | | Black River near Pelican (d) | 15106100 | 24.7 | 1978-82 | | Hook Creek above Tributary near Tenakee (d) | 15106940 | 4.48 | 1967-80 | | Hook Creek near Tenakee (d) | 15106960 | 8.00 | 1966-80 | | Tonalite Creek near Tenakee (d) | 15106980 | 14.5 | 1968-88 | | Kadashan River near Tenakee (d) | 15107000 | 37.7 | 1964-79 | | West Fork Indian River near Tenakee (d) | 15107910 | 3.02 | 1979-81 | | Indian River near Tenakee (d) | 15107920 | 12.9 | 1976-82 | | Pavlof River near Tenakee (d) | 15108000 | 24.3 | 1957-81 | | Hilda Creek near Douglas (d) | 15108600 | 2.62 | 1967-71 | | Lawson Creek at Douglas (d) | 15108800 | 2.98 | 1967-71 | | Fish Creek near Auke Bay (d) | 15109000 | 13.6 | 1959-78 | | SOUTH-CENTRAL A | ALASKA | | | | Dick Creek near Cordova (d) | 15195000 | 7.95 | 1970-81 | | Gakona River at Gakona (d) | 15200000 | a620 | c1970 | | Tazlina River near Glennallen (d) | 15202000 | a2670 | 1949-50
1952-72 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |--|-------------------|----------------------------------|------------------------------| | SOUTH-CENTRAL ALAS | KAContinued | | | | Klutina River at Copper Center (d) | 15206000 | a880 | c1913
1949-67
c1970 | | Little Tonsina River near Tonsina (d) | 15207800 | 22.7 | 1972-78 | | Tonsina River at Tonsina (d) | 15208000 | a420 | b1950-82 | | Squirrel Creek at Tonsina (d) | 15208100 | 70.5 | 1965-75 | | West Fork Kennicott River at McCarthy (d) | 15209700 | | c1992-95 | | East Fork Kennicott River at McCarthy (d) | 15209800 | | c1991-92 | | Tebay River near Chitina (d) | 15211500 | a55.4 | 1962-65 | | Copper River near Chitina (d) | 15212000 | a20600 | c1950
c1952-53
1956-90 | | Copper River at Million Dollar Bridge near Cordova (d) | 15214000 | 24200 | b1907-10
c1913
1988-95 | | Heney Creek at canyon mouth near Cordova (d) | 15215992 | 1.53 | 1992-93 | | Power Creek near Cordova (d) | 15216000 | 20.5 | c1913
1947-95 | | Middle Arm Eyak Lake Tributory near Cordova (d) | 15216003 | 2.90 | 1992-93 | | Murchison Creek near Cordova (d) | 15216008 | a0.37 | 1992-93 | | Humpback Creek near Cordova (d) | 15216100 | 4.37 | c1913
1974-75 | | West Fork Olsen Bay Creek near Cordova (d) | 15219000 | 4.78 | 1964-81 | | Duck River at Silver Lake Outlet near Valdez (d) | 15223900 | 25.1 | 1982-85 | | Duck River near Tidewater near Valdez (d) | 15224000 | 26.7 | c1913-14
1982-85 | | Solomon Gulch Bypass near Valdez (d) | 15225998 | | c1986-94 | | Lowe River near Valdez (d) | 15226500 | 201 | 1971-74 | | Lowe River in Keystone Canyon near Valdez (d) | 15226600 | 222 | 1975-76 | | Hobo Creek near Whittier (d) | 15236000 | 5.53 | c1913
1990-2000 | | Nellie Juan River near Hunter (d) | 15237000 | 133 | 1961-65 | | Main Bay Creek near Port Nellie Juan (d) | 15237020 | 5.93 | 1981-84 | | San Juan River near Seward (d) | 15237360 | 12.4 | 1986-96 | | Resurrection River at Seward (d) | 15237700 | 169 | 1965-68 | | Bear Creek Tributary near Seward (d) | 15237800 | 1.63 | 1967-68 | | Lost Creek near Seward (d) | 15238000 | 8.42 | 1948-50 | | Lowell Creek above city wells at Seward (d) | 1523849020 | 3.73 | 1993-95 | | Lowell Creek at Seward (d) | 15238500 | 4.02 | 1965-68
1991-93 | | Nuka River near Tidewater near Homer (d) | 15238653 | a38 | 1984-85 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |--|-------------------|----------------------------------|-------------------------------| | SOUTH-CENTRAL ALA | ASKAContinued | | | | Seldovia River near Seldovia (d) | 15238795 | 26.2 | 1979-80 | | Barabara Creek near Seldovia (d) | 15238820 | 20.7 | 1972-92 | | Tutka Lagoon Creek near Homer (d) | 15238860 | 10.8 | 1973-76 | | Battle Creek below Glacier near Homer (d) | 15238982 | g11.8 | 1991-93 | | South Fork Battle Creek near Homer (d) | 15238984 | a6.5 | 1991-93 | | Battle Creek near Tidewater near Homer (d) | 15238985 | ag21 | 1991-93 | | Fritz Creek near Homer (d) | 15239500* | 10.4 | 1967-70
1986-92 | | Twitter Creek near Homer (d) | 15239880 | 16.1 | 1971-73 | | Anchor River near Anchor Point (d) | 15239900* | 137 | 1965-73
1979-86
1991-92 | | Anchor River at Anchor Point (d) | 15240000 | 224 | 1953-66 | | Kasilof River near Kasilof (d) | 15242000 | 738 | 1949-70 | | Snow River near Divide (d) | 15243500 | a99.8 | 1961-65 | | Ptarmigan Creek at Lawing (d) | 15244000 | 32.6 | 1947-58 | | Grant Creek near Moose Pass (d) | 15246000 | 44.2 | 1947-58 | | Trail River near Lawing (d,e) | 15248000 | 181 | d1947-74
e1975-77 | | Crescent Creek near Moose Pass (d) | 15253000 | 21.4 | 1957-60 | | Crescent Creek near Cooper Landing (d) | 15254000 | 31.7 | 1949-66 | | Cooper Creek near Cooper Landing (d) | 15260000 | 31.8 | 1949-59 | | Stetson Creek near Cooper Landing (d) | 15260500 | a8.6 | 1958-63 | | Russian River near Cooper Landing (d) | 15264000 | 61.8 | 1947-54 | | Beaver Creek near Kenai (d) | 15266500 | a51 | 1968-78 | | Bernice Lake near Kenai (e) | 15266895 | | 1977-79 | | Bishop Creek near Kenai (d) | 15267000 | a24.2 | 1977-79 | | Resurrection Creek near Hope (d) | 15267900 | 149 | 1968-86 | | Resurrection Creek at Hope (d) | 15268000 | 162 | 1950-51 | | Glacier Creek at Girdwood (d) | 15272550 | r58.2
| 1965-78 | | Rabbit Creek at Anchorage (d) | 15273050 | a15 | 1979-80
1984-85 | | Little Rabbit Creek above Goldenview Drive at Anchorage (d) | 15273095 | 5.06 | 1981-85 | | Little Rabbit Creek at Anchorage (d) | 15273102 | 5.94 | 1979-80 | | Rabbit Creek at New Seward Highway at Anchorage (d) | 15273105 | a24.5 | 1984-86 | | South Fork Campbell Creek at Canyon Mouth near Anchorage (d) | 15273900 | 25.2 | 1967-79 | | North Fork Campbell Creek near Anchorage (d) | 15274300 | 13.4 | 1974-84 | | Little Campbell Creek at Nathan Drive near Anchorage (d) | 15274550 | a15 | c1981
1986-92 | | Campbell Creek near Spenard (d) | 15274600 | 69.7 | 1966-93 | | Station name | Station
number | Drainage area (mi ²) | Period of
record | |--|-------------------|----------------------------------|----------------------------| | SOUTH-CENTRAL ALASKAC | Continued | | | | Sand Lake near Spenard (e) | 15274700 | | c1967-74 | | South Branch South Fork Chester Creek near East 20th Ave. at Anchorage (d) | 15274798 | 9.39 | 1981-84 | | Chester Creek at Anchorage (d) | 15275000 | 20.0 | 1958-76 | | Ship Creek at Elmendorf Air Force Base near Anchorage (d) | 15276500 | 113 | 1963-71 | | Ship Creek below Power Plant at Elmendorf Air Force Base (d) | 15276570 | 115 | 1971-81 | | Ditch on Elmendorf Air Force Base (d) | 15276650 | 3.73 | 1973-75 | | Eagle River at Eagle River (d) | 15277100 | a192 | 1966-81 | | Peters Creek near Birchwood (d) | 15277410 | 87.8 | 1973-83 | | East Fork Eklutna Creek near Palmer (d) | 15277600 | 538.2 | 1960-62
1985-89 | | West Fork Eklutna Creek near Palmer (d) | 15277800 | 25.4 | 1960-62
1985-89 | | Eklutna Creek near Palmer (d) | 15280000 | 119 | 1947-54
R1955-62 | | Knik River near Palmer (d) | 15281000 | a1180 | 1960-88
1992 | | Caribou Creek near Sutton (d) | 15282000 | 289 | 1955-78 | | Palmer Hayflat at railroad near Palmer (e) | 15284500 | | 1992-97 | | Cottonwood Creek near Wasilla (d) | 15286000 | 28.5 | 1949-54
1998-2000 | | Susitna River near Denali (d) | 15291000 | a950 | 1957-66
1968-86 | | Maclaren River near Paxson (d) | 15291200 | a280 | 1958-86 | | Susitna River near Cantwell (d) | 15291500 | a4140 | 1961-72
1980-86 | | Chulitna River near Talkeetna (d) | 15292400 | a2570 | 1958-72
1980-86 | | Susitna River at Sunshine (d) | 15292780 | a11100 | 1981-86 | | Deception Creek near Willow (d) | 15294010 | 48.0 | 1978-85 | | Skwentna River near Skwentna (d) | 15294300 | a2250 | 1960-82 | | Yentna River near Susitna Station (d) | 15294345 | a6180 | 1981-86 | | Susitna River at Susitna Station (d) | 15294350 | a19400 | 1975-93 | | Capps Creek below North Capps Creek near Tyonek (d) | 15294410 | 10.5 | 1979-85 | | Chuitna River near Tyonek (d) | 15294450 | 131 | 1976-86 | | Chakachatna River near Tyonek (d) | 15294500 | a1120 | 1959-72 | | Montana Bill Creek at pipeline near Kenai (d) | 15294585 | | c1991-92 | | Paint River near Kamishak (d) | 15294900 | 205 | 1983-85
1989
1991-95 | | Little Kitoi Creek near Afognak (d) | 15295500 | 2.63 | 1960-61 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |---|-------------------|----------------------------------|--------------------------------| | SOUTH-CENTRAL A | ALASKAContinued | | | | Terror River near Kodiak (d) | 15295600 | 15.0 | 1962-68
1978-82
R1983-86 | | Uganik River near Kodiak (d) | 15296000 | 123 | 1951-78 | | Spiridon Lake Outlet near Larsen Bay (d) | 15296300 | 23.3 | 1962-65 | | Larsen Bay Creek near Larsen Bay (d) | 15296480 | 3.92 | 1980-84 | | Falls Creek near Larsen Bay (d) | 15296500 | 5.67 | 1974-75 | | Canyon Creek near Larsen Bay (d) | 15296520 | 8.82 | 1974-76 | | Upper Thumb River near Larsen Bay (d) | 15296550 | 18.8 | 1974-82 | | Karluk River at Outlet near Larsen Bay (d) | 15296600 | 100 | 1975-76
1979-82 | | Akalura Creek at Olga Bay (d) | 15296950 | 18.4 | 1975-76 | | Dog Salmon Creek near Ayakulik (d) | 15297000 | 72.9 | 1960-61 | | Hidden Basin Creek near Port Lions (d) | 15297100 | 3.01 | 1982-84 | | Hidden Basin Creek near Mouth near Kodiak (d) | 15297110 | 11.9 | 1983-84 | | Myrtle Creek near Kodiak (d) | 15297200* | 4.74 | 1963-86 | | Middle Fork Pillar Creek near Kodiak (d) | 15297450 | 2.02 | 1969-70 | | Monashka Creek near Kodiak (d) | 15297470 | 5.51 | 1972
R1973-76 | | Falls Creek near Port Lions (d) | 15297482 | a4.3 | 1981-83 | | Kizhuyak River near Port Lions (d) | 15297485 | 42.5 | 1980-94 | | SOUTHWES | ST ALASKA | | | | Whiskey Bills Creek near Sand Point (d) | 15297602 | a0.30 | 1983-84 | | Humboldt Creek at Sand Point (d) | 15297603 | a5.2 | 1983-84 | | Sweeper Creek at Adak (d) | 15297617 | 1.0 | 1992-96 | | Moffett Creek at Adak (d) | 15297625 | 4.5 | 1993-96 | | Limpet Creek on Amchitka Island (d) | 15297640 | 1.69 | 1968-72 | | Falls Creek on Amchitka Island (d) | 15297650 | 0.86 | 1968-72 | | Clevenger Creek on Amchitka Island (d) | 15297655 | 0.28 | 1968-74 | | Constantine Spring Creek on Amchitka Island (d) | 15297660 | | 1968-73 | | Bridge Creek on Amchitka Island (d) | 15297680 | 3.03 | 1968-74 | | White Alice Creek on Amchitka Island (d) | 15297690 | 0.79 | 1968-74 | | Lake Creek at Shemya Air Force Base (d) | 15297767 | a1.0 | 1971-73 | | Gallery Spring at Shemya Air Force Base (d) | 15297771 | | 1971-72 | | Gallery Creek at Shemya Air Force Base (d) | 15297773 | a1.0 | 1971-73 | | Eskimo Creek at King Salmon (d) | 15297900 | 16.1 | 1973-76
1978-84 | | Tanalian River near Port Alsworth (d) | 15298000 | a200 | 1951-56 | | Tazimina River near Nondalton (d) | 15299900 | 327 | 1981-86 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |--|-------------------|----------------------------------|---------------------| | SOUTHWEST ALASI | KAContinued | | | | Newhalen River near Iliamna (d) | 15300000 | 3478 | 1951-67
1982-86 | | Kvichak River at Igiugig (d) | 15300500 | a6500 | 1967-87 | | Allen River near Aleknagik (d) | 15301500 | 278 | 1963-66 | | Nuyakuk River near Dillingham (d) | 15302000 | 1490 | 1953-96 | | Nushagak River at Ekwok (d) | 15302500 | a9850 | 1978-93 | | Grant Lake Outlet near Aleknagik (d) | 15302800 | r34.3 | 1959-65 | | Elva Lake Outlet near Aleknagik (d) | 15302840 | 9.00 | 1980-82 | | Wood River near Aleknagik (d) | 15303000 | a1110 | 1957-70 | | Silver Salmon Creek near Aleknagik (d) | 15303010 | 4.46 | 1985-86
c1988-89 | | Wood River Tributary near Aleknagik (d) | 15303011 | 3.35 | c1990
c1992-93 | | East Creek near Dillingham (d) | 15303100 | 2.12 | 1973-75 | | Snake River near Dillingham (d) | 15303150 | 113 | 1973-83 | | Kuskokwim River at McGrath (d) | 15303600 | a11700 | 1963-73 | | Kisaralik River near Akiak (d) | 15304200 | 265 | 1980-87 | | Browns Creek near Bethel (d) | 15304293 | 4.79 | c1985-94 | | Browns Creek at Bethel (d) | 15304298 | 10.5 | c1985 | | YUKON ALA | ASKA | | | | King Creek near Dome Creek (d) | 15344000* | 5.87 | 1983-90 | | Fortymile River near Steele Creek (d) | 15348000 | a5880 | c1910-12
1976-82 | | Porcupine River at Old Crow, Yukon Territory, Canada (d) | 15388950 | a21400 | f1980-89 | | Porcupine River near Fort Yukon (d) | 15389000 | a29500 | 1964-79 | | Chandalar River near Venetie (d) | 15389500 | a9330 | 1963-73 | | Boulder Creek near Central (d) | 15439800* | 31.3 | 1966-82
1984-86 | | Hess Creek near Livengood (d) | 15457800 | 662 | 1970-78
1982-86 | | Yukon River at Rampart (d) | 15468000 | a199400 | 1955-67 | | Chisana River at Northway Junction (d) | 15470000 | a3280 | 1949-71 | | Tanana River near Tok Junction (d) | 15472000 | a6800 | 1950-53 | | Tok River near Tok Junction (d) | 15474000 | a930 | 1952-54 | | Tanana River near Tanacross (d) | 15476000 | a8550 | 1953-90 | | Berry Creek near Dot Lake (d) | 15476300* | 65.1 | 1971-81 | | Dry Creek near Dot Lake (d) | 15476400 | 57.6 | 1966-69 | | Clearwater Creek near Delta Junction (d) | 15477500 | a360 | 1977-79 | | Tanana River at Big Delta (d) | 15478000 | a13500 | 1949-52
1954-57 | | Station name | Station
number | Drainage area (mi ²) | Period of
record | |--|-------------------|----------------------------------|---------------------| | YUKON ALASKAC | ontinued | | | | Tanana River near Harding Lake (e) | 15481000 | 17240 | c1968-82 | | Moose Creek at Eielson Air Force Base (d) | 15485000 | 136 | 1964-65 | | Garrison Slough at Eielson Air Force Base (d) | 15485200 | 6.24 | 1964-65 | | Chena River near North Pole (d) | 15493500 | r1445 | 1972-80 | | Chena River below Moose Creek Dam (d) | 15493700 | 1,460 | 1979-96 | | Wood River near Fairbanks (d) | 15514500 | 855 | 1968-78 | | Seattle Creek near Cantwell (d) | 15515800 | 36.2 | 1966-75 | | Nenana River near Windy (d) | 15516000 | a710 | 1950-56 | | Nenana River near Healy (d) | 15518000 | a1910 | 1951-79 | | Nenana River at Healy (d) | 15518040 | a2100 | 1990-91 | | Nenana River near Rex (d) | 15518300 | a2450 | 1965-68 | | Teklanika River near Lignite (d) | 15518350 | 490 | 1965-74 | | Chatanika River above Poker Creek near Chatanika (d) | 15534800 | 419 | 1996 | | Poker Creek near Chatanika (d) | 15534900 | 23.1 | 1971-78 | | Caribou Creek near Chatanika (d) | 15535000 | 9.19 | 1970-84 | | Long Creek at Long near Ruby | 15564450 | 25.4 | 1995-97 | | Melozitna River near Ruby (d) | 15564600 | 2693 | 1961-73 | | Yukon River at Ruby (d) | 15564800 | a259000 | 1957-78 | | Middle Fork Koyukuk River near Wiseman (d) | 15564875 | a1200 | 1970-78
1984-87 | | Wiseman Creek at Wiseman (d) | 15564877 | 49.2 | 1970-78 | | Jim River near Bettles (d) | 15564885 | 465 | 1970-77 | | Koyukuk River at Hughes (d) | 15564900 | a18400 | 1960-82 | | Yukon River near Kaltag (d) | 15565200 | a296000 | 1957-66 | | Ophir Creek near Takotna (d) | 15565235 | 6.19 | 1975-80 |
 Yukon River at Pilot Station (d) | 15565447 | 321,000 | 1975-96 | | NORTHWEST ALA | ASKA | | | | Snake River near Nome (d) | 15621000 | 85.7 | 1965-81
1982-91 | | Eldorado Creek near Teller (d) | 15635000 | 5.83 | 1988-90
1992-98 | | Gold Run Creek near Teller (d) | 15637000* | 24.2 | c1986-88 | | Crater Creek near Nome (d) | 15668200 | 21.9 | 1975-85 | | Kuzitrin River near Nome (d) | 15712000 | a1720 | c1908-10
1962-73 | | Humboldt Creek near Serpintine Hot Springs near Nome (d) | 15716010 | 8.15 | c1992-93 | | June Creek near Kotzebue (d) | 15743000 | 10.9 | 1965-67 | | Kobuk River at Ambler (d) | 15744000 | a6570 | 1965-78 | | Noatak River at Noatak (d) | 15746000 | a12000 | c1965-71 | | Station name | Station
number | Drainage area (mi ²) | Period of record | |---|-------------------|----------------------------------|---| | NORTHWEST ALA | SKAContinued | | | | Ikalukrok Creek above Red Dog Creek near Noatak (d) | 15746980 | 59.2 | 1991-92 | | Red Dog Mine clean water ditch near Noatak (d) | 15746983 | 4.74 | 1991-92 | | North Fork Red Dog Creek near Kivalina (d) | 15746988* | 15.9 | 1991-92 | | Red Dog Creek above mouth near Noatak (d) | 15746990 | 24.6 | 1991-92 | | Ogotoruk Creek near Point Hope (d) | 15748000 | a35 | c1958-62 | | ARCTIC SLOP | E ALASKA | | | | Esatkuat Creek near Barrow (d) | 15799000 | a1.46 | c1972-73 | | Esatkuat Lagoon Outlet at Barrow (d) | 15799300 | a3.52 | c1972-73 | | Meade River at Atkasuk (d) | 15803000 | a1800 | c1977 | | Teshekpuk Lake Outlet near Lonely (e) | 15829995 | a1400 | c1977 | | Miguakiak River near Teshekpuk Lake near Lonely (d) | 15830000 | a1460 | c1977 | | Colville River near Nuiqsut (d) | 15880000 | 20670 | c1977 | | Putuligayuk River near Deadhorse (d) | 15896700 | a176 | 1970-79
c1980
1982-86
c1987-95 | | Atigun River near Pump Station 4 (d) | 15904800 | 48.7 | 1991-94 | | Atigun River Tributary near Pump Station 4 (d) | 15904900* | 32.6 | 1977-86 | | Sagavanirktok River near Sagwon (d) | 15910000 | 2208 | 1970-78 | | Chamberlin Creek near Barter Island (d) | 15975000 | 1.46 | c1958 | | Neruokpukkoonga Creek near Barter Island (d) | 15976000 | 123 | c1958 | Currently operated as a crest-stage partial-record station Currently operated as a water-quality partial record station Currently operated as a monthly discharge and reservoir elevation station Approximately Break in record Fragmentary or seasonal Additional record for water years 1961-79 available from discharge records of Water Survey of Canada Prior to diversion upstream Revised Revised Regulated #### DISCONTINUED SURFACE-WATER-QUALITY STATIONS The following continuous-record surface-water-quality stations in Alaska have been discontinued. Daily records of temperature, specific conductance, or sediment were collected and published for the period of record shown for each station. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. [Type of record: Temp. (temperature), S.C. (specific conductance), Sed. (sediment)] ### Discontinued continuous record surface-water-quality stations [Footnotes at end of table on p. xxviii] | Seta River near Ketchikan 15011880 74.2 Temp., S.C. 1978-81, 1983-84 | Station name | Station number | Drainage
area
(mi ²) | Type of record | Period of record
(water years) | |--|--|------------------|--|-------------------|-----------------------------------| | Seta River near Ketchikan 15011880 74.2 Temp., S.C. 1978-81, 1983-84 | | SOUTHEAST ALASKA | | | | | Select S | White Creek near Ketchikan | 15011870 | 2.70 | Temp., S.C. | 1978-83 | | Stikine River near Wrangell 15024800 a19,920 Temp. 1976-82 Sed. 1982 | Keta River near Ketchikan | 15011880 | 74.2 | Temp., S.C. | 1978-81, 1983-84 | | Sed 1982 1982 1982 1982 1982 1982 1982 1982 1982 1983 1 | Blossom River near Ketchikan | 15011894 | 68.1 | Temp., S.C. | 1981-84 | | Dorothy Lake Outlet (head of Dorothy Creek) near Juneau 15039900 Juneau 11.0 Temp 1996-99 Juneau 20uck Creek below Nancy Street near Auke Bay 15053200 Temp 1997-99 Lake Creek at Auke Bay 15053800 2.50 Temp 1963-73 Auke Creek at Auke Bay 15053800 3.96 Temp 1962-75 Davies Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp. 1979-82 S.C. 1980-82 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 150566400 a190 Temp. 1962-67 Chilkat River near Skagway 15056500 a760 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Cerkins Creek near Kasaan 1508500 3.38 Temp. 1976-77 Perkins Creek near Kasaan 1508500 5.53 Temp. 1976-93 Saltery Creek near Kasaan 1508500 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 1508500 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Carembo Creek near Kasaan 15085400 3.08 Temp. 1962-64 Carembo Creek near Point Baker 15087110 1.27 Temp. 1978-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Slika 15087610 31.9 Temp. 1978-81 Setty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Stikine River near Wrangell | 15024800 | a19,920 | | | | Duck Creek below Nancy Street near Auke Bay 15053200 Temp 1997-99 | Speel River near Juneau | 15036000 | 226 | Temp., Sed. | 1960 | | Lake Creek at Auke Bay 15053800 2.50 Temp 1963-73 Auke Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp., 1979-82 S.C. 1980-82 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056210 149 Temp. 1971-74, 1977 Chilkat River near Skagway 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klukwala 15083500 3.38 Temp. 1976-77 Perkins Creek near Metlakatla
15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085300 3.83 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Labin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Labin Creek near Point Baker 15086600 11.2 Temp. 1978-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-81 Perkin Creek near Foint Baker 15087590 2.72 Temp. 1978-81 Perkin Creek. 1508-81 Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81 Perkin Creek. Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81 Perkin Creek. Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81 | Dorothy Lake Outlet (head of Dorothy Creek) near
Juneau | 15039900 | 11.0 | Temp | 1996-99 | | Auke Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp., 1979-82 S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Rikawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Point Baker 15086600 11.2 Temp. 1963-80 Larembo Creek near Point Baker 1508770 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 1508400 2.66 Temp. 1978-81 | Duck Creek below Nancy Street near Auke Bay | 15053200 | | Temp | 1997-99 | | Davies Creek near Auke Bay Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp. 1979-82 S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp. 1962-67 Chilkat River near Klukwan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Temp. 1963-80 Earembo Creek near Point Baker 15087570 65.0 Temp. 1978-81 Perkins Creek near Point Baker 15087590 2.72 Temp. 1978-81 Perkins Creek near Point Baker 15087590 2.66 Temp. 1978-81 | Lake Creek at Auke Bay | 15053800 | 2.50 | Temp | 1963-73 | | Skagway River at Skagway 15056100 145 Temp. 1979-82 S.C. 1980-82 | Auke Creek at Auke Bay | 15054000 | 3.96 | Temp. | 1962-75 | | S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Foint Baker 15086600 11.2 Temp. 1963-80 Ezarembo Creek near Point Baker 15087110 1.27 Temp. 1978-80 Hamilton Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 1508200 2.66 Temp. 1978-81 | Davies Creek near Auke Bay | 15054990 | 15.2 | Temp. | 1969-72 | | Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Fraitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085000 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka | Skagway River at Skagway | 15056100 | a145 | 1 . | | | Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Fraitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 1508500 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087610 31.9 Temp. 1976-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Taiya River near Skagway | 15056210 | 149 | Temp. | 1971-74, 1977 | | Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Grace Creek near Rear Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Chilkat River at Gorge near Klukwan | 15056400 | a190 | Temp. | 1962-67 | | Graitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Chilkat River near Klukwan | 15056500 | a760 | Temp., Sed., S.C. | 1960 | | Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Grace Creek near Ketchikan | 15078000 | 30.2 | Temp. | 1965-69 | | Sklawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Traitors River near Bell Island | 15080500 | 20.8 | Temp. | 1965-68 | | Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Staney Creek near Craig | 15081500 | 51.6 | Temp. | 1966-79 | | Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Klawak River near Klawock | 15081620 | 46.1 | Temp. |
1976-77 | | Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Perkins Creek near Metlakatla | 15083500 | 3.38 | Temp. | 1976-93 | | Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Saltery Creek near Kasaan | 15085000 | 5.53 | Temp. | 1962-64 | | Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Cabin Creek near Kasaan | 15085300 | 8.83 | Temp. | 1962-64 | | Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Virginia Creek near Kasaan | 15085400 | 3.08 | Temp. | 1962-64 | | Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Big Creek near Point Baker | 15086600 | 11.2 | Temp. | 1963-80 | | Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Zarembo Creek near Point Baker | 15087110 | 1.27 | Temp. | 1979-80 | | Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Hamilton Creek near Kake | 15087570 | 65.0 | Temp. | 1982-86, 1989-96 | | Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81 | Rocky Pass Creek near Point Baker | 15087590 | 2.72 | Temp. | 1978-79, 1981-82 | | | Nakwasina River near Sitka | 15087610 | 31.9 | Temp. | 1976-82 | | Sashin Creek near Big Port Walter 15093400 3.72 Temp. 1966-77 | Betty Lake outlet at Port Armstrong | 15093200 | 2.66 | Temp. | 1978-81 | | | Sashin Creek near Big Port Walter | 15093400 | 3.72 | Temp. | 1966-77 | ### Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii] | Station name | Station number | Drainage
area
(mi ²) | Type of record | Period of record
(water years) | |---|--------------------|--|----------------------|--| | SO | UTHEAST ALASKACon | tinued | | | | East Branch Lovers Cove Creek Diversion near
Big Port Walter | 15093600 | | Temp. | 1965-71 | | Kalinin Bay tributary near Sitka | 15101200 | 2.28 | Temp. | 1976-79 | | Greens Creek near Juneau | 15101500 | 22.8 | Temp.
S.C. | 1978-84
1979-85 | | Wheeler Creek near Douglas | 15101600 | 57.1 | Temp. | 1970-73 | | North Arm Creek near Angoon | 15102350 | 8.64 | Temp. | 1971-78 | | Hood Bay Creek near Angoon | 15102400 | | Temp. | 1970-71 | | Hook Creek above tributary near Tenakee | 15106940 | 4.48 | Temp. | 1967-80 | | Hook Creek near Tenakee | 15106960 | 8.00 | Temp. | 1966-78 | | Tonalite Creek near Tenakee | 15106980 | 14.5 | Temp. S.C., Sed. | 1968-84, 1986-88
1972 | | Kadashan River near Tenakee | 15107000 | 37.7 | Temp. | 1966-79 | | | SOUTH-CENTRAL ALAS | KA | | | | Dick Creek near Cordova | 15195000 | 7.95 | Temp. | 1971-79 | | Gakona River at Gakona | 15200000 | a620 | Temp., S.C. | 1953-54 | | Gulkana River at Sourdough | 15200280 | 1,770 | Temp. | 1972-78 | | Klutina River at Copper Center | 15206000 | a880 | Temp, S.C. | 1953 | | Little Tonsina River near Tonsina | 15207800 | 22.7 | Temp. | 1973-78 | | Tonsina River at Tonsina | 15208000 | a420 | Temp., S.C. | 1953, 1959-66 | | Copper River near Chitina | 15212000 | a20,600 | Temp
Sed.
S.C. | 1957, 1964-65,
1979-81
1957, 1963-65
1957 | | Humpback Creek near Cordova | 15216100 | 4.37 | Temp. | 1973-75 | | West Fork Olsen Bay Creek near Cordova | 15219000 | 4.78 | Temp. | 1964-79 | | Duck River at Silver Lake outlet near Valdez | 15223900 | 25.1 | Temp. | 1982-84 | | Duck River near tidewater near Valdez | 15224000 | 26.7 | Temp. | 1982-84 | | Duck River above the Lagoon near Valdez | 15224002 | | Temp. | 1982-84 | | Lowe River in Keystone Canyon near Valdez | 15226600 | 222 | Temp. | 1975-76 | | Tutka Lagoon Creek near Homer | 15238860 | 10.8 | Temp. | 1973-76 | | Upper Bradley River near Homer | 15238990 | a10.0 | Temp. | 1979-90 | | Bradley River below dam near Homer | 15239001 | a66.0 | Temp | 1990-99 | | Bradley River near Tidewater near Homer | 15239070 | | Temp | 1986-99 | | Anchor River at Anchor Point | 15240000 | 224 | Temp., S.C. | 1954, 1959-66 | | Ninilchik River at Ninilchik | 15241600 | 131 | Temp.
Sed. | 1963, 1965
1963-65 | | Trail River near Lawing | 15248000 | 181 | Temp. | 1959-67 | | Kenai River at Cooper Landing | 15258000 | 634 | Temp., S.C. | 1950 | ## Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii] | Station name | Station number | Drainage
area
(mi ²) | Type of record | Period of record (water years) | |--|-----------------|--|-----------------------|---| | SOUTH-CI | ENTRAL ALASKAC | Continued | | | | Kenai River at Soldotna | 15266300 | 2,010 | Sed. | 1979-80 | | Beaver Creek near Kenai | 15266500 | a51 | Temp. | 1970-75 | | Bishop Creek near Kenai | 15267000 | a24.2 | S.C. | 1977-79 | | Rabbit Creek at Anchorage | 15273050 | a15 | Temp. | 1984-86 | | Little Rabbit Creek above Goldenview Drive at Anchorage | 15273095 | 5.06 | Temp. | 1983-86 | | Rabbit Creek at New Seward Highway at Anchorage | 15273105 | a24.5 | Temp. | 1984-86 | | Little Campbell Creek at Nathan Drive near Anchorage | 15274550 | a15.0 | Temp.
Sed. | 1986-87
b1988-91 | | Campbell Creek near Spenard | 15274600 | 69.7 | Sed. | 1986, 1988 | | Middle Fork Chester Creek at Nichols Street at Anchorage | 611207149483600 | | Temp. | 1982 | | Chester Creek at Anchorage | 15275000 | 20.0 | Temp. | 1982 | | Chester Creek at Arctic Boulevard at Anchorage | 15275100 | 27.2 | Temp., S.C.
Sed. | 1981-86
b1988-91 | | Ship Creek near Anchorage | 15276000 | 90.5 | Temp. | 1949-50 | | Ship Creek below powerplant at Elmendorf Air Force Base | 15276570 | 115 | Temp. | 1970-80 | | Eagle River at Eagle River | 15277100 | a192 | Temp.
Sed., S.C. | 1968-69, 1971
1967-69, 1971 | | East Fork Eklutna Creek near Palmer | 15277600 | 38.2 | Sed. | 1985-87 | | West Fork Eklutna Creek near Palmer | 15277800 | 25.4 | Sed. | 1985-87 | | Eklutna Creek near Palmer | 15280000 | 119 | Temp. | 1950 | | Knik River near Palmer | 15281000 | a1,180 | Temp.
Sed.
S.C. | 1963, 1965
1962-66
1972 | | Chickaloon River near Sutton | 15282800 | | Temp. | 1953-54 | | Matanuska River at Palmer | 15284000 | a2,070 | Temp.
Sed.
S.C. | 1952-53, 1959-66
1953-54, 1959-66
1965-67, 1972 | | Susitna River near Denali | 15291000 | a950 | Temp. | 1974-82 | | Susitna River near Cantwell | 15291500 | a4,140 | Temp. | 1980, b1982-86 | | Susitna River at Gold Creek | 15292000 | a6,160 | Temp.
Sed. | 1957, 1974-80,
1982-85 1952, 1957 | | Chulitna River near Talkeetna | 15292400 | a2,570 | Temp. | b1982-86 | | Talkeetna River near Talkeetna | 15292700 | 2,006 | Temp. | 1954 | | Susitna River at Sunshine | 15292780 | a11,100 | Temp. | b1981-85 | | Willow Creek near Willow | 15294005 | 166 | Temp. | b1978-90 | | Deception Creek near Willow | 15294010 | 48.0 | Temp. | b1978-85 | | Yentna River near Susitna Station | 15294345 | a6,180 | Temp. | b1981-86 | | Susitna River at Susitna Station | 15294350 | a19,400 | Temp. | 1975-80, b1983-86 | | Chuitna River near Tyonek | 15294450 | 131 | Temp. | 1976-78 | | Falls Creek near Larsen Bay | 15296500 | 5.67 | Temp. | 1974-75 | ## Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii] | Station name | Station number | Drainage
area
(mi ²) | Type of record | Period of record
(water years) | |---|----------------------|--|-----------------------|---| | SOUT | H-CENTRAL ALASKAC | Continued | | | | Canyon Creek near Larsen Bay | 15296520 | 8.82 | Temp. | 1974-76 | | East Fork Upper Thumb River near Larsen Bay | 15296545 | 8.99 | Temp. | 1979-82 | | Upper Thumb River near Larsen Bay | 15296550 | 18.8 | Temp. | 1974-82 | | Thumb River near Larsen Bay | 15296554 | 25.3 | Temp. | 1979-82 | | Karluk River at outlet near Larsen Bay | 15296600 | 100 | Temp. | 1975-76, 1978-82 | | Akalura Creek at Olga Bay | 15296950 | 18.4 | Temp. | 1975-76 | | Kizhuyak River near Port Lions | 15297485 | c42.5 | Temp. | b1980-86,
1987-94 | | | SOUTHWEST ALASKA | A | | | | Tazimina River near Nondalton | 15299900 | 327 | Temp. | 1982-86 | | Nushagak River at Ekwok | 15302500 | a9,850 | Temp. | 1979-80, 1982 | | East Creek near Dillingham | 15303100 | 2.12 | Temp. | 1973-76 | | Snake River near Dillingham | 15303150 | 113 | Temp. | 1974-80 | | Kuskokwim River at Medfra | 630615154424500 | | Temp. | 1954 | | Kuskokwim River at Crooked Creek | 15304000 | a31,100 | Temp. S.C. | 1957-67, 1977-79
1957-67 | | | YUKON ALASKA | | | | | Yukon River at Eagle | 15356000 | a113,500 | Temp. | 1951-52, 1962-63,
1965-66
1962-66 | | Hass Creak man Livangand | 15457900 | 662 | Sed. | 1971-72, 1976-77 | | Hess Creek near Livengood Valor Birgs et Romport | 15457800
15468000 | a199,400 | Temp. S.C. | 1954-56, 1961-64 | | Yukon River at Rampart Tanana River near Tok Junction | 15472000 | a6,800 | Temp., S.C. | 1951-53 | | Tanana River near Tanacross | 15476000 | | Temp., S.C. | 1954, 1957-66 | | Tanana River near Tanacross | 134/0000 | a8,550 | Temp., S.C. Sed. | 1734, 1737-00 | | Tanana River at Big Delta | 15478000 | 13,500 | Temp. S.C. | 1949-51
1949-52 | | Chena River near North Pole | 15493500 | 1,430 | Temp. | 1972-79 | | Little Chena River near Fairbanks | 15511000 | 372 | Temp. | 1972-81 | | Chena River at Fairbanks | 15514000 | a1,980 | Temp.
Sed.
S.C. | 1953, 1962-66,
1969-71
1962-71
1968-71 | | Tanana River at Nenana | 15515500 | a25,600 | Temp. S.C. | 1954-56
1954-57 | | Nenana River near Healy | 15518000 | a1,910 | Temp.
Sed., S.C. | 1957-66
1953-66 | | Nenana River at Healy | 15518040 | a2,100 | Temp. | 1949 | | Caribou Creek near Chatanika | 15535000 | 9.19 | Temp. | 1972-73 | | Long Creek at Long near Ruby | 15564450 | 25.4 | Temp. | 1995-97 | ### WATER RESOURCES DATA FOR ALASKA, 2001 ### Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii] | Station name | Station number | Drainage
area
(mi ²) | Type of record | Period of record
(water years) | |--|--------------------|--|----------------|-----------------------------------| | | YUKON ALASKAConti | nued | | | | Yukon River at Ruby | 15564800 | a259,000 | Temp. S.C. | 1966-67, 1969-74
1966-74 | | Yukon River at Galena | 15564860 | | Temp., S.C. | 1954 | | Middle Fork Koyukuk River near Wiseman | 15564875 | a1,200 | Temp. | 1971-72, 1976-79 | | Wiseman Creek at Wiseman | 15564877 | 49.2 | Temp. | 1973, 1976 | | Jim River near Bettles | 15564885 | 11.7 | Temp. | 1971-76 | | Yukon River at Pilot Station | 15565447 | a321,000 | Temp. | 1976, 1978 | | | NORTHWEST ALASK | A | | | | Eldorado Creek near Teller | 15635000 | 5.83 | Temp. | 1995-98 | | Kobuk River near Kiana | 15744500 | a9,520 | Temp. | 1978-81 | | Ogotoruk Creek near Hope | 15748000 | a35 | Temp., Sed. | 1959 | | | ARCTIC SLOPE ALASI | ΚA | | | | Kuparuk River near Deadhorse | 15896000 | 3,130 | Temp. | 1971-72, 1976,
1978-79 | | Putligayuk River near Deadhorse | 15896700 | a176 | Temp. | 1976 | | Sagavanirktok River near Sagwon | 15910000 | 229 | Temp. | 1971 | Approximately Seasonal After diversion upstream beginning 1985 a b c #### 1 #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State and other agencies, obtains a large amount of data pertaining to the water resources of Alaska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Alaska." Water resources data for the 2001 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 112 gaging stations; stage or contents only at 4 gaging stations; water quality at 37 gaging stations; and water levels for 30 observation wells. Also included are data for 51 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska. Records of discharge and stage of streams, stage of lakes, chemical quality, water temperatures, and suspended sediment were first published in U.S. Geological Survey Water-Supply Papers. Through September 30, 1960, these data were published in seven Water-Supply Papers entitled "Quantity and Quality of Surface Waters of Alaska" (through 1950, 1951-53, 1954-56, 1957, 1958, 1959, 1960). Since 1960, streamflow records and related data were published in a five-year series of Water-Supply Papers for 1961-65 and 1966-70 entitled "Surface Water Supply of the United States." Water-quality records were published in a Water-Supply Paper entitled "Quality of Surface Waters of Alaska, 1961-63" and after then until 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1949 to 1974 in a series of Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be consulted in the libraries of the principal cities in the United States or may be purchased from U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were also released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report AK-01-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (907) 786-7100. The USGS is continually updating the availability of its information on the World Wide Web. Current streamflow conditions (via satellite) for Alaska and other Alaskan water resource information can be found at the following Universal Resource Locator (URL):http://ak.water.usgs.gov/. Nationwide information on water resources, including real-time and historic streamflow data, water-use data, publications and USGS program activities, can be found at URL: http://water.usgs.gov/. #### **COOPERATION** The U.S. Geological Survey and organizations of the State of Alaska have had cooperative agreements since 1958 for the systematic collection of streamflow records, water-quality records, and ground-water levels. Organizations that assisted in collecting data contained in this report through cooperative agreements with the USGS are: Alaska Department of Community and Economic Development, Deborah B. Sedwick, Commissioner Alaska Industrial Development and Export Authority, Alaska Energy Authority, Robert Poe, Jr., Executive Director Alaska Department of Environmental Conservation, Michele Brown, Commissioner Alaska Department of Fish and Game, Frank Rue, Commissioner Alaska Department of Natural Resources, Division of Mining and Water Management, Pat Pourchot, Commissioner Alaska Department of Transportation and Public Facilities, Joseph L. Perkins, Commissioner, in cooperation with the U.S. Department of Transportation, Federal Highway Administration Central Council of Tlingit and Haida Indian Tribes of Alaska, Desiree Welch, Native Lands and Resources Manager City and Borough of Juneau, Sally Smith, Mayor City and Borough of Sitka, Valorie Nelson, Mayor City and Borough of Yakutat, Tom Maloney, Mayor City of Klawock, Donna Williams, Mayor City of Wrangell, Fern Neimeyer, Mayor Alaska Native Tribal Health Consortium, Paul Sherry, President/CEO Haida Corporation, John Bruns, Resource Manager Kenai Peninsula Borough, Dale Bagley, Mayor Municipality of Anchorage, George Wuerch, Mayor University of Alaska Southeast, John Pugh, Chancellor The following Federal agencies assisted in the data-collection program by providing funds or services: - U.S. Army Corps of Engineers - U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory - U.S. Department of Agriculture, Forest Service - U.S. Department of the Interior, Bureau of Land Management - U.S. Department of the Interior, National Park Service #### **ACKNOWLEDGMENTS** Assisting in the collection of the data were the following gage observers: John Borg, Yukon River at Eagle Rob Gieck, Sagavanirktok River Tributary near Pump Station 3 Sandy Hamilton, Nation and Kandik Rivers near Nation, and Kobuk River near Kiana Vince Harkey, Ophir Creek near Yakutat Dick Levitt, Kahtaheena River near Gustavus John Martinisko, Ikalukrok River below Red Dog Creek near Kivalina Brian Omann, Sawmill Creek and Blue Lake near Sitka Steve Paustian, Kadashan River near Tenakee Alan Peck, Moody Creek near Aleknagik Lorry Schuerch, Kobuk River near Kiana
Eric Sundberg, Greens Creek at Greens Creek Mine near Juneau Bob Walworth, Tatalina River near Takotna Jennifer Williams, Indian River sites near Sitka Ray Williams, Iliamna River near Pedro Bay Organizations that supplied data are acknowledged in station descriptions. #### SUMMARY OF HYDROLOGIC CONDITIONS #### Surface Water Alaska contains more than 40 percent of the Nation's surface-water resources. The highest runoff rates per unit area are in southeast Alaska and in other areas influenced by the maritime climate of the northern Pacific Ocean and the Gulf of Alaska. In the interior and northern parts of the State, runoff rates are markedly lower than in the maritime-influenced areas. Runoff generally increases with altitude throughout the State, and year-to-year runoff variability increases from south to north. Seasonal runoff characteristics differ from southern to northern Alaska. Areas influenced by maritime climates usually have two periods with high runoff: a spring snowmelt period and a fall rainfall period. High water can occur throughout the year, but the highest instantaneous peak discharges are more prevalent in the fall months; low-water periods usually occur in late spring and mid-summer, prior to the rainy fall period. Farther north, most of the total runoff and floods occur in the period from May through September; low-flow periods usually occur during late winter, shortly before spring snowmelt. Streamflow in Alaska was dominated more by temperatures during water year 2001 than by rainfall. No maximum peak-of-record streamflows were observed at any continuous or partial-record long-term (10 or more years) streamflow gaging station during water year 2001. However, higher than normal streamflows occurred from Wrangell to Deadhorse during the fall and winter of 2000-2001 when most of the state experienced significantly warmer temperatures. A cold spell in May and early June caused delayed snowmelt peaks, but warmer than average temperatures in mid June resulted in rapid melting and overall above average streamflow in June. Streamflow was generally above normal for the remainder of the water year throughout Alaska, though 13 continuous streamflow gaging stations recorded deficit flow (monthly mean streamflow equaled or exceeded more than 75 percent of the time) during July through September. Record monthly mean streamflow that occurred during September 2000 (previous water year) continued during October at Yukon River at Eagle (station 15356000) and Tanana River at Nenana (station 15515500). Streamflow generally remained high through the fall. During January, average monthly temperatures were as much as 20 degrees Fahrenheit above normal, averaging 8.5 degrees above normal in Southeast, 12.6 degrees above normal in Cook Inlet, and 18.2 degrees above normal in the Yukon basin. More than 80 percent of the continuous streamflow gaging stations having 10 or more years of record recorded excessive monthly mean streamflows (streamflows equaled or exceeded less than 25 percent of the time). Yukon River at Eagle recorded the highest monthly mean streamflows of record (51 years) during October, December, and January. A few partial-record stations in Southcentral Alaska recorded annual peaks during winter. Fritz Creek near Homer (station 15239500) recorded an annual peak in January for the first time in 39 years of record. Spring temperatures in Southeast Alaska were near or slightly below normal during April and May. Precipitation, generally snowfall at higher elevations, was below normal in April, above normal in May. Resulting streamflow was deficient at 10 of 19 stations in Southeast Alaska during April. During May, cold temperatures throughout the state resulted in deficit streamflow at more than half the continuous streamflow gaging stations having 10 or more years of record. Rapid warming and clear, sunny days in June resulted in 20 of 55 sites recording excessive streamflow, although precipitation was generally below normal. Three stations, Spruce Creek near Seward (station 15238600), Sixmile Creek near Hope (station 15271000), and Tatalina River near Takotna (station 15303700) recorded the highest June monthly mean streamflow of record. Because most of the higher than normal flows occurred during winter, annual flows were mostly near average. Only Indian River near Sitka (station 15087690) recorded record low mean annual streamflow (Indian River at Sitka, station 15087700 is affected by diversions). Indian River appeared to be out of phase with most other streams in Southeast Alaska, recording deficit flows during 5 months, even when other streams in the region were recording excessive flows. Ophir Creek near Yakutat (station 15129600) was the only streamflow gaging station to record maximum annual mean streamflow for the period of record. #### **Ground Water** Alaska's vast area and small population preclude a comprehensive evaluation of its ground-water resources. Throughout much of the State, aquifers are poorly defined. In many areas, wells have not been drilled and little is known about seasonal and long-term changes in ground-water storage. During water year 2001, the long-term monitoring of water levels in one well in Juneau, one well in Anchorage, and three wells in Fairbanks continued. Water levels were also measured intermittently in 32 wells in Juneau for studies of the interaction between ground water and water in anadromous fish streams. Water levels in the long-term monitoring wells in Juneau, Anchorage, and Fairbanks were within the range of historical values. Water levels in wells in the Duck and Jordan Creek watersheds in Juneau were closely related to the infiltration of rain and snowmelt and the level of water in nearby streams. Some of these wells are in stream channels or on flood plains and are intermittently flooded; most water levels in these wells were within 10 feet of land surface. #### Water Quality ### General Overview Information on the concentration and composition of constituents in Alaska's surface water is markedly variable in coverage. Some subregions have had regular or periodic sampling for many years at many stream points and at a number of lakes. Information in other subregions consists of only a few miscellaneous samples. Although the chemical characteristics of water in the streams and lakes of Alaska seem variable, the ranges in concentration are not as great as those found in the conterminous United States. Most Alaskan streams above tidal reaches contain water of a calcium bicarbonate type, generally containing less than 200 mg/L dissolved solids. In these streams, the hardness generally increases with increased dissolved-solids content. The streams draining lowlands and intermontane basins usually contain harder water than the streams in the higher mountains. Some streams, especially those draining areas overlain by organic-rich deposits, can have excessive iron content. In Alaska, the mineral content of water in lakes is more variable than that in rivers. The water in some mountain lakes is very low in dissolved-solids content and is little more concentrated than rainwater. Other lakes occupying lowlands near the sea, including many near the Arctic coastal plain, have become mineralized periodically by salts brought in from the sea either by overland flooding during storms or as ocean spray. The water in lakes in the lowlands remote from the sea is commonly very similar in chemical character to water in the larger rivers adjacent to them. The character and distribution of suspended sediment are relatively complex in Alaska because glaciers contribute large amounts of very fine material (glacial flour) to many streams. In general, during the summer, suspended-sediment concentrations in nonglacial streams seldom exceed 100 mg/L, but can be greater than 2,000 mg/L for glacial streams. Nonglacial streams often transport the highest sediment loads during the spring breakup or during periods of high rainfall, whereas glacial streams transport the greatest sediment loads during periods of maximum glacial melting, usually in middle or late summer. The normal suspended-sediment concentration between January and April is usually less than 20 mg/L for most nonurban streams. Thus, less than 15 percent of the annual suspended-sediment load is carried during this period. The percentage of material finer than 0.062 millimeter (the silt-clay fraction as generally defined) transported by nonglacial streams is less than 50 percent in contrast to more than 50 percent for glacial streams. Outside of the major urban areas, almost all ground water is obtained from unconsolidated aquifers. Most sampled water contains less than the State's recommended limit of 500 mg/L dissolved solids. Calcium and magnesium, which along with bicarbonate contribute to the hardness of water, are the major dissolved ions. In most wells, hardness concentrations are about 60 to 80 percent of dissolved-solids concentrations. Water of sodium bicarbonate or sodium chloride type is present in numerous community wells drilled near the coast. Iron is present in high concentrations in a large number of shallow wells in most areas of the State. Concentrations in excess of 1.0 mg/L are common. Iron concentrations of more than about 0.3 mg/L can cause staining of laundry and plumbing fixtures and impart an unpleasant taste to the water. The bedrock aquifers in most of Alaska are undeveloped and very little is known about their water quality. In general, the concentration of dissolved solids in water from bedrock aquifers is higher than that found in the unconsolidated aquifers and the chemical quality of water in bedrock aquifers is more variable. Most of the State's ground-water resources have, for the present, been unaffected by humans. However, in the major urban areas and in some outlying villages, ground-water quality has been locally degraded, primarily from septic systems, landfills, and abandoned
fuel storage tanks. Most ground-water contamination problems in Alaska are caused by petroleum products, primarily from leaky fuel tanks. In 2001, the following sites were sampled for water quality as part of the National Water Quality Assessment Program (NAWQA): samples were collected at six stream-gaging stations in the Cook Inlet Basin nearly every month; and samples were collected at 4 sites on streams within the Municipality of Anchorage. As part of the Clean Water Action Plan, water-quality, and bed-material samples were collected at sites in Katmai, and Lake Clark National Parks and Preserves, and Sitka National Historical Park. In 2001 sampling at 5 stations in the Yukon Basin started as part of the National Stream-Quality Assessment Program (NASQAN), the first year of a five year monitoring program. The Alaska District is also collecting samples for personnel from the National Research Program to help extend the normal NASQAN data. Water-quality sampling is also done for projects throughout Alaska. The analyses for these samples are published in reports discussing these projects. For more information on reports published in 2001, contact the Chief, Water Resources Office (see p. ii) or the Alaska Water Resources Office webpage at http://ak.water.usgs.gov. #### Remark Codes The following remark codes may appear with the water-quality data in this section: #### PRINTED OUTPUT REMARK | E | Value is estimated. | |---|---| | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | M | Presence of material verified, but not quantified. | | N | Presumptive evidence of presence of material. | | U | Material specifically analyzed for, but not detected. | | A | Value is an average. | | V | Analyte was detected in both the environmental sample and | | | the associated blanks. | | S | Most probable value. | #### **Dissolved Trace-Element Concentrations** Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ($\mu g/L$) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the $\mu g/L$ level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year. ### Quality-control data Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. BLANK SAMPLES – blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are: <u>Source solution blank</u> – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes. <u>Ambient blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions. <u>Field blank</u> – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. <u>Trip blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection. <u>Equipment blank</u> – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office.) <u>Sampler blank</u> – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. <u>Pump blank</u> – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample. <u>Standpipe blank</u> – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank. <u>Filter blank</u> – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. <u>Splitter blank</u> - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. <u>Preservation blank</u> – a blank solution that is treated with the sampler preservatives used for an environmental sample. <u>Canister blank</u> – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample. REFERENCE SAMPLES – Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. REPLICATE SAMPLES—Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: <u>Concurrent sample</u> – a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers. <u>Sequential sample</u> – a type of replicate sample in which the samples are collected one after the other, typically over a short time. <u>Split sample</u> – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space. SPIKE SAMPLES – Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. <u>Concurrent sample</u> – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. <u>Split sample</u> – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. ### Water Use Water use in the broad sense deals with man's interaction with and influence on the hydrologic cycle. In a technical sense, water use refers to water that is actually used for a specific purpose, such as domestic use, commercial needs, or industrial processing. The water use for the state of Alaska was estimated for 1995. An estimate of water use for 2000 is underway. Industry is the largest user of fresh water in Alaska. In 1995, it accounted for about 38 percent of all offstream withdrawals. In 1995, water used instream for hydroelectric power generation was nine times more than that used offstream by man. Another probable large instream use is for fish and wildlife resources. Approximately 15,000 water bodies have been identified by the Alaska Department of Fish and Game as producing anadromous fish. The Alaska Water Use Act was amended in 1980 to include instream flow as a use. The amendments provide the opportunity for private individuals, and local, State, and Federal governments to legally acquire instream flow water rights. Either one or a combination of the four following types of uses can be acquired: 1) protection of fish and wildlife habitat, migration, and propagation; 2) recreation and parks; 3) navigation and
transportation; and 4) sanitation and water quality. Eleven instream flow rights applications have been granted. From 1990-2001, Alaska's population increased 15 percent, which was one of the Nation's larger percentage increases. In 2001, Alaska's population increased by 1 percent. In 2001, about 60 percent of the State's population lived in the Anchorage, Fairbanks, and Juneau areas. Because of the population increase, public-supply use of water is also increasing. In 1995, public-supply use accounted for 33 percent of all offstream withdrawal and 63 percent of the State's population received their water from a public-supply utility; the remainder supplied their own water. The main use of public-supply water was for domestic use of about 57 percent; the rest was primarily for commercial and industrial uses which has dropped since 1990 due to timber processing plants closing in southeast Alaska and changes in the fish processing industry. In 1995, the water utilities in the Anchorage, Fairbanks, and Juneau areas used 60 percent of all water withdrawn in the State for public supply. The monthly mean rate of water withdrawn by the principal public-supply utilities servicing these three areas from January 1990 to September 2001 is shown in figure 1. (Data are from Municipality of Anchorage, Fort Richardson, City of Fairbanks, and City and Borough of Juneau.) The higher usage shown during the summer months in Anchorage and Fairbanks is probably due to tourism and other commercial activity, increased industrial activity, and seasonal climatic effects. The State's 1995 average use from public supply was 172 gallons per day per person, while the nation's average is 184 gallons per day. One of the nation's lowest per capita use of all public-supply customers of 10 gallons per day has been reported on the North Slope. Surface water is the source for around 60 percent of the 2001 State's public-water supply in these three cities, while ground water is the source for the remainder. Anchorage receives 81 percent of its water from surface-water sources. Surface water became the primary source when water from Eklutna Lake was brought into production in 1988. Juneau obtained 72 percent of public-supply water from ground-water sources in 2001. Juneau has reduced using its surface-water source because of cost to meet water-quality regulations. Fairbanks obtains 100 percent of public-supply water from ground-water sources. Of the water withdrawn in Fairbanks, about two-thirds is treated to be suitable for domestic use, and the other one-third is for thermoelectric power use. Monthly mean water withdrawal rate for public supply in the Anchorage, Fairbanks, and Juneau area, 1990 to 2001. ### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. <u>International Gaging Station Network</u> is a network of stations located on the boundary waters between Canada or Mexico and the United States. The stations are officially designated as "International" by joint action of the two countries to provide data pursuant to an international agreement, understanding, or other mutually agreed purposes. Operation of the gaging stations may be by water monitoring agencies of either country, or jointly. Data must be collected and analyzed in a mutually satisfactory manner according to agreed procedures and be available to users in both countries. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/. The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_home.html. ### **EXPLANATION OF THE RECORDS** The surface-water and ground-water records published in this report are for the 2001 water year that began October 1, 2000, and ended September 30, 2001. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 1, 2 and 3. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. ### **Station Identification Numbers** Each data station, whether stream site, lake, reservoir, spring, or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells, lakes, reservoirs, springs, and for surface-water stations where only miscellaneous measurements and/or water-quality samples are collected. # Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in USGS reports is in a down-stream direction
along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indentation in the "List of Stations" in the front of this report. Each indentation represents one rank. This downstream order and system of indentation show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Stations located on islands in Alaska are in downstream order starting at the most westerly point on the island and moving around the island in a counterclockwise direction (stations on Kodiak Island start at the most northerly point). The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between regular stations and partial-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Water-quality stations located at or near regular stations or partial-record stations have the same number as the regular or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 15303600, which appears just to the left of the station name, includes the two-digit Part number "15" plus the six-digit downstream order number "303600." The Part number designates the State of Alaska. Occasionally, the downstream order number consists of eight digits. ## Latitude-Longitude System The identification numbers for miscellaneous surface-water sites, wells, springs, lakes, and reservoirs are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description and also stored in the computerized data base files. See the accompanying diagram. Local Number The local number, which is assigned to well and spring sites, is derived in part from the rectangular subdivision of public lands and is used in Alaska as the site name. The first two letters indicate the principal meridian and the quadrant formed by the intersection of the base line and the principal meridian. The first three digits indicate the township in which the well or spring is located, the next three digits the range, and the last two digits the section. The letters following the section number indicate the quarter section, the quarter-quarter section, and so forth to the fourth order subdivision. Each of these subdivisions is lettered counter-clockwise, from the northeast corner. Each site within the smallest order of subdivision is then given a sequential number. Finally, each well within a section is assigned a sequential map number indicated by the last three digits. Thus, SB00601115BCAD1 001 denotes the Seward meridian (S), the northwest quadrant (B), township 6 north, range 11 west, section 15; and the site is in the SE\(^1\)4 of NE\(^1\)4 of the SW\(^1\)4 of the NW\(^1\)4 (BCAD) of the section. It was the first site in the 2.5 acre "D" subdivision assigned a sequential number (1). The next space is left blank. The next three digits, 001, indicate the sequence in which a site was located on a map. Thus, 001 indicates the first site plotted in the one-square-mile section. The next space is left blank. The last five digits, such as 00114, are the Alaska (AK) register number. Therefore, the local number is SB00601115BCAD1 001 00114. The local number for springs is the same, except for the last three digits and the Alaska (AK) register number, as indicated by the following example: SB00601115BCAD1S 4065S. Note: Public-land surveys have not been completed for a large portion of Alaska, therefore, some "local numbers" reflect this in an abbreviated form, e.g., SB00601115. # Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those at which daily mean discharges can be computed or estimated with reasonable accuracy from the supporting data and information. Because the daily mean discharges commonly are published, the stations are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records" or "Low-flow partial records." Records of miscellaneous discharge measurements or from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Periodic lake-level measurements are also presented separately. Locations of all complete-record and crest-stage partial record stations for which data are given in this report are shown in figures 2 and 3, respectively. # **Data Collection and Computation** # **Methodology** The base data collected at gaging stations consist of stage records and discharge measurements of streams, and stage of lakes. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow. Records of stage are obtained from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations, a tape punched at selected time intervals, or an electronic data logger. Measurements of discharge are made with a current meter, using the general methods adopted by the U.S. Geological Survey. These methods are described in standard textbooks, in U.S. Geological Survey Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter A6. # **Computation** In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) results of indirect measurements of peak discharge, such as slope-area or flow-through-culvert measurements and computations of flow-over-dams or weirs; (3) step-backwater techniques; or (4) velocity-area studies. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by shifting control method, in which correction factors based on the individual discharge measurements and notes of the person who made the measurement are added (or subtracted) to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of debris or aquatic growth on the control. In computing records of reservoir contents, it is necessary to have curves or tables defining the relation of stage and contents (from prior survey and computations). The application of stage to stage-content curves or tables gives the contents from which daily, monthly, or yearly changes can be determined. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. Discharge through hydro-power plants can be calculated indirectly by using the theoretical relation of flow-rates with the amount of power being generated by each turbine, the reservoir level, and the estimated efficiency of each turbine. It is necessary to have tables, curves, or formulas relating the above variables (usually supplied by the manufacturer of the turbine). It is also necessary to have records of reservoir elevation, either from periodic observations or continuous records, and power-generation records (usually furnished by the operators of the power plant). # Winter discharge measurements At most stream-gaging stations in Alaska, the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed or estimated on the basis of the available gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrographers, and comparable records of discharge for other stations in the same or nearby basins. Determinations of 0.0 or no flow may indicate a lack of distinguishable velocity, but do not necessarily describe a dewatered channel. # Estimates for periods of no data For some gaging stations there are periods when no
gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge. This happens when the recorder is stopped for the winter or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" ("REMARKS" paragraph) and "Identifying Estimated Daily Discharge." ### **Data Presentation** Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data presentation. The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimum, and flow duration. Occasionally, data for other than the current year are published, usually to present unpublished data. # Station manuscript The manuscript provides, under various headings, descriptive information, such as location of station; drainage area; period of record; record accuracy; and other remarks pertinent to station operation and regulation. For some stations, historical extremes outside the period of record and peak discharges greater than base discharge for the station are given. The following information, as appropriate, is provided with each continuous record of discharge, stage, or reservoir contents. Comments to clarify information presented under the various headings of the station description follow: LOCATION.--Information on locations is obtained from the most accurate maps available. The USGS topographic map showing the location of the station is included in parentheses for many sites, e.g. (Livengood E-1). The location of the gage with respect to the cultural and physical features nearby and to the reference place mentioned in the station name is given. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another or because of difficulties in determining drainage boundaries, the accuracy of drainage-area determinations likewise varies. As appropriate, some drainage-area figures are qualified by "approximately." Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which published records are available for the station or for an equivalent station. An equivalent station is one that was in operation at a time the present station was not, and whose location was such that records from it can be considered reasonably equivalent with records from the current station. Some daily stations were previously operated as partial-record stations or had only monthly discharge records published. These periods are included in the paragraph. REVISED RECORDS.--Published records occasionally are found to be incorrect, usually because of new information, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual discharge figures, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--Periods of estimated daily discharge will be identified by date in this paragraph for selected stations. For all stations, estimated daily discharge will be flagged in the daily discharge table. (See next section "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, this information would be the first entry. This paragraph is also used to present information relative to the accuracy of the records, to the special methods of computation, to conditions that affect natural flow at the station, and to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose (use) of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. Also, if data or information are supplied which aid in the computation of the record, the agency providing the information is named. EXTREMES FOR PERIOD OF RECORD.--This paragraph is included in the station manuscript for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow. EXTREMES OUTSIDE PERIOD OF RECORD.--Information about floods or unusually low flows that have occurred outside the stated period of record is included. The information may or may not have been obtained by the U.S. Geological Survey. EXTREMES FOR CURRENT YEAR or EXTREMES FOR CURRENT PERIOD.--This paragraph is included in the station manuscript for selected sites where peaks above base discharge are published and for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow. For records that meet certain criteria, all peak discharges and stages greater than a selected base discharge during the water year are given. The peaks greater than the base discharge, excluding the highest one, are called secondary peaks. The time that the peak occurred is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. Except for stations for which tabular summary statistics are not appropriate, the maximum and minimum for the current water year appears below the daily values table in the tabular summaries. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. For these stations, there may be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry; users of data for these stations who obtained the record for previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. If the data for a discontinued station were obtained by computer retrieval, the data would be current because any previously published data are automatically accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings that appeared in reports before water year 1991 for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate, except for stations for which tabular summary statistics are not appropriate. No changes have been made to the data presentation of lake contents. # Data table of daily mean values The daily table of discharge records for stream-gaging stations gives the mean discharge for each day of the water year. In the monthly summary for the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also may be expressed in acre-feet (line headed "AC-FT"), in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the contributing drainage area or boundaries are unknown, or if the flow is mostly from a spring. At some stations, monthly and (or) yearly discharges are adjusted for diversions or changes in reservoir contents. # Statistics of monthly mean data A tabular summary of the mean (line headed
"MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all the station records within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. # **Summary statistics** A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year and The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. The comments clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the annual mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) MAXIMUM PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by contacting the District Office. (See address on the back of the title page.) MAXIMUM PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, footnotes may be used to provide further information. (For Alaska, a second line heading, INSTANTANEOUS PEAK STAGE, is used for stations where the peak stage was from a backwater condition and had a different date from the peak discharge.) INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. In prior years, data for low-flow partial-record stations have been published, but no stations were in operation in the current water year. Data are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage partial-record stations. The second is a table of discharge measurements made at crest-stage partial-record stations and miscellaneous sites. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are given in special tables following the listing of miscellaneous measurements. Lake-level data collected at miscellaneous selected lakes are included. The data are being collected at these selected lakes to define lake-level changes in response to seasonal variations, the effects of man, droughts, and changes in the ground-water system. The lake-level data follow the water-quality data tables for miscellaneous sites. ### Identifying Estimated Daily Discharge Estimated daily-discharge values in the current annual data report are identified by the "e" notation next to each mean daily discharge in the daily values tables. Prior to the report for the 1985 water year, estimated daily-discharge values were not specifically identified. ### Accuracy of the Records The accuracy of streamflow data depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records. The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair" within 15 percent. Records are rated as "poor" when they do not meet the criteria above. Different accuracies may be attributed to different parts of a given record. Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous measurement sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, flow from springs, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in
inches are not published unless satisfactory adjustments can be made for diversions or for other factors that might affect the flows. At those stations where adjustments are made, large errors in computed runoff may occur if adjustments are large in comparison to observed discharge. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents. ### Other Data Available Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is filed in the field offices at Anchorage, Fairbanks, and Juneau for their areas of responsibility. Also, most of the daily mean discharges are in computer files and can be retrieved for statistical analyses. Information on the availability of unpublished data or statistical analyses may be obtained from the District Office in Anchorage. # **Records of Surface-Water Quality** Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies. ### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained by continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. ### Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. # On-Site Measurements and Sample Collection To assure the data obtained represent the *in situ* quality of the water, certain measurements, such as water temperature, pH, alkalinity, and dissolved oxygen, are made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the *in situ* water, prescribed procedures are followed in collecting, treating, and shipping the samples to prevent changes in quality pending analysis in the laboratory. These procedures are given in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4. One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, de- pending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. For the tables of surface-water quality that are published in this report, parameter code 82398 (SAMPLING METHOD, CODES) lists a numeric value which corresponds to the following explanation: ``` 10 - Equal width increment (EWI) ``` - 20 Equal discharge increment (EDI) - 25 Timed sampling interval - 30 Single vertical - 40 Multiple verticals - 50 Point sample - 60 Weighted bottle - 70 Grab sample (dip) - 80 Discharge integrated, equal transit rate (ETR) - 90 Discharge integrated, centroid - 100 Van Dorn sampler - 110 Sewage sampler - 120 Velocity integrated 8010 - Other To better define the sample, parameter code 84164 (SAMPLER TYPE) lists a numeric value which corresponds to the following explanation: | 100 - Van Dorn sampler
110 - Sewage sampler | 3045 - US DH -81 with Teflon cap and nozzle 3050 - Collpsible Teflon Bag in Frame Sampler | |--|---| | 3001 - Sampler, US DH-48 | 3053 - US D-95 Teflon bottle | | 3002 - Sampler, US DH-59 | 3054 - US D-95 Teflon bottle | | 3003 - Sampler, US DH-75P | 3055 - US D-96 Teflon bag | | 3004 - Sampler, US DH-75Q | 3060 - Weighted Bottle Sampler | | 3007 - Sampler, US D-49 | 3070 - Grab Sampler | | 3009 - Sampler, US D-74 | 4020 - Open top bailer | | 3011 - Sampler, US D-77 | 4025 - Double valve bailer | | 3015 - Sampler, US P-63 | 4041 - Submersible Helical Rotor Pump | | 3016 - Sampler, US P-72 | 4080 - Peristaltic pump | | 3042 - Sampler, US P-61 | 4100 - Flowing Well | | 3044 - US DH-81 | 8010 - Other | For further explanation on sampling methods, see Techniques of Water-Resources Investigations, Book 3, Chapter C2, "Field Methods for Measurement of Fluvial Sediment." Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. # Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are sometimes taken at the time of discharge measurements at water-discharge stations. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where temperature recording instruments are used, maximum and minimum temperatures for each day are published. Mean temperatures are published when diurnal variations are greater than 2.0 °C more than 5 percent of the water year. Water temperatures measured at the time of water-discharge measurements are on file in the District field offices. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of quantities of suspended sediment, records of periodic measurements of the particle-size distribution of the suspended sediment and bed material are included. ## **Laboratory Measurements** Sediment samples are analyzed in the U.S. Geological Survey laboratory in Vancouver, Washington. Methods used in analyzing sediment samples and computing sediment records are given in Techniques of Water-Resources Investigations, Book 5, Chapter C1. Methods used by the Geolog- ical Survey laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4. # Records of Ground-Water Levels Ground-water level data from a statewide network of observation wells are published in this report. This network consists of observation wells (figure 3) located either in important aquifers or in areas of
significant water use. # **Data Collection and Computation** Water-level measurements are made in many types of wells, under varying conditions of access and weather conditions. However, the equipment and measuring techniques used at each observation well assure that the measurements are of consistent accuracy and reliability. Tables of water-level data are presented by Hydrologic Subregion. The station-identification number for a given well is the 15-digit number that appears in the upper left corner of the station description. The secondary identification number is the local number, an alphanumeric number, derived from the township-range location of the well. Water-level records are obtained from direct measurements with a steel tape, battery-operated electric tape, or from a water-stage recorder that gives a continuous graph of water-level fluctuations, a paper tape punched at selected time intervals, or data stored at selected time intervals on an electronic data logger. The water-level measurements in this report are given in feet with reference to either sea level or land-surface datum. Sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is also given in each well description. Water levels in wells equipped with recording gages are the highest ground-water level recorded in the well on the day indicated. Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet and if an electric water sensor is used, the error in determining the absolute value of the total depth to water may be a few tenths of a foot. However, the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given only to a tenth of a foot. ### **Data Presentation** Each well record consists of the station description and the data table of water levels observed during the water year. The description of the well is presented through use of descriptive headings preceding the tabular data. Clarification of each heading is given below. LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the Hydrologic Unit; the distance and direction from a geographic point of reference; and the owner's name. AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well. WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and additional information such as casing breaks, collapsed screen, and other changes since construction. INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement. DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above sea level; it is reported with a precision depending on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells and may be used to acknowledge the assistance of local (non-Survey) observers. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted. EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum or sea level, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet above or below land-surface datum. Water levels that are above land-surface datum have negative values. For wells equipped with recorders, water level values listed are the highest recorded in the well on the day indicated. Missing records are indicated by dashes in place of the water level. Information of a more detailed nature than that published, such as well depths and water levels from other ground-water sites throughout the State, is filed in the Anchorage field office. Much of the data are in computer files and can be retrieved for analysis. Information on the availability of unpublished data may be obtained from the District Office in Anchorage. # **Records of Ground-Water Quality** Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes one annual sampling, or a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. # **Data Collection and Computation** The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some areas but none for other areas. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other areas in earlier years. #### **Data Presentation** The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed by Hydrologic Subregion, and are identified by well number. The station-identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. ### ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the Internet. These data may be accessed at: # http://water.usgs.gov Some water-quality and ground-water data also are available through the Internet. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (see address on the back of the title page). ### **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") Adenosine triphosphate (ATP) is an organic, phosphaterich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. **Alkalinity** is the capacity of solutes in an aqueous
system to neutralize acid. This term designates titration of a "filtered" sample. Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) **Aroclor** is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine. Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass") **Bacteria** are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published. **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler may also contain a component of the suspended load. Bedload discharge (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment") **Bed material** is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Bottom material (See "Bed material") Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$. pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159... From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species. Cfs-day (See "Cubic foot per second-day") Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure** as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area
drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Mean concentration of suspended sediment," "Sediment," and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data Collection Platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Estimated (E) value** of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments. **Fecal coliform bacteria** are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fecal streptococcal bacteria** are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. **Gage datum** is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream
bottom such that the gage height is usually slightly larger than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading. Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.nos.noaa.gov/tide-glos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N}$$ where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin. **Hydrologic index stations** referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. **Inch** (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") **Laboratory Reporting Level** (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.) **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation $$I = I_0 e^{-\lambda L}$$, where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-Term Method Detection Level (LT–MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT–MDL data are collected on a continuous basis to assess year-to-year variations in the LT–MDL. The LT–MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT–MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. **Low tide** is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.nos.noaa.gov/tideglos.html **Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") **Mean high or low tide** is the average of all high or low tides, respectively, over a specific period. Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larvaadult or egg-nymph-adult. Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. **Micrograms per kilogram** (UG/KG, μg/kg) is a unit expressing the concentration of a
chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. - Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. - **Minimum Reporting Level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995). - **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. - Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. - **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. - Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. - National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") - **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") - **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. - **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses - nephelometric methods that depend on passing specific light of a specific wavelength through the sample. - North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks. - **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. - **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). - **Organic mass** or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") - **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. - **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. - **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. - **Parameter Code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. - Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. - Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). **Particle-size classification**, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------------|---|---| | Clay
Silt
Sand | 0.00024 - 0.004
0.004 - 0.062
0.062 - 2.0 | Sedimentation
Sedimentation
Sedimentation/sieve | | Gravel | 2.0 - 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are
able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample). **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg $C/(m^2/time)$] for periphyton and macrophytes or per volume [mg $C/(m^3/t^2)$] time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. Return period (See "Recurrence interval") **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level,** as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation. **Seven-day 10-year low flow** (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum") **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. **Substrate** is the physical surface upon which an organism lives. **Substrate Embeddedness Class** is a visual estimate of riffle streambed substrate larger than gravel
that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment: 0 < no gravel or larger substrate 1 > 75% 2 51-75% 4 5-25% 3 26-50% 5 < 5% **Surface area of a lake** is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") **Suspended-sediment load** is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa richness** is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading") **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata ### **Temperature preferences:** Cold – preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude. Warm – preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude. Cool – intermediate between cold and warm water temperature preferences. **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (**T/acre-ft**) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.") Total recoverable is the
amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bedload," and "Bedload discharge") **Total sediment load** or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-Sediment Load," and "Total load") ### Trophic group: **Filter feeder** – diet composed of suspended plant and/or animal material. **Herbivore** – diet composed predominantly of plant material **Invertivore** – diet composed predominantly of invertebrates. **Omnivore** – diet composed of at least 25-percent plant and 25-percent animal material. **Piscivore** – diet composed predominantly of fish. **Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report. Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996). **Water table** is the level in the saturated zone at which the pressure is equal to the atmospheric pressure. **Water-table aquifer** is an unconfined aquifer within which is found the water table. Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") ### TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." ### **Book 1. Collection of Water Data by Direct Measurement** ### Section D. Water Quality - 1-D1. *Water temperature—influential factors, field measurement, and data presentation*, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p. - 1-D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. #### **Book 2. Collection of Environmental Data** #### Section D. Surface Geophysical Methods - 2-D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 p. ### Section E. Subsurface Geophysical Methods - 2-E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS-TWRI book 2, chap. E1. 1971. 126 p. - 2-E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p. #### Section F. Drilling and Sampling Methods 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p. ### **Book 3. Applications of Hydraulics** # Section A. Surface-Water Techniques - 3-A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3-A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS—TWRI book 3, chap. A2. 1967. 12 p. - 3-A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p. - 3-A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 p. - 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p. - 3-A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p. - 3-A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65
p. - 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS—TWRI book 3, chap. A9. 1989. 27 p. - 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 p. - 3-A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3-A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p. - 3-A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p. - 3-A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p. - 3-A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p. - 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p. - 3-A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p. - 3-A20. *Simulation of soluble waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. - 3-A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p. # Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p. - 3-B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS—TWRI book 3, chap. B2. 1976. 172 p. - 3-B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p. - 3-B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p. - 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p. - 3-B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p. - 3-B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3-B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. ## Section C. Sedimentation and Erosion Techniques - 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p. - 3-C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p. - 3-C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p. ## **Book 4. Hydrologic Analysis and Interpretation** #### Section A. Statistical Analysis - 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p. ## Section B. Surface Water - 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p. - 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p. - 4-B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. ## Section D. Interrelated Phases of the Hydrologic Cycle 4-D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. ## **Book 5. Laboratory Analysis** ## Section A. Water Analysis - 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p. - 5-A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p. - 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p. - 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p. - 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p. - 5-A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. ## Section C. Sediment Analysis 5-C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p. ## **Book 6. Modeling Techniques** #### Section A. Ground Water 6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI book 6, chap. A4. 1992. 108 p. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 p. - 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS-TWRI book 6, chap. A5,1996. 125 p. #### **Book 7. Automated Data Processing and Computations** ## Section C. Computer Programs - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p. - 7-C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7-C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p. ## **Book 8. Instrumentation** ## Section A. Instruments for Measurement of Water Level - 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. - 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p. ## Section B. Instruments for Measurement of Discharge 8-B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS—TWRI book 8, chap. B2. 1968. 15 p. ## **Book 9. Handbooks for Water-Resources Investigations** #### Section A. National Field Manual for the Collection of Water-Quality Data - 9-A1. *National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p. - 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p. - 9-A4. *National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p. - 9-A5. *National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9-A6. *National Field Manual for the Collection of Water-Quality Data: Field Measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9-A7. *National Field Manual for the Collection of Water-Quality Data: Biological Indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9-A8. *National Field Manual for the Collection of Water-Quality Data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p. - 9-A9. *National Field Manual for the Collection of
Water-Quality Data: Safety in Field Activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. Figure 1. Locations of gaging stations. #### 15019990 TYEE LAKE OUTLET NEAR WRANGELL LOCATION.--Lat $56^{\circ}12'00''$, long $131^{\circ}30'24''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 28, T. 65 S., R. 90 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on left bank at outlet of Tyee Lake, 1.5 mi south of Bradfield Canal and 37 mi southeast of Wrangell, Alaska. DRAINAGE AREA.--14.7 mi². PERIOD OF RECORD.--October 1979 to September 1981 and June 1992 to current year. Records for November 1922 to September 1927 and August 1963 to October 1969, published as Tyee Creek at Mouth near Wrangell (station 15020100) are not equivalent owing to inflow between sites. GAGE.--Water-stage recorder. Elevation of gage is 1,370 ft above sea level from topographic map. Prior to June 9, 1992, at site 500 ft downstream at datum 13.66 ft lower. REMARKS.--Records fair, except for estimated daily discharges and discharges below 10 ${\rm ft^3/s}$, which are poor. Water for power generation is diverted from Tyee Lake and discharged into Bradfield Canal. Diversion to hydropower plant began February 1984, and is not included in the discharge records. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|------------------------------------| | 1
2
3
4
5 | 138
110
86
65
56 | 19
26
125
142
116 | 36
74
68
51
45 | e.00
e.00
e.00
15
23 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e500
e400
e320
e300
e320 | 263
257
251
298
327 | 137
136
125
112
99 | 403
529
554
561
486 | | 6
7
8
9 | 66
112
156
151
124 | 91
73
54
37
23 | 61
48
32
20
12 | 32
27
26
22
17 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e330
e340
e350
e370
e340 | 370
461
470
487
457 | 90
83
72
66
61 | 455
362
285
226
175 | | 11
12
13
14
15 | 118
138
211
205
229 | 15
11
8.2
5.4
3.4 | 7.7
4.6
2.4
.83
e.00 | 12
7.6
5.2
3.4
2.1 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.15
e.22
e.32
e.50
e.80 | e280
e260
305
334
334 | 383
321
319
326
302 | 59
55
54
56
59 | 131
106
87
68
53 | | 16
17
18
19
20 | 228
202
176
174
160 | 1.9
1.5
.89
.49 | e.00
e.00
e.00
e.00 | 1.4
1.1
1.1
.90
.52 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e1.5
e2.5
e4.0
e7.0 | 322
316
315
339
467 | 271
268
266
261
278 | 56
50
41
32
35 | 42
39
72
111
141 | | 21
22
23
24
25 | 143
192
237
212
170 | 3.3
76
180
185
166 | e.00
e.00
e.00
e.00 | .24
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e20
e16
e28
e44
e75 | 551
494
436
391
361 | 308
327
320
288
253 | 65
83
97
128
185 | 182
451
628
496
460 | | 26
27
28
29
30
31 | 130
95
69
48
32
24 | 137
107
78
53
35 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e120
e155
e195
e250
e225
e440 | 322
297
312
308
277 | 222
199
180
162
154
142 | 295
470
424
323
264
296 | 386
333
283
297
551 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4257
137
237
24
8440 | 1774.70
59.2
185
.49
3520 | 462.53
14.9
74
.00
917 | 197.56
6.37
32
.00
392 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 1595.99
51.5
440
.00
3170 | 10591
353
551
260
21010 | 9191
296
487
142
18230 | 4108
133
470
32
8150 | 8953
298
628
39
17760 | | | | STATISTI | CS OF MOI | NTHLY MEAN | DATA FOR | WATER | YEARS 1992 | 2 - 2001, | BY WATER | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 165
264
2000
102
1995 | 50.5
108
1993
5.10
1997 | 9.91
38.4
1998
.000
1995 | 1.19
6.37
2001
.000
1993 | .030
.28
1994
.000
1993 | .000
.000
1993
.000
1993 | 3.53
24.8
1993
.000
1994 | 76.0
247
1993
1.58
2000 | 265
367
1999
176
1994 | 187
305
1999
55.2
1998 | 112
216
2000
28.3
1994 | 171
298
2001
41.5
1993 | [#] Record for 1980 and 1981 water years, prior to diversion of 1984, not included. See PERIOD OF RECORD e Estimated # 15019990 TYEE LAKE OUTLET NEAR WRANGELL--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER Y | EAR WATER YEARS 1992 - 2001# | |--------------------------|------------------------|------------------|------------------------------| | ANNUAL TOTAL | 37093.76 | 41130.78 | | | ANNUAL MEAN | 101 | 113 | 86.2 | | HIGHEST ANNUAL MEAN | | | 113 2001 | | LOWEST ANNUAL MEAN | | | 56.5 1995 | | HIGHEST DAILY MEAN | 566 Aug 22 | 628 Sep 23 | 710 Oct 27 1993 | | LOWEST DAILY MEAN | a .00 Jan 11 | b .00 Dec 15 | c .00 Dec 30 1992 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan 11 | .00 Dec 15 | .00 Dec 30 1992 | | MAXIMUM PEAK FLOW | | 670 Sep 23 | d 975 Oct 26 1993 | | MAXIMUM PEAK STAGE | | 25.52 Sep 23 | 28.62 Oct 26 1993 | | INSTANTANEOUS LOW FLOW | | c | C | | ANNUAL RUNOFF (AC-FT) | 73580 | 81580 | 62480 | | 10 PERCENT EXCEEDS | 301 | 334 | 278 | | 50 PERCENT EXCEEDS | 15 | 32 | 26 | | 90 PERCENT EXCEEDS | .00 | .00 | .00 | PRIOR TO DIVERSION OF 1984 SUMMARY STATISTICS WATER YEARS 1980 - 1981 | ANNUAL MEAN | 179 | | |--------------------------|--------|-------------| | HIGHEST ANNUAL MEAN | 213 | 1981 | | LOWEST ANNUAL MEAN | 146 | 1980 | | HIGHEST DAILY MEAN | 1690 | Oct. 7 1980 | | LOWEST DAILY MEAN | f 1.4 | Apr. 2 1980 | | ANNUAL SEVEN-DAY MINIMUM | 2.0 | Mar.31 1980 | | INSTANTANEOUS PEAK FLOW | 1910 | Oct. 7 1980 | | INSTANTANEOUS PEAK STAGE | 12.72 | Oct. 7 1980 | | ANNUAL RUNOFF (AC-FT) | 130000 | | | 10 PERCENT EXCEEDS | 457 | | | 50 PERCENT EXCEEDS | 86 | | | 90 PERCENT EXCEEDS | 11 | | Record for 1980 & 1981 water years, prior to diversion of 1984, not included. See PERIOD OF RECORD Jan. 11 to May 27,2000, and Dec. 15 - 31, 2000 Dec. 15 to Jan. 3, and Jan. 22 to May 10 No flow many days during winter months most years From rating curve extended above 400 ft 3 /s Apr. 2-3, 1980 #### 15022000 HARDING RIVER NEAR WRANGELL LOCATION.--Lat $56^{\circ}12'48''$, long $131^{\circ}38'12''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 22, T. 65 S., R. 89 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on right bank 1 mi upstream from mouth on north shore of Bradfield Canal, 4 mi downstream from Fall Lake, and 34 mi southeast of Wrangell. DRAINAGE AREA.--67.4 mi². Date Aug 27 PERIOD OF RECORD. -- August 1951 to current year. REVISED RECORDS. -- WSP 1640: Drainage area. Time 1145 GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to September 30, 1960, at site 300 ft upstream at datum 0.12 ft lower. October 1, 1960, to August 23, 1975, at prior site and present datum. Date Sept 02 Time 0400 Discharge (ft^3/s) *4640 Gage height (ft) *9.46 REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge (ft^3/s) 4480 EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft^3/s and maximum (*): Gage height (ft) 9.34 | Aug | 27 | 1143 | 4400 | | 9.34 | | Sept 02 | 040 | U | 4040 | | .40 | |----------|--------------|------------|-------------|------------|-------------|------------|-------------|--------------|---------------|-----------|---------------|-----------| D.T.G.GIII | | | DED GEGOVE | | | - 0000 | mo cermen | rnnn 0001 | | | | | | DISCHA | ARGE, CUBIC | FEET | | | YEAR OCTOBE | ER 2000 | TO SEPTEM | IBER 2001 | | | | | | | | | DAIL | Y MEAN | VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | | | | | | 1 | 1000 | 377 | 619 | 346 | 638 | 170 | 146 | 432 | 2030 | 1300 | 1230 | 2200 | | 2 | 552 | 610 | 1320 | 695 | 555 | 131 | 125 | 497 | 1480 | 1270 | 1220 | 3520 | | 3 | 478 | 2900 | 623 | 2720 | 571 | 117 | 112 | 617 | 1360 | 1310 | 1090 | 3090 | | 4 | 410 | 1090 | 426 | 1040 | 385 | 119 | 122 | 589 | 1330 | 1920 | 1140 | 2960 | | 5 | 649 | 592 | 838 | 883 | 269 | 112 | 138 | 493 | 1390 | 2150 | 1090 | e1800 | | | | | | | | | | | | | | | | 6 | 1290 | 532 | 1140 | 911 | 214 | 104 | 129 | 387 | 1400 | 2100 | 1100 | e1750 | | 7 | 1370 | 514 | 521 | 567 | 190 | 139 | 121 | 382 | 1420 | 2290 | 1120 | e1540 | | 8 | 1420 | 419 | 363 | 587 | 169 |
136 | 119 | 454 | 1440 | 1920 | 937 | e1430 | | 9 | 949 | 338 | 271 | 501 | 152 | 130 | 139 | 461 | 1590 | 1900 | 1050 | e1380 | | 10 | 570 | 290 | 219 | 376 | 137 | 152 | 143 | 362 | 1510 | 1620 | 1050 | e1320 | | | | | | | | | | | | | | | | 11 | 1310 | 260 | 193 | 284 | e135 | 352 | 140 | 425 | 1210 | 1310 | 1040 | e1280 | | 12 | 1480 | 269 | 173 | 227 | e130 | 356 | 158 | 484 | 1240 | 1180 | 994 | e1240 | | 13 | 2110 | 263 | 156 | 208 | e127 | 267 | 176 | 560 | 1580 | 1550 | 1150 | e1200 | | 14 | 1070 | 232 | e150 | 183 | 131 | 176 | 160 | 500 | 1490 | 1840 | 1210 | e1170 | | 15 | 1420 | 213 | e145 | 176 | e128 | 156 | e157 | 545 | 1400 | 1490 | 1120 | e1140 | | 13 | 1120 | 213 | 0115 | 2,0 | 0120 | 200 | 0107 | 313 | 1100 | 1170 | 1120 | 01110 | | 16 | 1220 | 206 | e140 | 370 | e120 | 160 | e140 | 562 | 1300 | 1340 | 1010 | e1100 | | 17 | 753 | 419 | e160 | 431 | e116 | 159 | e180 | 574 | 1340 | 1510 | 1000 | e1100 | | 18 | 752 | 326 | e148 | 431 | e111 | 193 | e250 | 544 | 1360 | 1460 | 826 | e1200 | | 19 | 1040 | 326 | e136 | 425 | e107 | e170 | e340 | 481 | 1610 | 1420 | 864 | e1280 | | 20 | 809 | 402 | 123 | 333 | e102 | e178 | e400 | 480 | 2250 | 1810 | 1180 | e1180 | | 20 | 000 | 402 | 123 | 555 | CIUZ | C170 | 6400 | 400 | 2230 | 1010 | 1100 | CIIOO | | 21 | 783 | 594 | e125 | 301 | e97 | e140 | e480 | 537 | 2260 | 1960 | 1550 | e1700 | | 22 | 2160 | 2040 | e122 | 265 | e88 | e115 | e600 | 1450 | 1580 | 1860 | 1370 | e3200 | | 23 | 1850 | 1780 | e121 | 242 | e80 | e95 | e710 | 1410 | 1480 | 1630 | 1350 | e3900 | | 24 | 956 | 1040 | e120 | 331 | e90 | e85 | e690 | 877 | 1510 | 1330 | 1540 | e3200 | | 25 | 555 | 866 | 150 | 313 | e85 | e90 | 584 | 690 | 1550 | 1170 | 1910 | e2900 | | 23 | 333 | 800 | 130 | 313 | 603 | 630 | 204 | 090 | 1330 | 11/0 | 1910 | 62900 | | 26 | 402 | 662 | 202 | 255 | 83 | e110 | 519 | 729 | 1350 | 1100 | 2340 | e2600 | | 27 | 321 | 551 | 171 | 308 | 144 | e150 | 662 | 884 | 1490 | 1090 | 3450 | e2300 | | 28 | 266 | 442 | 145 | 404 | 178 | e190 | 628 | 1130 | 1870 | 1030 | 1680 | e2300 | | 29 | 234 | 326 | 140 | 269 | 1/0 | 170 | 493 | 1570 | 1470 | 1030 | 1140 | e2700 | | | | | | | | | 469 | | | | | e3600 | | 30
31 | 219
346 | 283 | 293
515 | 215
310 | | 157
151 | 469 | 1330
2080 | 1210 | 1080 | 1180
1830 | e3600
 | | 31 | 340 | | 212 | 310 | | 151 | | 2080 | | 1050 | 1830 | | | TOTAL | 28744 | 19162 | 9968 | 14907 | 5332 | 4930 | 0220 | 22516 | 45500 | 47020 | 10761 | 61180 | | | 28744
927 | 639 | 322 | 481 | 190 | 159 | 9230
308 | | 45500
1517 | 1517 | 40761
1315 | 2039 | | MEAN | | | | | | | | 726
2080 | | | | | | MAX | 2160 | 2900 | 1320 | 2720 | 638 | 356 | 710 | | 2260 | 2290 | 3450 | 3900 | | MIN | 219 | 206 | 120 | 176 | 80 | 85 | 112 | 362 | 1210 | 1030 | 826 | 1100 | | MED | 809 | 419 | 171 | 333 | 130 | 151 | 168 | 545 | 1480 | 1460 | 1140 | 1720 | | AC-FT | 57010 | 38010 | 19770 | 29570 | 10580 | 9780 | 18310 | 44660 | 90250 | 93260 | 80850 | 121400 | | CFSM | 13.8 | 9.48 | 4.77 | 7.13 | 2.83 | 2.36 | 4.56 | 10.8 | 22.5 | 22.5 | 19.5 | 30.3 | | IN. | 15.86 | 10.58 | 5.50 | 8.23 | 2.94 | 2.72 | 5.09 | 12.43 | 25.11 | 25.95 | 22.50 | 33.77 | | | | | | | | | | | | | | | | | | STATISTI | CS OF MONT | HLY MEA | AN DATA FOR | WATER | YEARS 1951 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 1086 | 497 | 340 | 252 | 239 | 204 | 363 | 914 | 1383 | 1343 | 1131 | 1136 | | MAX | 2152 | 1252 | 1065 | 819 | 655 | 510 | 733 | 1357 | 1896 | 1878 | 1656 | 2039 | | (WY) | 1962 | 1970 | 1990 | 1981 | 1954 | 1986 | 1994 | 1956 | 1996 | 1972 | 1956 | 2001 | | MIN | 610 | 118 | 102 | 50.6 | 46.7 | 54.8 | 90.0 | 624 | 960 | 861 | 601 | 507 | | (WY) | 1970 | 1986 | 1984 | 1969 | 1969 | 1969 | 1954 | 1977 | 1981 | 1995 | 1993 | 1965 | | (II ± / | 10,0 | 1,00 | 1701 | 1,00 | 1,00 | 1,00 | 1731 | 17,7 | 1701 | 1000 | 1,,,, | 1703 | [#] See Period of Record; partial years used in monthly statistics e Estimated # 15022000 HARDING RIVER NEAR WRANGELL--Continued | SUMMARY STATISTICS FOR | 2000 CALEND | AR YE | AR | FOR 2001 | WAT | ER YI | EAR | WATER YEARS 1 | .951 - | 200 | 01# | |-----------------------------|---------------|-------|----|---------------|-----|-------|-----|---------------|--------|-----|--------------| | ANNUAL TOTAL
ANNUAL MEAN | 289312
790 | | | 309250
847 | | | | 745 | | | | | HIGHEST ANNUAL MEAN | | | | | | | | 921
558 | | | 1992
1995 | | HIGHEST DAILY MEAN | 5640 | Aug | | 3900 | | Sep | | 11400 | | | 1961 | | LOWEST DAILY MEAN | 61 | Mar | | 80 | | Feb | | a35 | | | 1969 | | ANNUAL SEVEN-DAY MINIMUM | 67 | Mar | 7 | 89 | | Feb | | 35 | | | 1969 | | MAXIMUM PEAK FLOW | | | | 4640 | | Sep | 2 | b15300 | Oct | 26 | 1993 | | MAXIMUM PEAK STAGE | | | | 9 | .46 | Sep | 2 | c16.22 | Oct | 14 | 1961 | | INSTANTANEOUS LOW FLOW | | | | d | | | | 35 | Jan | 23 | 1969 | | ANNUAL RUNOFF (AC-FT) | 573900 | | | 613400 | | | | 539400 | | | | | ANNUAL RUNOFF (CFSM) | 11.7 | | | 12 | .6 | | | 11.0 | | | | | ANNUAL RUNOFF (INCHES) | 159.68 | | | 170 | .68 | | | 150.10 | | | | | 10 PERCENT EXCEEDS | 1690 | | | 1830 | | | | 1600 | | | | | 50 PERCENT EXCEEDS | 526 | | | 574 | | | | 544 | | | | | 90 PERCENT EXCEEDS | 107 | | | 131 | | | | 110 | | | | [#] See Period of Record; partial years used in monthly statistics a From Jan. 23 to Feb. 11, 1969 b From rating curve extended above 5,000 ft³/s on basis of slope-area measurement at gage height,13.90 ft At site then in use d Not determined,see lowest daily mean #### 15024800 STIKINE RIVER NEAR WRANGELL (International gaging station) LOCATION.--Lat $56^{\circ}42'29''$, long $132^{\circ}07'49''$, in $SE^{1}_{/4}$ SE $^{1}_{/4}$ sec. 35, T. 59 S., R. 84 E. (Petersburg C-1 quad), Hydrologic Unit 19010201, on right bank about 10 mi upstream from mouth near Point Rothsay, 11 mi west of Alaska-British Columbia boundary, and 18 mi northeast of Wrangell. DRAINAGE AREA. -- 19,920 mi², approximately. PERIOD OF RECORD. -- July 1976 to current year. REVISED RECORDS.--WDR AK-78-1: Drainage area. GAGE. -- Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map. REMARKS. -- Records good, except for estimated daily discharges that are tidally affected, Oct. 26 to 30. Nov. 10 to 16, Nov. 24 to 29, Dec. 8 to 13, Apr. 4 to 13, Apr. 20 to May 1 and May 4 to 12, which are fair; and estimated daily discharges during periods of ice effect, Dec.14 to April 1 which are poor. GOES satellite telemetry at > DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV FEB 28900 e9200 102000 107000 80400 18400 e13000 e13000 e10600 e21400 145000 112000 28700 e17000 105000 149000 107000 66700 23100 e12500 e9800 e8400 21800 124000 3 58700 42300 22500 e24000 e11800 e9300 e8400 24300 103000 150000 108000 117000 20200 e30000 e11000 e8400 100000 112000 108000 52400 44600 e8800 e25200 154000 5 e10000 e23600 49000 35400 21700 e25000 e8200 e8500 103000 155000 112000 88900 6 57500 30600 31100 e25000 e9500 e7800 e21800 106000 150000 e9300 e26000 e8200 e8700 e21400 e22400 71000 28600 27000 106000 145000 113000 82000 75100 27100 e22500 e9000 137000 112000 8 82200 e24000 e9000 e8500 109000 70200 25600 e19900 e21000 e8700 e9000 e9400 e22900 112000 130000 111000 70000 10 59700 e23600 e19900 e17000 e8600 e10000 e9500 e21300 120000 129000 111000 61700 11 59500 e22400 e19200 e13000 e8500 e12000 e9440 e21200 122000 122000 108000 56000 e22200 12 66000 e22200 e18000 e12000 e9000 e13000 e9530 121000 113000 107000 56300 13 80400 e22100 e17800 e10600 e9300 e12000 e9660 24300 137000 109000 109000 61300 77900 e21900 e15200 e11000 e9700 9840 25700 148000 112000 61900 e11400 114000 15 71200 e20900 e14600 e11500 e9000 e10700 9870 27400 148000 117000 116000 62100 e19200 68900 e13000 e11800 e8500 e10200 10000 29000 141000 130000 111000 63300 16 58000 e12000 e8200 10600 30300 139000 145000 17 19600 e12400 e9600 106000 67000 52000 19200 e11800 e13000 e8000 e9200 11600 30000 146000 149000 101000 77300 18 19 50400 17900 e11700 e15000 e7800 e9000 13100 28900 151000 151000 96600 79200 20 47400 17200 e7800 e8700 27900 94900 70200 e11700 e14500 e13900 159000 168000 21 45100 e17400 e11000 e14000 e7700 e8300 e14900 29400 179000 190000 98200 64000 51100 25500 e10400 e13500 e7600 e8000 e15700 36400 180000 201000 103000 100000 23 60000 40500 e10000 e12800 e7500 e7700 €16700 46200 168000 198000 104000 151000 2.4 53000 e39600 e9800 e13000 e7500 e7500 e20600 47400 160000 176000 99700 125000 25 44400 e34600 e9700 e11500 e7800 e7500 e21400 46100 155000 152000 96000 e38700 e8300 46000 26 e30200 e9600 e10500 e7600 e20500 137000 138000 108000 86300 e35000 e9000 e21200 e11000 133000 e26800 e9400 e8000 47100 128000 27 141000 73100 e32600 e23500 e10500 54200 28 e9300 e11500 e9000 e21900 139000 121000 150000 66300 29 e31400 e20600 e9300 e11000 e10000 e21800 67600 143000 118000 120000 63200 e30100 e10500 e9700 e10000 ___ 79000 142000 119000 30 18300 e21700 101000 85600 ___ 31 30400 e11000 e10200 e9400 88400 111000 108000 795000 392040 3397400 TOTAL 1731300 480800 476300 255100 288700 1080800 4014000 4412000 2498300 15360 142300 55850 15510 9111 13070 133800 109600 26500 9313 83280 MEAN 34860 21900 MAX 82200 44600 31100 30000 13000 13000 180000 201000 150000 151000 MTN 30100 17200 9300 10200 7500 7500 8400 21200 100000 109000 94900 56000 27900 76200 57500 24600 13000 13000 8850 9000 9940 145000 108000 MED 138000 AC-FT 3434000 1577000 953700 944700 506000 572600 777600 2144000 7962000 8751000 6739000 4955000 .46 .78 .77 .47 .66 CESM 2.80 1 33 1.75 6.72 7.50 7.14 8.24 5.50 4.18 4.67 3.23 1.48 9.0 6.34 IN. .89 .48 .54 .73 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 2001, BY WATER YEAR (WY)# 107500 25080 14070 9372 67040 135100 134800 MEAN 58230 11650 10300 16850 80230 199900 134200 113300 25780 39450 19080 31960 119100 MAX 58280 42340 163800 128600 (WY) 1987 1979 1990 1981 1977 1992 1992 1993 1992 1985 1977 1981 MTN 30590 10010 5593 5958 5111 4719 9070 32260 103400 109100 76770 50760
(WY) 1986 1986 1997 1978 1999 1978 1982 1982 1978 1983 1995 1,986 SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1976 - 2001# 20598780 19821740 ANNUAL TOTAL ANNUAL MEAN 56030 HIGHEST ANNUAL MEAN 72870 1981 LOWEST ANNUAL MEAN 42100 1978 HIGHEST DAILY MEAN 204000 Sep 18 201000 Jul 22 324000 Sep 23 1994 a6400 LOWEST DAILY MEAN Mar 14 b7500 Feb 23 4000 Feb 12 1988 ANNUAL SEVEN-DAY MINIMUM 8 1999 6530 Mar 11 7670 Feb 19 4090 Mar 204000 Sep 23 MAXIMUM PEAK FLOW Jul 351000 Sep 23 1994 MAXIMUM PEAK STAGE 24 48 Tul 22 30.60 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 40860000 39320000 40590000 2.83 2.81 38 47 ANNUAL RUNOFF (INCHES) 37.02 38 21 134000 137000 10 PERCENT EXCEEDS 137000 50 PERCENT EXCEEDS 27400 32500 9000 7340 9000 90 PERCENT EXCEEDS See Period of Record; partial years used in monthly statistics Mar. 14 to 15 Feb. 23 to 24 and Mar. 24 to 25 b Estimated ## 15039900 DOROTHY LAKE OUTLET NEAR JUNEAU $\text{LOCATION.--Lat } 58^{\circ}14'56'', \text{ long } 133^{\circ}58'54'', \text{ in } \text{NE}^{1}\!/_{4} \text{ NW}^{1}\!/_{4} \text{ sec. } 9, \text{ T. } 42 \text{ S., R. } 70 \text{ E.}(\text{Taku River A-6 quad}), \text{ Hydrologic Unit } 19010301, \text{ City and Borough of Juneau, in Tongass National Forest, on right bank 3 mi upstream from mouth at Taku Inlet, and } 16.4 \text{ mi east of Juneau.}$ DRAINAGE AREA.--11.0 mi². PERIOD OF RECORD. -- October 1986 to current year. GAGE.--Water-stage recorder. Datum of gage is 2,410.78 ft above sea level. REMARKS.--Records fair, except for discharges under 50 $\mathrm{ft^3/s}$ and estimated discharges, which are poor. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft^3/s and maximum (*). | D | ate | Time | Discha
(ft ³ / | | Gage height
(ft) | | Date | Time | Disch
(ft³ | | Gage he | | |---|--|--|---|---|--|--|---|---|---|---|---|---| | 0c | t.07 | 1900 | *493 | 3 | *11.45 | | Aug 27 | 2000 | 4 | 55 | 11.33 | 3 | | Ju | ly 8 | 0030 | 458 | 3 | 11.34 | | | | | | | | | | | DISCHA | RGE, CUBI | C FEET | | | YEAR OCTOBER
VALUES | 2000 I | TO SEPTEMBE | R 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEPT | | 1
2
3
4
5 | 183
146
122
100
126 | 42
41
79
83
74 | 45
45
42
39
52 | e19
e21
e25
e44
e50 | e30
e30
e29
e27
e25 | e15
e14
e13
e12
e12 | e13
e12
e11
e13
e13 | e17
e17
e20
e21
e22 | 127
139
154
156
151 | 213
214
207
227
270 | 237
231
227
232
266 | 279
310
290
265
282 | | 6
7
8
9
10 | 297
407
425
333
260 | 67
62
56
50
46 | 62
57
50
45
40 | e44
e40
e50
e46
e42 | e23
e20
e18
e17
e16 | e13
e14
e14
e14
e17 | e12
e12
e11
e11 | e20
e20
e22
e22
e20 | 146
148
149
152
159 | 327
417
438
403
375 | 256
233
214
201
187 | 331
304
294
245
195 | | 11
12
13
14
15 | 260
312
395
314
268 | 44
48
45
41
38 | 36
33
e30
e28
e26 | e38
e29
e28
e26
e26 | e14
e13
e17
e20
e19 | e21
e20
e19
e17
e15 | e11
e11
e11
e11 | e20
e19
e21
e22
e23 | 154
154
163
169
170 | 323
282
283
286
270 | 175
170
171
178
187 | 160
162
295
364
325 | | 16
17
18
19
20 | 218
175
142
121
104 | 37
39
36
34
33 | e23
e22
23
23
21 | e26
e25
e24
e24
e22 | e17
e15
e14
e13
e12 | e16
e16
e15
e14
e14 | e10
e9.8
e10
e10
e10 | e25
e27
e29
e29
e30 | 173
176
179
187
211 | 255
238
227
231
259 | 187
186
185
185
185 | 326
316
306
267
250 | | 21
22
23
24
25 | 92
91
98
93
82 | 48
81
94
87
79 | 20
19
18
17
17 | e21
e21
e24
e24
e21 | e12
e12
e12
e11
e11 | e13
e12
e11
e11 | e10
e11
e11
e12
e13 | e33
e42
e52
e54
e51 | 257
256
249
242
223 | 281
328
382
377
359 | 186
180
172
179
185 | 221
248
242
224
219 | | 26
27
28
29
30
31 | 71
61
54
49
44
44 | 72
65
57
47
45 | 18
17
e15
e15
e17
e18 | e19
e23
e25
e22
e20
e24 | e12
e15
e16
 | e11
e12
e12
e12
e12
e12 | e13
e16
e18
e18
e18 | e49
e52
61
73
83
104 | 200
196
220
223
214 | 338
305
266
249
256
251 | 211
374
419
350
313
295 | 191
165
145
127
184 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 5487
177
425
44
10880
16.1
18.56 | 1670
55.7
94
33
3310
5.06
5.65 | 933
30.1
62
15
1850
2.74
3.16 | 893
28.8
50
19
1770
2.62
3.02 | 490
17.5
30
11
972
1.59
1.66 | 434
14.0
21
11
861
1.27
1.47 | 362.8
12.1
18
9.8
720
1.10
1.23 | 1100
35.5
104
17
2180
3.23
3.72 | 5497
183
257
127
10900
16.7
18.59 | 9137
295
438
207
18120
26.8
30.90 | 6957
224
419
170
13800
20.4
23.53 | 7532
251
364
127
14940
22.8
25.47 | e Estimated # 15039900 DOROTHY LAKE OUTLET NEAR JUNEAU--Continued | STATISTI
MEAN
MAX
(WY)
MIN
(WY) | CS OF MONT
163
243
1988
90.9
1993 | THLY MEAN
49.7
88.7
1994
21.2
1996 | DATA FOR
36.2
80.8
2000
16.9
1995 | WATER YEA
21.7
38.1
2000
9.25
1997 | RS 1987
20.6
40.8
1993
11.3
1998 | | 2001, B
17.8
59.2
1992
4.65
1989 | 19
36
19
10 | ATER Y
0.8
5.9
994
0.6
989 | EAR (WY)#
87.4
140
1993
35.5
2001 | 214
267
1992
181
1996 | 270
364
2000
210
1993 | 253
342
1990
194
1995 | 264
387
1991
177
1992 | |--|--|---|--|---|---|----|---|----------------------|---|--|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | SUMMARY | STATISTIC | CS FOR | 2000 CALE | NDAR YEAR | ! | FO | OR 2001 | WATE | ER YEA | .R | WATER | YEARS 19 | 987 - 200 | 1 | | | | | 45642.6
125 | | | | 40492.
111 | 8 | | | 119
141
97. | 6 | 199
199 | | | | DAILY MEA | | 816 | Jul 24 | | | 438 | | Jul | 8 | 915 | | ep 11 199 | | | LOWEST | DAILY MEAN | N . | a8.2 | Mar 14 | : | | 9. | 8 | Apr 1 | .7 | 4. | 2 Ma | ar 13 198 | 9 | | ANNUAL | SEVEN-DAY | MINIMUM | 8.6 | Mar 10 | l . | | 10 | | Apr 1 | .5 | 4. | | ar 10 198 | | | MAXIMUM | PEAK FLOW | V | | | | | 493 | | Oct | 7 | b990 | Se | ep 10 199 | 5 | | MAXIMUM | PEAK STAC | ΞE | | | | | 11. | 45 | Oct | 7 | 13. | 05 Se | ep 10 199 | 5 | | | ANEOUS LOV | | | | | | C | | | | C | | | | | ANNUAL | RUNOFF (AG | C-FT) | 90530 | | | | 80320 | | | | 85990 | | | | | ANNUAL | RUNOFF (CI | FSM) | 11.3 | | | | 10. | 1 | | | 10. | 8 | | | | ANNUAL | RUNOFF (II | NCHES) | 154.3 | 5 | | | 136. | 94 | | | 146. | 60 | | | | 10 PERC | ENT EXCEE | OS | 313 | | | | 284 | | | | 285 | | | | | 50 PERC | ENT EXCEE | OS | 56 | | | | 47 | | | | 56 | | | | | 90 PERC | ENT EXCEEI | OS | 13 | | | | 12 | | | | 12 | | | | a Mar. 14 to Mar. 15 b From rating curve extended above 350 ft $^3/s$ c Not determined; see lowest daily mean ## SOUTHEAST ALASKA ## 15041200 TAKU RIVER NEAR JUNEAU (International gaging station) LOCATION.--Lat $58^{\circ}32'19''$, long $133^{\circ}42'00''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 33, T. 38 S., R. 71 E. (Taku River C-6 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on left bank, 1.5 mi upstream from Wright River, and 31 mi northeast of Juneau. DRAINAGE AREA.--6,600 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1987 to current year. REVISED RECORD.--WDR AK-98-1, 1987-1997; WDR AK-00-1 1989-90 (M), 1992-95 (M). GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $50,000 \text{ ft}^3/\text{s}$ and maximum (*). | Da | ite | Time | Discha
(ft³/ | | Gage heigh
(ft) | t | Date | Time | e Di | ischarge
(ft ³ /s) | | height
[t] | |----------------------------------|--|--|--|--|-----------------------------
--|--------------------------------------|--|---|--|--|---| | Jur | 1 22 | 0845 | 55, | 700 | 39.96 | | Aug 10 | 141 | 5 | *a76600 | *41 | .85 | | | | DISCH | ARGE, CUB | IC FEET | PER SECOND, | | YEAR OCTOB | ER 2000 | TO SEPTEM | IBER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 14000 | 6990 | e3400 | e2300 | e2550 | e2000 | 1910 | 4910 | 29300 | 35600 | 25500 | 20500 | | 2 | 12100 | 6610 | e3600 | e2600 | e2400 | e1950 | 1860 | 5170 | 33200 | 37300 | 26300 | 19100 | | 3 | 11600 | 7260 | e3700 | e2800 | e2300 | e1800 | 1830 | 5720 | 34000 | 35000 | 29500 | 17600 | | 4 | 12000 | 7380 | e3200 | e3200 | e2150 | e1700 | 1930 | 6040 | 32400 | 34100 | 30900 | 16200 | | 5 | 14300 | 6700 | e3000 | e3100 | e2000 | e1600 | 2030 | 5770 | 31100 | 34600 | 30800 | 16300 | | 6 | 28100 | 6130 | e4800 | e3000 | e1900 | e1500 | 2020 | 5310 | 32500 | 33100 | 29800 | 17800 | | 7 | 42600 | 6020 | 5420 | e3000 | e1850 | e1550 | 2030 | 5140 | 32100 | 31000 | 30900 | 16900 | | 8 | 31200 | 5900 | 4680 | e3200 | e1800 | e1650 | 2040 | 5360 | 32600 | 29600 | 36200 | 19600 | | 9 | 17800 | 5560 | e4100 | e2900 | e1800 | e1700 | 2100 | 5460 | 33600 | 27900 | 50100 | 16500 | | 10 | 14600 | 5040 | e3800 | e2700 | e1800 | e2000 | 2140 | 5460 | 37400 | 27200 | 67600 | 13200 | | 11 | 14800 | 4960 | e3700 | e2400 | e1700 | e2100 | 2170 | 5400 | 39400 | 26000 | 30500 | 12100 | | 12 | 17800 | 5790 | e3400 | e2300 | e1700 | e2300 | 2210 | 5750 | 42700 | 24800 | 25100 | 11600 | | 13 | 21700 | 5890 | e3100 | e2200 | e1800 | e2250 | 2320 | 6850 | 45300 | 24000 | 25400 | 16600 | | 14 | 19700 | 5360 | e2900 | e2180 | e1900 | e2200 | 2360 | 7800 | 43600 | 24600 | 26300 | 24600 | | 15 | 17300 | 4840 | e2600 | e2100 | e1700 | e2100 | 2410 | 8250 | 38800 | 25800 | 27400 | 25800 | | 16 | 15300 | 4630 | e2400 | e2100 | e1650 | e2100 | 2510 | 8910 | 36700 | 27600 | 25800 | 22500 | | 17 | 13400 | 4550 | e2300 | e2150 | e1600 | e2000 | 2670 | 9200 | 38500 | 28900 | 24300 | 22100 | | 18 | 12000 | 4700 | e2250 | e2000 | e1550 | e1900 | 2840 | 9340 | 39600 | 30800 | 22900 | 22000 | | 19 | 11200 | 4400 | e2250 | e2000 | e1550 | e1800 | 3180 | 9130 | 39900 | 34600 | 22500 | 19200 | | 20 | 10700 | 4230 | e2250 | e2000 | e1500 | e1700 | 3420 | 9280 | 39600 | 38600 | 22000 | 16600 | | 21 | 10300 | 4530 | e2100 | e1900 | e1500 | e1650 | 3660 | 9650 | 45000 | 41100 | 21500 | 14700 | | 22 | 10300 | 6010 | e2000 | e1900 | e1480 | e1600 | 3880 | 10300 | 50500 | 43400 | 21600 | 15900 | | 23 | 11000 | 7220 | e1950 | e2000 | e1480 | e1500 | 4060 | 11500 | 38900 | 43100 | 21300 | 17500 | | 24 | 10900 | 6870 | e1900 | e2000 | e1500 | e1500 | 4280 | 11700 | 37300 | 39300 | 21000 | 15900 | | 25 | 10100 | 6100 | e1900 | e1900 | e1550 | e1450 | 4530 | 11300 | 33600 | 35900 | 19300 | 14300 | | 26
27
28
29
30
31 | 9190
8500
7990
7530
7200
7070 | 5620
5040
4590
e4200
e3600 | e1850
e1800
e1800
e1800
e2000
e2100 | e1850
e2000
e2200
e2100
e2000
e2200 | e1600
e1800
e2100
 | e1500
e1550
e1600
e1700
e1800
e1900 | 4580
4580
4910
4960
4860 | 11200
12600
17300
21200
23400
24800 | 29500
29000
32500
35600
36200 | 32800
30900
29800
29300
28500
27000 | 19000
24000
27700
23700
21000
21000 | 13100
11800
10900
10200
11000 | | TOTAL | 452280 | 166720 | 88050 | 72280 | 50210 | 55650 | 90280 | 299200 | 1100400 | 992200 | 850900 | 502100 | | MEAN | 14590 | 5557 | 2840 | 2332 | 1793 | 1795 | 3009 | 9652 | 36680 | 32010 | 27450 | 16740 | | MAX | 42600 | 7380 | 5420 | 3200 | 2550 | 2300 | 4960 | 24800 | 50500 | 43400 | 67600 | 25800 | | MIN | 7070 | 3600 | 1800 | 1850 | 1480 | 1450 | 1830 | 4910 | 29000 | 24000 | 19000 | 10200 | | AC-FT | 897100 | 330700 | 174600 | 143400 | 99590 | 110400 | 179100 | 593500 | 2183000 | 1968000 | 1688000 | 995900 | | CFSM | 2.21 | .84 | .43 | .35 | .27 | .27 | .46 | 1.46 | 5.56 | 4.85 | 4.16 | 2.54 | | IN. | 2.55 | .94 | .50 | .41 | .28 | .31 | .51 | 1.69 | 6.20 | 5.59 | 4.80 | 2.83 | | | | STATIST | ICS OF MOI | NTHLY ME | AN DATA FOR | WATER | YEARS 1988 | - 2001, | BY WATER | YEAR (WY |) # | | | MEAN | 11650 | 4700 | 3415 | 2215 | 1946 | 2651 | 4446 | 20150 | 34620 | 32160 | 26020 | 19580 | | MAX | 17250 | 8633 | 6613 | 4223 | 3682 | 10500 | 6815 | 33800 | 49280 | 41080 | 32450 | 26550 | | (WY) | 1992 | 1994 | 2000 | 2000 | 1992 | 1992 | 1992 | 1993 | 1992 | 1992 | 1989 | 1994 | | MIN | 6265 | 2488 | 1256 | 1125 | 1041 | 1359 | 2846 | 9652 | 23170 | 25040 | 18610 | 11180 | | (WY) | 1997 | 1997 | 1997 | 1988 | 1999 | 1991 | 2000 | 2001 | 1995 | 1996 | 1995 | 1992 | [#] See Period of Record; partial years used in monthly statistics a Result of Tulsequah River glacier dam breakout e Estimated # SOUTHEAST ALASKA # 15041200 TAKU RIVER NEAR JUNEAU--Continued | SUMMARY STATISTICS F | OR 2000 | CALENDAR | YEAR | FOR 2001 W | ATER | YEAR | WATER YEARS | 1988 | - : | 2001 | |-------------------------|---------|----------|------|------------|------|------|-------------|------|-----|------| | ANNUAL TOTAL | 5027760 | | | 4720270 | | | | | | | | ANNUAL MEAN | 13740 | | | 12930 | | | 13690 | | | | | HIGHEST ANNUAL MEAN | | | | | | | 16820 | | | 1992 | | LOWEST ANNUAL MEAN | | | | | | | 10800 | | | 1996 | | HIGHEST DAILY MEAN | 93100 | Jul | 26 | 67600 | Aug | 10 | 93100 | Jul | 26 | 2000 | | LOWEST DAILY MEAN | a1680 | Mar | 13 | 1450 | Mar | 25 | 710 | Feb | 12 | 1988 | | ANNUAL SEVEN-DAY MINIMU | M 1710 | Mar | 11 | 1510 | Feb | 18 | 721 | Feb | 8 | 1988 | | MAXIMUM PEAK FLOW | | | | b76600 | Aug | 10 | b110000 | Aug | 17 | 1989 | | MAXIMUM PEAK STAGE | | | | 41.85 | Aug | 10 | 44.13 | Aug | 17 | 1989 | | INSTANTANEOUS LOW FLOW | | | | C | | | 710 | Feb | 12 | 1989 | | ANNUAL RUNOFF (AC-FT) | 9973000 | | | 9363000 | | | 9919000 | | | | | ANNUAL RUNOFF (CFSM) | 2 | .08 | | 1.96 | | | 2.07 | | | | | ANNUAL RUNOFF (INCHES) | 28 | .34 | | 26.61 | | | 28.19 | | | | | 10 PERCENT EXCEEDS | 33300 | | | 33400 | | | 33500 | | | | | 50 PERCENT EXCEEDS | 7030 | | | 6020 | | | 7320 | | | | | 90 PERCENT EXCEEDS | 2180 | | | 1800 | | | 1650 | | | | [#] See Period of Record; partial years used in monthly statistics a Result of Tulsequah River glacier dam breakout b From Mar. 13 to Mar. 14 c Not determined; see lowest daily mean #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1999 to current year INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval. REMARKS.- No record from March 4-10, 14 to April 11 when the probe was out of the water. The recorder malfunctioned on October 3-4, 10-15, December 13-14, 16, 21-22, February 10, July 30, and September 14-25. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on September 20. The September 20 temperature cross section found no variation between mean stream temperature and sensor temperature. The outburst peak of the lake dammed by Tulsequah Glacier occurred on August 10. As a result, the temperature cross section showed a variation of 1.5° C during sampling on August 10 but no variation was noted on August 11. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum recorded, 12.5°C, July 14, 1999 and July 20 and 21, 2001; minimum, 0.0°C, many days during most winters. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum recorded, 12.5°C, July 20 and 21, ; minimum, 0.0°C, many days during winter. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |----------|------|--|--|---|---|---|--|---| | SEP 2001 | | | | | | | | | | 20 | 1333 | 75.0 | 117 | 7.7 | 7.0 | 757 | 11.2 | 93 | | 20 | 1335 | 225 | 117 | 7.8 | 7.0 | 757 | 11.2 | 93 | | 20 | 1337 | 375 | 117 | 7.8 | 7.0 | 757 | 11.1 | 92 | | 20 | 1339 | 525 | 116 | 7.8 | 7.0 | 757 | 11.1 | 92 | | 20 | 1340 | 675 | 116 | 7.8 | 7.0 | 757 | 11.1 | 92 | | | | | | | | DIS- | | | | PH | | | | |------|------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | | | CHARGE, | | | SPE- | WATER | | | BARO- | | | | | | | | INST. | | | CIFIC | WHOLE | | | METRIC | | | | | | | | CUBIC | SAM- | SAM- | CON- | FIELD | TEMPER- | TEMPER- | PRES- | | | | | | STREAM | GAGE | FEET | PLING | PLER | DUCT- | (STAND- | ATURE | ATURE | SURE | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | ANCE | ARD | AIR | WATER | (MMOF | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | (US/CM) | UNITS) | (DEG C) | (DEG C) | HG) | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (00095) | (00400) | (00020) | (00010) | (00025) | | OCT |
 | | | | | | | | | | | | | 11 | 1145 | 9 | 9 | 166 | 33.25 | 13900 | 20 | 3053 | 128 | 7.7 | 6.5 | 4.5 | 757 | | APR | | | | | | | | | | | | | | | 11 | 1500 | 9 | 9 | 274 | 28.76 | 2130 | 20 | 8010 | 222 | 8.7 | 8.0 | 3.5 | 752 | | JUN | | _ | _ | | | | | | | | | | | | 07 | 1400 | 9 | 9 | 753 | 36.33 | 33900 | 20 | 3053 | 137 | 7.8 | | 9.0 | 764 | | 28 | 1343 | 9 | 9 | | 36.35 | 33900 | 20 | 3053 | 122 | 7.7 | | 8.5 | 765 | | JUL | | | | | | | | | | | | | | | 06 | 1232 | 9 | 9 | 750 | 36.45 | 31100 | 20 | 3053 | 118 | 6.9 | 11.0 | 8.0 | 752 | | AUG | | | | | | | | | | | | | | | 10 | 1610 | 9 | 9 | 776 | 41.82 | 73900 | 20 | 3053 | 90 | 8.0 | 20.5 | 7.0 | 764 | | 11 | 1125 | 9 | 9 | 717 | 35.99 | 28800 | 20 | 3053 | 100 | 7.9 | 18.5 | 8.0 | 764 | | SEP | | | | | | | | | | | | | | | 20 | 1325 | 9 | 9 | | 33.46 | 16300 | 20 | 3053 | 117 | 7.8 | | 7.0 | 757 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001--Continued | DATE
OCT | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXY-
GEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CAL-
CIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
CACO3
(MG/L)
(39036) | SUL-
FATE
(MG/L
AS SO4)
(00946) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | |-----------------|--|---|---|--|---|--|---|--|--|--|--|---|---| | 11
APR | | | 68 | 20.6 | 4.03 | 1.7 | 58 | <.70 | 68 | 56 | 58 | 12 | .1 | | 11
JUN | 12.2 | 93 | 130 | 36.4 | 8.69 | 5.0 | 102 | 1.00 | 124 | 102 | 100 | 20 | .1 | | 07
28
JUL | | 98
90 | 69
62 | 20.6 | 4.16 | 1.5 | 60
51 | <.70 | 71
55 | 58
51 | 60
51 | 10 | M
 | | 06
AUG | 11.1 | 95 | 58 | 17.8 | 3.25 | 1.5 | 46 | <.70 | 55 | 45 | 46 | 10 | <.02 | | 10
11 | 10.6 | 87
 | 47
54 | 15.0
16.9 | 2.42
2.87 | .7
1.1 | 33
45 | <.70
1.20 | 40
55 | 32
45 | 33
45 | 12
9.8 | <.02
<.02 | | SEP
20 | 11.1 | 92 | 59 | 18.3 | 3.28 | 1.4 | 50 | <.70 | 60 | 49 | 50 | 10 | <.02 | | DATE
OCT_ | NITRO-
GEN,
AMMO-
NIA
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ALUMI-
NUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ALUMI-
NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BAR-
IUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | CAD-
MIUM
WATER
UNFL-
TRD
TOTAL
(UG/L
AS CD)
(01027) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | COP-
PER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | | 11
APR | .03 | .047 | 1020 | 25 | 1 | .6 | 43.7 | 27.7 | .15 | <.10 | 2 | <1.0 | 3.7 | | JUN | <.02 | .014 | 169 | <20 | М | . 4 | 45.4 | 43.7 | <.10 | <.10 | 1 | <1.0 | 1.6 | | 07
28
JUL | E.03 | .180 | 2670
 | 38 | 2 | .5
 | 69.7
 | 24.5 | .11 | <.10 | 8 | 1.1 | 8.8 | | 06
AUG | E.01 | .176 | 2530 | 34 | 2 | .6 | 64.6 | 23.1 | <.10 | <.10 | 5 | <1.0 | 7.0 | | 10
11
SEP | .09 | .670
.259 | 7630
E3120 | 34
E29 | 7
3 | .5
.5 | 174
87.9 | 23.6
25.3 | .31 | <.10
<.10 | 16
7 | 1.2 | 25.9
10.3 | | 20 | <.02 | .098 | E1880 | 28 | 2 | .6 | 57.1 | 25.2 | <.10 | <.10 | 4 | 2.1 | 4.4 | | DATE | COP-
PER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SIL-
VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SIL-
VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | | 11
APR | <1.0 | 1420 | 20 | 2 | <.10 | 46 | 8.8 | 4 | .83 | <1.0 | <1.0 | <.10 | <.1 | | 11 | <1.0 | 570 | 20 | M | <.10 | 50 | 42.2 | 2 | 1.29 | <1.0 | <1.0 | <.10 | <.1 | | JUN
07
28 | 1.4 | 4290 | 20 | 2 | <.10 | 129 | 6.5 | 14 | 1.72 | <1.0 | <1.0 | <.10 | <.1 | | JUL
06 | <1.0 | 3770 | <10 | 3 | <.10 | 111 | 5.2 | 8 | .84 | <1.0 | <1.0 | <.10 | <.1 | | AUG
10
11 | | 11800
4850 | <10
<10 | 8
E3 | <.10
<.10 | 348
148 | 8.3
6.9 | 23
10 | .79
.82 | <1.0
<1.0 | <1.0
<1.0 | .11
<.10 | <.1
<.1 | | SEP
20 | <1.0 | 2630 | <10 | E2 | <.10 | 74 | 6.0 | 4 | .87 | <1.0 | <1.0 | <.10 | <.1 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001--Continued | DATE | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | ORGANIC
TOTAL
(MG/L
AS C) | DIS-
SOLVED
(MG/L
AS C) | |-----------|--|-----|------------------------------------|----------------------------------| | OCT | | | | | | 11 | 8 | <4 | 1.5 | 1.2 | | APR | | _ | | | | 11 | 8 | 6 | 1.4 | .89 | | JUN
07 | 17 | <4 | | | | 28 | ± / | | | | | JUL | | | | | | 06 | 22 | 4 | 1.1 | 1.1 | | AUG | | | | | | 10 | 52 | 5 | < .50 | <.50 | | 11 | 19 | <4 | < .50 | <.50 | | SEP | | | | | | 20 | 14 | < 4 | .62 | .53 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|------------------------------|----------------------|------------------------------|-------------------------------|----------------------|----------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 4.5
3.0

2.5
2.0 | 3.0
2.0
1.5

1.5 | 3.5
2.5

1.5 | 2.5
2.0
2.0
2.0
1.5 | 2.0
1.5
1.5
1.5 | 2.0
1.5
1.5
2.0
1.5 | 1.5
1.5

1.0
1.5 | .5
.5

.5 | 1.0
1.0

1.0
1.0 | .5
.5
.5 | .0.0.0.0 | .0
.0
.0
.0 | | 6
7
8
9
10 | 2.0
3.0
4.0
4.5 | 1.5
2.0
2.5
4.0 | 2.0
2.5
3.5
4.0 | 1.5
1.5
1.5
1.0 | 1.0
1.0
1.0
.0 | 1.5
1.5
1.5
.5 | 1.0
.5
.5
.5 | .0
.0
.5
.5 | .5
.5
.5
.5 | .5
.5
.5 | .0
.0
.5
.0 | .5
.5
.5
.5 | | 11
12
13
14
15 |

 |

 |

 | 2.0
2.0
2.0
2.0
1.5 | 1.0
1.5
1.5
1.5 | 1.5
2.0
2.0
2.0
1.5 | 1.0
1.0

.5 | .5
.5

.0 | .5
.5

.5 | .5
.5
.5 | .5
.0
.5
.5 | .5
.5
.5
.5 | | 16
17
18
19
20 | 4.5
4.5
4.0
4.5 | 4.0
4.0
3.5
3.5
4.0 | 4.5
4.0
3.5
4.0 | 1.5
1.0
1.0
1.0 | .0
.0
.5
1.0 | 1.0
.5
.5
1.0 |
.0
.0
.5 | .0.0.0 | .0
.0
.0 | .5
.5
1.0
1.0 | .5
.5
.5
.0 | .5
.5
.5
.5 | | 21
22
23
24
25 | 4.5
4.0
4.0
4.0 | 4.0
3.5
3.5
4.0
3.0 | 4.0
4.0
4.0
4.0
3.5 | 1.5
1.5
1.5
1.5 | .5
1.0
1.5
1.5 | 1.0
1.5
1.5
1.5 |
. 0
. 0 | .0 | .0
.0 | .5
1.0
.5
1.0 | .0
.5
.5
.5 | .5
.5
.5
.5 | | 26
27
28
29
30
31 | 3.0
2.5
2.5
2.5
2.0
2.0 | 2.5
2.0
2.5
2.0
1.0 | 2.5
2.5
2.5
2.0
1.5 | 1.5
1.5
1.0
.5 | 1.0
1.0
.0
.0 | 1.5
1.0
1.0
.0 | .0
.5
.5
.5 | .0.0.0.0.0 | .0
.0
.0
.0 | .5
.5
1.0
1.0
1.0 | .5
.0
.5
.5 | .5
.5
.5
.5 | | MONTH | | | | 2.5 | .0 | 1.3 | | | | 1.0 | .0 | . 4 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|----------|------|-----|-------|------|-----|-------|------|------|-----|------| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 1.0 | . 5 | .5 | 1.0 | .5 | .5 | | | | 6.0 | 5.0 | 5.5 | | 2 | 1.0 | . 5 | .5 | 1.0 | .5 | .5 | | | | 5.5 | 4.0 | 4.5 | | 3 | 1.0 | . 5 | .5 | 1.0 | .0 | .5 | | | | 4.0 | 3.5 | 4.0 | |
4 | 1.0 | .5 | .5 | | | | | | | 6.0 | 4.0 | 5.0 | | 5 | .5 | .0 | .5 | | | | | | | 5.5 | 4.5 | 5.0 | | 6 | 1.0 | .0 | .5 | | | | | | | 6.5 | 5.0 | 5.5 | | 7 | 1.0 | . 5 | .5 | | | | | | | 6.5 | 5.5 | 6.0 | | 8 | 1.0 | . 0 | .5 | | | | | | | 6.5 | 5.5 | 6.0 | | 9 | 1.0 | . 0 | .5 | | | | | | | 7.0 | 5.5 | 6.0 | | 10 | | | | | | | | | | 7.5 | 6.0 | 6.5 | | 11 | . 5 | . 0 | .5 | 1.0 | .5 | . 5 | | | | 8.0 | 6.0 | 7.0 | | 12 | 1.0 | . 5 | .5 | 1.0 | .5 | .5 | 4.5 | 3.0 | 3.5 | 8.0 | 6.5 | 7.0 | | 13 | 1.0 | . 0 | .5 | 1.5 | .5 | 1.0 | 5.5 | 3.0 | 4.0 | 8.0 | 6.5 | 7.0 | | 14 | 1.0 | .5 | .5 | | | | 5.0 | 3.0 | 4.0 | 8.0 | 5.5 | 6.5 | | 15 | 1.0 | .5 | .5 | | | | 5.5 | 3.0 | 4.0 | 8.0 | 7.0 | 7.5 | | 16 | 1.0 | .5 | 1.0 | | | | 5.5 | 3.0 | 4.0 | 8.0 | 6.0 | 7.0 | | 17 | 1.0 | . 5 | 1.0 | | | | 4.5 | 3.5 | 4.0 | 8.5 | 6.5 | 7.5 | | 18 | 1.0 | . 5 | .5 | | | | 5.5 | 3.0 | 4.0 | 8.0 | 6.0 | 7.5 | | 19 | 1.0 | . 5 | 1.0 | | | | 5.5 | 4.0 | 4.5 | 8.5 | 6.0 | 7.0 | | 20 | 1.0 | .5 | 1.0 | | | | 5.5 | 3.5 | 4.5 | 8.5 | 6.5 | 7.5 | | 21 | 1.0 | 1.0 | 1.0 | | | | 5.5 | 3.5 | 4.5 | 8.5 | 6.0 | 7.0 | | 22 | 1.0 | .5 | .5 | | | | 4.5 | 4.0 | 4.5 | 9.0 | 7.0 | 8.0 | | 23 | 1.0 | . 0 | .5 | | | | 5.0 | 3.5 | 4.0 | 8.0 | 7.0 | 7.5 | | 24 | 1.0 | .5 | .5 | | | | 4.0 | 3.5 | 4.0 | 8.5 | 6.5 | 7.5 | | 25 | 1.0 | .5 | .5 | | | | 5.0 | 3.5 | 4.0 | 9.0 | 6.5 | 7.5 | | 26 | 1.0 | .5 | .5 | | | | 5.0 | 3.5 | 4.0 | 10.0 | 7.0 | 8.5 | | 27 | 1.0 | .5 | .5 | | | | 4.5 | 3.5 | 4.0 | 9.5 | 8.0 | 8.5 | | 28 | 1.0 | .5 | .5 | | | | 5.5 | 4.0 | 4.5 | 8.5 | 7.5 | 8.0 | | 29 | | | | | | | 5.0 | 4.0 | 4.5 | 8.5 | 7.0 | 7.5 | | 30 | | | | | | | 6.5 | 4.5 | 5.0 | 8.5 | 7.0 | 8.0 | | 31 | | | | | | | | | | 8.5 | 7.5 | 8.0 | | MONTH | | | | | | | | | | 10.0 | 3.5 | 6.8 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|---|---------------------------------|--|---|--|--------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|---------------------------------|----------------------------------| | 1
2
3
4
5 | 9.0
8.5
8.0
9.0
8.5 | JUNE
7.0
7.0
6.5
6.0
7.0 | 8.0
7.5
7.0
7.5
8.0 | 11.5
11.0
10.5
10.0
9.5 | JULY
8.5
9.0
7.5
8.5
8.5 | 10.0
9.5
9.0
9.0 | 10.5
12.0
11.0
10.0
11.0 | AUGUST
9.0
9.0
9.5
9.0 | 10.0
10.5
10.0
9.5
10.0 | 10.0
10.0
10.0
10.5
10.5 | 9.0
9.0
9.0
8.5
9.0 | 9.5
9.5
9.5
10.0
9.5 | | 6
7
8
9
10 | 10.0
10.0
9.5
9.5
9.0 | 6.5
7.5
7.5
7.5
7.0 | 8.0
8.5
8.5
8.5
8.0 | 9.0
9.0
9.0
9.5
10.0 | 7.5
7.0
7.5
8.0 | 8.0
8.0
8.5
8.5 | 10.5
10.5
9.5
8.0
9.0 | 8.5
8.5
7.5
5.5
4.5 | 9.5
9.5
8.5
6.5 | 10.0
9.5
10.0
10.0 | 8.5
8.5
8.5
8.5
8.0 | 9.5
9.0
9.0
9.0 | | 11
12
13
14
15 | 9.5
10.0
9.5
8.5
9.5 | 6.5
8.0
8.0
7.5
7.0 | 8.0
9.0
8.5
8.0 | 10.0
10.0
10.0
11.0
12.0 | 8.5
8.0
8.5
8.5 | 9.0
9.0
9.0
9.5
10.0 | 11.0
12.0
12.0
12.0
12.0 | 8.0
9.0
9.5
9.5
9.5 | 9.0
10.5
10.5
10.5 | 10.0
9.5
10.0
 | 8.0
8.5
9.0
 | 9.0
9.0
9.5
 | | 16
17
18
19
20 | 9.5
10.5
10.5
10.0
10.0 | 8.0
8.0
8.0
8.5
8.0 | 9.0
9.0
9.5
9.5
9.0 | 11.5
11.0
12.0
12.0
12.5 | 9.0
8.5
8.5
9.0
9.5 | 10.0
9.5
10.0
10.5
11.0 | 11.5
11.0
10.5
11.0
10.5 | 9.0
9.5
9.0
9.5
9.5 | 10.5
10.0
9.5
10.0
10.0 |

 | 8.5

9.0
 |

 | | 21
22
23
24
25 | 9.5
8.0
10.0
10.0
8.5 | 7.5
6.0
7.0
7.5
7.0 | 8.0
7.0
8.5
8.5
7.5 | 12.5
11.5
10.0
10.0
9.5 | 9.5
9.5
8.5
8.5 | 11.0
10.0
9.0
9.0
9.0 | 10.5
10.0
10.5
10.0 | 9.5
9.5
8.5
9.0
8.5 | 10.0
9.5
9.5
9.5
9.0 |

 | 8.5
8.5
8.0
 | | | 26
27
28
29
30
31 | 10.5
10.5
9.5
10.0
10.5 | 7.0
8.5
8.5
7.5
7.5 | 8.5
9.5
8.5
8.5
9.0 | 10.0
10.5
11.0
11.0

11.0 | 8.5
8.5
9.0

9.5 | 9.0
9.5
10.0
10.0

10.0 | 10.0
10.0
10.0
9.5
10.0 | 8.5
9.0
9.0
8.5
8.5 | 9.5
9.5
9.5
9.0
9.0 | 9.0
8.5
8.0
8.0 | 8.0
7.5
7.0
7.0
7.5 | 8.5
8.0
7.5
7.5
8.0 | | MONTH | 10.5 | 6.0 | 8.4 | | | | 12.0 | 4.5 | 9.5 | | | | Gage height (ft) Discharge (ft^3/s) No other peak greater than base discharge #### 15050000 GOLD CREEK AT JUNEAU LOCATION.--Lat $58^{\circ}18'25''$, long $134^{\circ}24'05''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, on left bank, 150 ft upstream from Alaska Electric Light and Power Company dam and diversion, 0.5 mi northeast of Juneau, and 1 mi upstream from mouth at Gastineau Channel. DRAINAGE AREA. -- 9.76 mi². Date *Oct 12 PERIOD OF RECORD.--July 1916 to December 1920 (monthly discharge only), October 1946 to September 1948, October 1949 to September 1982. Annual maximums, water years 1991, 1994, 1996. October 1997 to current year. REVISED RECORDS.--WSP 1372: Drainage area. Time 1830 Discharge (ft³/s) 1180 GAGE.--Water-stage recorder. Elevation of gage is 245 ft above sea level, from topographic map. July 20, 1916 to December 31, 1920, at site 50 ft upstream at different datum. September 11, 1946 to September 30, 1948, nonrecording gage at site 0.7 mi downstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Water may be diverted about 0.5 mi upstream and three wells, located upstream from the gage in Last Chance Basin, pump water for municipal use and may decrease flow during winter periods. Date Time EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft^3/s and maximum (*): Gage height (ft) 4.92 | *0GL | 12 | 1830 | 118 | U | 4.92 | | NO OLIIE | er peak | greater th | an base | discharge | 2 | |--------------|-------------|-------------|-------------|-------------|-------------|--------------------|---------------------|-------------|--------------|--------------|-------------|--------------| | | | DISCHARG | GE, CUBIC | FEET PER | | , WATER
LY MEAN | YEAR OCTOBER VALUES | 2000 1 | TO SEPTEMBEI | R 2001 | | | | DAY | OCT | NOV | DEG | T 7 NT | | | | M237 | JUN | JUL | AUG | SEP | | DAY | | | DEC | JAN | FEB | MAR | APR | MAY | | | | | | 1
2 | 29
24 | 36
41 | 29
28 | 19
26 | 119
78 | 15
13 | e4.9
e4.7 | 18
20 | 241
222 | 203
216 | 207
179 | 133
324 | | 3 | 22 | 147 | 25 | 167 | 59 | 13 | e5.1 | 36 | 217 | 191 | 168 | 176 | | 4
5 | 19
134 | 68
44 | 25
187 | 76
51 | 44
36 | 12
11 | 5.8
6.0 | 36
27 | 239
216 | 266
350 | 222
187 | 156
389 | | 6 | 330 | 36 | 116 | 48 | 30 | 12 | e5.9 | 22 | 201 | 456 | 146 | 291 | | 7
8 | 259
182 | 37
33 | 60
39 | 51
89 | 28
24 | 14
13 | e5.5
e5.1 | 24
40 | 214
223 | 566
422 | 135
125 | 325
240 | | 9 | 274 | 28 | 30 | 58 | 23 | 14 | 5.9 | 69 | 234 | 318 | 102 | 157 | | 10 | 190 | 25 | 26 | 42 | 19 | 20 | e5.6 | 35 | 245 | 323 | 95 | 110 | | 11
12 | 484 | 47 | 24
22 | 34
30 | 19 | 31
21 | e5.4
e5.2 | 30
32 | 195
188 | 237
213 | 90 | 85
159 | | 13 | 515
417 | 91
44 | 19 | 28 | 18
18 | 16 | e5.2
e5.0 | 43 | 223 | 357 | 94
110 | 600 | | 14
15 | 264
261 | 33
30 | 17
16 | 27
32 | 17
16 | 14
13 | e4.8
e4.9 | 41
42 | 212
209 | 299
236 | 118
112 | 385
217 | | | | | | | | | | | | | | | | 16
17 | 187
136 | 29
53 | 16
15 | 32
38 | 15
15 | 12
11 | e5.3
5.9 | 49
54 | 204
211 | 212
186 | 99
106 | 259
226 | | 18 | 102 | 34 | 15 | 44 | 14 | 10
9.5 | 7.4 | 54 | 220 | 179
189 | 145 | 182 | | 19
20 | 78
71 | 32
56 | 15
14 | 45
37 | 14
13 | 8.9 | 8.4
8.9 | 46
44 | 246
306 | 228 | 132
137 | 187
230 | | 21 | 74 | 223 | 14 | 34 | 13 | 8.4 | 10 | 67 | 315 | 233 | 121 | 166 | | 22
23 | 123
164 | 292
181 | 13
13 | 34
42 | 13
12 | 7.5
7.0 | 11
13 | 123
143 | 251
230 | 364
361 | 103
85 | 199
170 | | 24 | 114 | 126 | 13 | 36 | 12 | 6.2 | 15 | 109 | 211 | 289 | 102 | 149 | | 25 | 81 | 91 | 13 | 30 | 11 | 6.2 | 15 | 79 | 182 | 286 | 93 | 158 | | 26
27 | 59
45 | 77
58 | 13
13 | 27
44 | 13
29 | 6.0
5.8 | 15
24 | 68
90 | 176
239 | 258
190 | 122
315 | 122
109 | | 28 | 36 | 43 | 12 | 42 | 19 | 5.8 | 24 | 129 | 330 | 154 | 150 | 87 | | 29
30 | 30
29 | 33
30 | 12
18 | 32
27 | | e5.5
e5.3 | 20
19 | 166
173 | 252
205 | 189
194 | 159
157 | 73
263 | | 31 | 46 | | 22 | 49 | | e5.1 | | 225 | | 191 | 162 | | | TOTAL | 4779 | 2098 | 894 | 1371 | 741 | 352.2 | 281.7 | 2134 | 6857 | 8356 | 4278 | 6327 | | MEAN
MAX | 154
515 | 69.9
292 | 28.8
187 | 44.2
167 | 26.5
119 | 11.4
31 | 9.39
24 | 68.8
225 | 229
330 | 270
566 | 138
315 | 211
600 | | MIN | 19 | 25 | 12 | 19 | 11 | 5.1 | 4.7 | 18 | 176 | 154 | 85 | 73 | | MED
AC-FT | 114
9480 | 44
4160 | 17
1770 | 37
2720 | 18
1470 | 11
699 | 5.9
559 | 46
4230 | 221
13600 | 236
16570 | 125
8490 | 179
12550 | | | | | | | | | | | | | | | e Estimated # SOUTHEAST ALASKA # 15050000 GOLD CREEK AT
JUNEAU-Continued | STATISTIC | CS OF MONTHLY MEAN | N DATA FOR WATER YEAR | RS 1916 - 2001, | BY WATER YEAR | (WY)# | | |--|--|---|---|--|---|------------------------------------| | MEAN 158 83.3
MAX 349 206
(WY) 2000 1947
MIN 62.6 18.1
(WY) 1952 1976 | 36.8 21.8
202 170
2000 1981
6.22 1.71
1956 1974 | 14.5 12.6
81.4 137
1977 1947
.48 .055
1972 1974 | 24.7 125
91.7 220
1947 1948
3.78 64.5
1954 1920 | 307 3
1964 19
134 1 | 227 188
364 374
975 1961
30 85.4
982 1968 | 184
302
1999
73.7
1978 | | SUMMARY STATISTICS FOR | 2000 CALENDAR YEA | R FOR 2001 WA | TER YEAR | WATER YEARS | 3 1916 - 2001# | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW | 46068.5
126
869 Jul 2
3.1 Mar 1
3.3 Mar 1
91380
302
79
7.4 | 4 4.7 | Sep 13
Apr 2
Apr 10
Oct 12
Oct 12 | 109
155
77.5
1830
a.00
.00
2950
8.14
a.00
78830
262
68
5.0 | 2000
1951
Aug 12 1961
Mar 4 1951
Mar 4 1951
Sep 25 1996
Sep 25 1996
Mar 4 1951 | | [#] See Period of Record; partial years used in monthly statistics a No flow at times during some winters b Not determined, see lowest daily discharge #### 15051010 SALMON CREEK NEAR JUNEAU LOCATION.--Lat $58^{\circ}19'57''$, long $134^{\circ}27'57''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 9, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, in Tongass National Forest, on left bank, about 0.3 mi upstream from mouth and 2.5 mi northwest of Juneau. DRAINAGE AREA. -- 9.69 mi². PERIOD OF RECORD.--October 1990 to current year. Daily discharge record previously collected 0.5 mi upstream at station number 15051008 "above canyon mouth" during water-years 1982-90. Drainage area, 9.50 mi². REVISED RECORDS.--WDR AK 93-1: 1991 (m). GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges which are poor. Flow regulated by Salmon Creek Reservoir 2.5 mi upstream. Diversions upstream for off-stream hydropower plant; outflow from the plant goes into Gastineau Channel and is not included in the discharge records. Diversions upstream into Twin Lakes via a pipeline are also not included in the discharge records. | | | DISCHAF | RGE, CUBIC | FEET PE | | WATER | YEAR OCTOBER
VALUES | 2000 | TO SEPTEMBE | ER 2001 | | | |--|-------------------------------------|--|---|--------------------------------------|--------------------------------------|--------------------------------------|---|---|--|--|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
17
16
15
48 | 22
20
37
25
21 | e16
16
15
17
163 | 17
21
81
38
23 | 73
42
33
27
23 | 18
14
13
11 | 9.4
9.2
9.5
11 | 15
18
42
37
26 | 65
60
61
67
57 | 45
48
43
53
60 | 35
31
27
36
33 | 36
86
46
43
79 | | 6
7
8
9
10 | 117
81
59
71
64 | 19
21
18
16
15 | 68
42
34
28
25 | 25
25
36
25
e19 | 19
18
16
15 | 13
17
13
21
34 | 9.9
9.7
9.9
9.8
9.3 | 19
18
34
52
27 | 52
53
55
61
64 | 100
110
83
66
68 | 26
24
23
19
17 | 68
69
57
42
34 | | 11
12
13
14
15 | 199
140
130
87
82 | 31
52
25
20
19 | 23
21
18
e16
e16 | e18
18
18
19
28 | e12
12
17
13
e11 | 45
28
20
16
15 | 9.5
10
10
9.5
9.3 | 24
24
27
24
25 | 48
45
55
50
49 | 55
49
79
65
53 | 16
16
16
17
16 | 29
36
173
102
62 | | 16
17
18
19
20 | 55
41
32
29
27 | 18
31
21
21
26 | e15
15
16
14
13 | 26
28
29
27
22 | e10
e9.5
e9.0
e8.4
e8.3 | 15
13
12
9.5
e8.5 | 9.3
10
12
10 | 26
26
20
17
17 | 51
54
55
59
74 | 46
41
38
37
42 | 15
18
25
28
33 | 75
60
52
50
64 | | 21
22
23
24
25 | 28
45
70
43
31 | 69
102
58
44
31 | 12
e11
e11
11
e10 | 21
22
30
24
21 | e8.3
e7.9
e7.7
e7.6
e7.5 | e7.6
e6.9
e6.3
e5.7
e5.9 | 11
12
14
16
15 | 24
41
42
31
29 | 71
58
56
50
43 | 43
69
63
53
56 | 28
21
16
17
16 | 47
51
43
40
42 | | 26
27
28
29
30
31 | 26
23
20
17
18
24 | 28
24
21
18
17 | e10
e10
10
11
19
21 | 20
38
34
24
20
40 | 17
55
27

 | 9.4
10
10
10
9.8
9.8 | 15
26
23
16
15 | 27
33
40
53
54
65 | 43
59
77
54
45 | 51
38
33
34
33
32 | 20
71
35
46
42
41 | 34
30
27
25
60 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1674
54.0
199
15
3320 | 890
29.7
102
15
1770 | 727
23.5
163
10
1440 | 837
27.0
81
17
1660 | 18.8
73
7.5
1050 | 438.4
14.1
45
5.7
870 | 360.3
12.0
26
9.2
715 | 957
30.9
65
15
1900 | 1691
56.4
77
43
3350 | 1686
54.4
110
32
3340 | 824
26.6
71
15
1630 | 1662
55.4
173
25
3300 | | MEAN
MAX
(WY)
MIN
(WY) | 64.1
131
1999
36.2
1997 | 30.0
76.9
1994
16.3
1991 | 27.3
69.5
2000
12.7
1997 | 18.3
33.5
1992
9.65
1997 | 22.4
45.0
1992
9.16
1999 | 17.3
39.0
1992
9.38
1997 | 25.0
38.6
1994
12.0
2001 | 2001,
50.1
71.3
1992
29.7
1996 | 56.1
82.9
1991
35.9
1995 | EAR (WY)# 46.1 69.0 1997 22.7 1993 | 36.4
66.5
1991
18.2
1994 | 63.3
108
1991
41.0
1997 | | SUMMARY | STATISTI | CS | FOR 2000 (| CALENDAR | YEAR | FOR | 2001 WATER Y | EAR | WATER Y | EARS 1991 | - 2001# | | | LOWEST ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL 50 PERCE | | AN
AN
N
MINIMUM
W
GE
C-FT)
DS | 12934 .!
35 .:
229
7 .:
7 .:
25660
71
27
10 | Jul : | 11 | 19 | 9 Oct 11
5.7 Mar 24
7.2 Mar 20
2 Dec 5
2.97 Dec 5 | | 38.
48.
29.
954
5.
6.
1930
a4.
27600
73
28 | 6
7
Oct
7 Mar
8 Mar
Sep | 1992
1995
20 1998
24 2001
4 1998
25 1996 | | See Period of Record From flood marks Estimated ## 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY LOCATION.--Lat 58°21′59", long 134°34′34", in SW¹/₄ SW¹/₄ SE¹/₄ sec. 30, T. 40 S., R. 66 (Juneau B-2 SW quad), Hydrologic Unit 19010301, City and Borough of Juneau on right bank at downstream side of footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3 mi east of Auke Bay Post Office. DRAINAGE AREA. -- 2.60 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1997 to current year. Prior to October 1996, published as miscellaneous site 15052482 Jordan Creek at Trout Street Bridge near Auke Bay, at site about 500 ft downstream at different datum. GAGE.--Water-stage recorder. Datum of gage is 19.80 ft above sea level, determined by levels survey. REMARKS.--Records fair except for estimated daily discharges, which are poor. EXTEREMES OUTSIDE PERIOD OF DAILY RECORD.--Flood of September 25, 1996, reached a stage of 4.34 ft, site and datum then in use, from floodmarks, discharge 140 ft³/s; no flow observed March 2, 1989, March 5, 1996, and January 15, 1997. | 1997. | • | | | | | | | | | | | | |--|--|---|---|---|---|---|---|---|---|---|---|---| | | | DISCHAF | RGE, CUBI | C FEET PER | | , WATER
LY MEAN | YEAR OCTOBE:
VALUES | R 2000 T | O SEPTEMBE | R 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |
1
2
3
4
5 | 5.8
5.5
5.4
5.0
8.2 | | 7.0
7.5
6.6
7.5
35 | 3.2
3.5
14
6.7
5.2 | 5.0 | 4.4
3.4
2.9
2.7
2.6 | e2.5
e2.4
e2.3
e2.7
e2.6 | 2.7
3.4
8.6
9.5
7.0 | 8.1
7.9
9.8
8.6
7.3 | 1.4
1.3
1.2
1.8
3.3 | 3.2
2.8
2.5
2.9
2.6 | 2.1
10
4.1
4.3
9.2 | | 6
7
8
9
10 | 28
18
26
14
14 | 5.8
6.6
5.6
5.1
4.9 | 18
12
11
8.9
7.9 | 6.9
6.4
6.8
5.5
4.5 | 5.0
4.7
4.3
3.8
e3.5 | 4.1
5.4
4.6
6.7 | e2.4
e2.3
e2.5
e2.3 | 5.3
5.1
6.2
10
7.9 | 6.5
5.9
5.4
5.3
5.3 | 8.2
5.3
9.5
5.5
4.3 | e2.3
e2.2
e1.9
e1.6
1.3 | 11
8.9
7.6
5.4
4.4 | | 11
12
13
14
15 | 27
22
33
21
20 | 7.1
10
6.7
5.9
5.8 | 7.1
6.2
e5.5
e5.2
e4.9 | 4.1
3.8
4.4
5.2
8.2 | e3.1
3.8
7.1
6.0
4.5 | 13
8.4
6.4
5.6
5.2 | 1.3
1.6
1.5
1.3 | 6.5
6.0
6.1
5.7
5.3 | 4.5
3.9
3.9
3.6
3.5 | 3.3
3.0
4.1
4.5
3.4 | 1.2
1.0
.89
.79 | 3.9
4.0
17
11
6.4 | | 16
17
18
19
20 | 15
12
10
10 | 5.5
10
7.9
7.8
7.3 | e4.6
e4.7
8.5
3.7 | 7.8
8.2
7.3
6.1 | e4.1
e3.2
e2.9
e2.6
e2.5 | 6.9
5.7
4.6
4.4
4.2 | 1.2
1.3
1.5
1.4 | 5.2
5.2
5.4
5.1 | 3.1
2.8
2.7
2.5
2.4 | 2.8
2.4
2.1
1.8 | .63
.57
.88
1.6 | 12
8.6
7.6
6.6 | | 21
22
23
24
25 | 10
10
10
9.7
8.3 | 10
17
19
15 | e2.5
e2.4
e2.3
e2.3 | 5.1
5.1
7.4
6.6
5.3 | e2.4
e2.3
e2.1
e2.0
3.0 | 3.5
3.2
e3.2
e3.0
e3.1 | 1.3
1.3
1.5
1.8 | 6.5
8.1
9.0
8.8
6.7 | 2.5
2.6
2.6
2.3
2.0 | 1.5
12
25
8.3
10 | .94
.77
.67
.64 | 8.4
9.6
9.5
7.9
7.0 | | 26
27
28
29
30
31 | 7.4
6.7
6.1
5.7
6.4
6.3 | 9.8
8.9
8.0
7.1
6.5 | 2.4
2.3
2.3
2.2
3.3
3.8 | 5.0
8.4
9.7
6.4
5.4
8.1 | 7.5
21
9.2
 | e3.0
e3.1
e3.4
e2.9
e2.7
e2.6 | 1.8
2.8
4.6
3.1
2.8 | 6.1
6.6
6.9
7.5
8.2
8.3 | 1.9
1.7
1.7
1.6
1.5 | 8.0
5.7
4.7
4.4
4.0
3.6 | .71
8.5
2.5
2.2
2.4
2.4 | 6.1
5.4
4.9
4.6
11 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 396.1
12.8
33
5.0
786
4.91
5.67 | 248.8
8.29
19
4.9
493
3.19
3.56 | 203.2
6.55
35
2.2
403
2.52
2.91 | 195.5
6.31
14
3.2
388
2.43
2.80 | 147.1
5.25
21
2.0
292
2.02
2.10 | 146.9
4.74
13
2.6
291
1.82
2.10 | 59.8
1.99
4.6
1.2
119
.77
.86 | 204.2
6.59
10
2.7
405
2.53
2.92 | 123.4
4.11
9.8
1.5
245
1.58
1.77 | 158.0
5.10
25
1.2
313
1.96
2.26 | 55.37
1.79
8.5
.57
110
.69 | 232.5
7.75
17
2.1
461
2.98
3.33 | | | | STATISTIC | S OF MONT | HLY MEAN I | DATA FOR | WATER Y | YEARS 1997 - | 2001, E | BY WATER Y | EAR (WY): | # | | | MEAN
MAX
(WY)
MIN
(WY) | 16.9
22.2
1999
11.1
1998 | 8.12
11.2
2000
4.21
1999 | 12.1
20.8
2000
2.67
1999 | 6.76
11.3
1999
3.52
1998 | 2.13
5.25
2001
.47
1999 | 3.07
4.74
2001
1.62
1998 | 5.99
12.1
1999
1.99
2001 | 8.05
13.7
1999
3.71
1998 | 5.11
10.2
1999
1.63
1998 | 5.83
8.49
2000
3.97
1998 | 6.24
9.65
2000
1.79
2001 | 13.6
18.7
1999
7.68
1997 | | SUMMARY | STATIST | | | | R | FOR 20 | 01 WATER YE | AR | WATER YE | ARS 1997 | - 2001# | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL ANNUAL | MEAN ANNUAL ANNUAL DAILY M DAILY ME SEVEN-DA 1 PEAK FL 1 PEAK ST CANEOUS L RUNOFF (RUNOFF (| MEAN EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) | 5590
2.90 | Sep 17
3 Mar 13
0 Mar 10 | | 2170
5
35
a
58
5
c
4310
2
31 | Dec 5
.57 Aug 17
.78 Aug 12
Jul 23
.90 Jul 23
.54 Aug 16 | | 7.9
9.8
5.9
129
b.0
.0
149
7.5
b.0
5780
3.0
41.6 | 7 7 7 5 Dec 0 Mar 0 Dec 9 Dec 0 Mar 7 7 | 2000
2001
28 1999
3 1999
3 1999
28 1999
28 1999
3 1999 | | | 10 PERC
50 PERC
90 PERC | CENT EXCE
CENT EXCE | INCHES)
EDS
EDS
EDS | 16
5.8
1.4 | | | 5 | | | 17
5.2
1.2 | | | | See Period of Record; partial year used in monthly statistics Aug. 17 and 25 Mar. 3 to Mar. 9 Aug. 16-17, and 25 Estimated # 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1997 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1999 to current year. INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval started on July 15, 1999. REMARKS.-- Records represent water temperature at the sensor within 0.5°C . EXTREMES FOR PERIOD OF RECORD. -- WATER TEMPERATURE: Maximum, 13.0°C, July 1, 2001; minimum, 0°C, many days during winters. EXTREMES FOR CURRENT PERIOD. -- WATER TEMPERATURE: Maximum, 13.0°C, July 1; minimum, 0°C, many days during winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | SAMPLE | | DIS- | | |------|------|---------|---------|---------|---------|---------| | | | | LOC- | | CHARGE, | | | | | | ATION, | | INST. | | | | | | CROSS | | CUBIC | TEMPER- | | | | STREAM | SECTION | GAGE | FEET | ATURE | | DATE | TIME | WIDTH | (FT FM | HEIGHT | PER | WATER | | | | (FT) | L BANK) | (FEET) | SECOND | (DEG C) | | | | (00004) | (00009) | (00065) | (00061) | (00010) | | MAR | | | | | | | | 07 | 1400 | 10.8 | 10.1 | 3.63 | 5.9 | 2.0 | | 07 | 1401 | 10.8 | 8.10 | 3.63 | 5.9 | 2.0 | | 07 | 1402 | 10.8 | 6.10 | 3.63 | 5.9 | 2.0 | | 07 | 1403 | 10.8 | 4.10 | 3.63 | 5.9 | 2.0 | | 07 | 1404 | 10.8 | 2.10 | 3.63 | 5.9 | 2.0 | WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 5.5
4.0
3.5
3.5
6.0 | 3.5
3.0
3.0
2.5
3.5 | 4.0
3.5
3.0
3.0
4.5 | 5.0
5.0
5.5
5.0
3.5 | 4.0
4.0
4.5
3.0
3.0 | 4.5
4.5
5.0
4.0
3.0 | 3.0
3.5
3.5
3.5
4.0 | 1.5
3.0
3.0
3.5
3.5 | 2.5
3.5
3.5
3.5
3.5 | 2.5
2.5
2.0
2.5
2.5 | 1.5
2.0
1.5
2.0 | 2.0
2.0
2.0
2.5
2.0 | | 6
7
8
9
10 | 7.0
7.5
7.0
6.5
7.0 | 6.0
7.0
6.0
6.5 | 6.5
7.5
6.5
6.5 | 4.0
4.5
4.5
4.0
3.0 | 3.5
4.0
4.0
3.0
2.5 | 3.5
4.5
4.5
3.5
3.0 | 4.5
4.0
4.0
2.0
2.0 | 4.0
4.0
2.0
1.0 | 4.0
4.0
3.0
1.5
2.0 | 2.5
3.5
3.5
3.0 | 1.5
2.5
3.0
1.5 | 2.0
3.0
3.0
2.5
1.0 | | 11
12
13
14
15 | 7.0
8.0
8.0
7.0 | 6.0
7.0
7.0
6.5 | 6.5
7.5
7.5
6.5 | 4.0
5.0
4.5
4.5
4.5 | 3.0
4.0
4.0
4.0
3.5 | 3.5
4.5
4.5
4.5
4.5 | 2.5
2.0
.5
.0 | 2.0
.5
.0
.0 | 2.0
1.0
.0
.0 | 1.5
1.0
1.5
2.0 | .5
.5
.5
1.5 | 1.0
.5
1.0
2.0
2.0 | | 16
17
18
19
20 | 7.0
6.5
6.0
6.5
6.0 | 6.5
5.5
5.0
6.0
5.5 | 6.5
6.0
5.5
6.0 | 4.0
4.5
4.0
4.0
5.0 | 3.0
4.0
3.5
3.5
4.0 | 3.5
4.0
3.5
4.0
4.5 | .0
.0
1.0
1.5 | .0
.0
.0
1.0 | .0
.0
.0
1.5 | 2.5
3.0
3.0
3.5
3.0 | 2.0
2.5
2.5
3.0
2.0 | 2.0
2.5
3.0
3.0 | | 21
22
23
24
25 | 6.0
6.5
6.5
6.5 | 5.5
5.5
6.0
6.0 | 5.5
6.0
6.5
6.0
5.5 | 5.5
5.5
5.0
4.5
4.5 | 5.0
5.0
4.5
4.5 | 5.5
5.5
4.5
4.5 | .5
.0
.0
.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | 3.0
3.5
3.5
2.5 | 2.0
3.0
2.0
2.0
2.0 | 3.0
3.5
3.0
2.0
2.5 | | 26
27
28
29
30
31 | 5.0
5.0
5.0
4.0
4.0
5.0 | 4.0
4.0
4.0
2.5
2.5 | 4.5
4.5
4.5
2.5
3.0
4.5 | 4.5
4.5
4.5
3.0
3.0 | 4.5
4.5
3.0
2.0
2.5 | 4.5
4.5
4.0
2.5
3.0 | 1.5
1.5
1.5
2.0
2.0 | 1.5
1.0
1.0
1.0
1.5 | 1.5
1.5
1.5
2.0
2.0 | 3.0
3.0
3.0
3.0
3.0
3.5 | 2.5
3.0
2.5
2.5
2.0
1.5 | 2.5
3.0
2.5
2.5
2.5
2.5 | | MONTH | 8.0 | 2.5 | 5.5 | 5.5 | 2.0 | 4.1 | 4.5 | .0 | 1.5 | 3.5 | .5 | 2.3 | | | | | | | | | | | | | | | # 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | E | FEBRUARY | | | MARCH | | | APRIL | | |
MAY | | | 1
2
3
4
5 | 3.5
3.5
3.5
2.5
2.5 | 3.0
3.0
2.5
2.0
1.5 | 3.5
3.5
3.0
2.5
2.0 | 1.5
1.5
2.0
1.5 | .5
.5
1.0
.0 | 1.0
1.0
1.5
1.0 |

 |

 |

 | 6.5
5.5
4.0
5.0 | 5.0
4.0
4.0
3.0
3.0 | 6.0
4.5
4.0
4.0 | | 6
7
8
9
10 | 1.5
1.5
1.5
1.0 | .5
1.0
.5
.0 | 1.0
1.0
1.5
.5 | 2.0
2.0
2.5
2.5
1.5 | 1.5
1.5
1.5
1.5 | 1.5
2.0
2.0
2.0
1.5 |

4.0 |

 |

 | 6.5
6.0
5.0
5.0
7.0 | 3.0
4.5
4.0
4.0
3.5 | 5.0
5.0
4.5
4.5
5.0 | | 11
12
13
14
15 | .0.0.0 | .0
.0
.0 | .0.0.0.0 | 2.0
3.0
3.0
3.5
3.5 | 1.5
2.0
2.0
2.5
2.5 | 2.0
2.5
2.5
3.0
3.0 | 4.0
4.5
5.0
5.5
5.0 | 2.0
3.0
2.5
3.5
2.0 | 3.0
3.5
3.5
4.5
3.5 | 7.0
7.5
7.0
8.0
8.5 | 5.0
4.0
5.5
4.0
6.0 | 6.0
6.0
6.5
6.0 | | 16
17
18
19
20 | .0.0.0 | .0
.0
.0 | .0.0.0.0 | 3.0
4.0
3.0
.5 | 1.5
2.5
.5
.0 | 2.5
3.0
2.0
.0 | 5.5
5.0
6.5
7.5
7.0 | 2.0
3.0
4.0
4.0
3.5 | 3.5
4.0
5.0
5.5
5.0 | 9.0
7.5
8.5
8.0
7.5 | 5.5
5.5
5.0
5.0 | 7.0
6.5
7.0
6.5
6.5 | | 21
22
23
24
25 | . 0
. 0
. 0
. 0 | .0
.0
.0 | .0.0.0.0 | .0
.0
.0 | .0 | .0
.0
.0 | 7.0
6.0
6.5
5.5
6.5 | 4.0
4.5
4.5
5.0
4.0 | 5.5
5.5
5.5
5.0
5.5 | 7.5
6.5
6.0
8.5
8.5 | 5.5
5.5
5.0
5.0 | 6.5
6.0
5.5
6.5
7.0 | | 26
27
28
29
30
31 | .0
.0
1.0
 | .0 | .0
.0
.5
 | |

 |

 | 6.0
6.5
6.5
6.0
7.5 | 5.0
5.0
4.0
4.0
4.5 | 5.5
5.5
5.0
5.0
6.0 | 9.5
8.5
9.0
8.0
8.0 | 4.0
6.5
6.0
6.5
6.0 | 6.5
7.5
7.5
7.0
7.0 | | MONTH | 3.5 | .0 | .7 | | | | | | | 9.5 | 3.0 | 6.0 | WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|------------------------------|--------------------------|----------------------------|--------------|----------|----------| | | | JUNE | | | JULY | | į | AUGUST | | S | SEPTEMBE | R | | 1
2
3
4
5 | 10.0
9.0
7.0
8.5
8.0 | 6.5
7.0
6.5
6.0 | 8.0
7.5
7.0
7.5
7.5 | 13.0
12.0
12.0
11.5
9.5 | 10.0
10.0
8.5
9.5
9.0 | 11.0
11.0
10.5
10.5
9.5 | 10.0
11.0
11.0
10.0 | 8.0
8.5
9.0
9.0 | 9.0
10.0
10.0
9.5 |

 |

 |

 | | 6
7
8
9
10 | 9.0
9.0
10.0
10.0
9.0 | 6.5
7.0
6.0
7.5
7.5 | 8.0
8.0
8.0
8.5
8.0 | 9.0
9.0
9.5
9.5 | 8.5
8.5
8.0
8.0 | 9.0
8.5
8.5
8.5 |

 | | |

 | |

 | | 11
12
13
14
15 | 8.0
8.0
8.0
9.0 | 7.0
7.0
7.0
6.5
7.5 | 7.5
7.5
7.5
8.0
8.0 | 9.0
9.0
9.0
10.0 | 8.0
8.0
8.0
8.0 | 8.5
8.5
8.5
9.0
9.0 |

 | | |

 | | | | 16
17
18
19
20 | 10.5
10.0
11.0
10.5
10.5 | 7.0
8.5
8.0
8.5
8.5 | 9.0
9.0
9.5
9.5
9.5 | 10.0
10.0
10.0
11.0
12.0 | 8.5
8.5
8.5
8.0
9.0 | 9.5
9.5
9.5
9.5
10.5 |

 |

 |

 |

 |

 | | | 21
22
23
24
25 | 10.5
10.0
9.0
10.0
11.0 | 9.0
8.5
8.0
7.5
8.5 | 9.5
9.0
8.5
9.0
10.0 | 12.0
11.5
11.0
9.5
9.0 | 10.0
10.5
9.5
9.0
8.5 | 11.0
11.0
10.5
9.0
9.0 |

 |

 |

 |

 |

 |

 | | 26
27
28
29
30
31 | 11.5
12.5
12.0
10.5
12.0 | 8.0
9.0
10.0
9.0
9.0 | 10.0
11.0
11.0
10.0
10.5 | 9.0
9.5
9.5
9.0
9.0 | 8.5
8.0
8.0
8.0
8.0 | 8.5
8.5
8.5
8.5
8.5 |

 | |

 |

 |

 |

 | | MONTH | 12.5 | 6.0 | 8.7 | 13.0 | 8.0 | 9.3 | | | | | | | ## 15052495 NUGGET CREEK ABOVE DIVERSION NEAR AUKE BAY LOCATION.--Lat $58^{\circ}25'25''$, long $134^{\circ}31'25''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, on left bank, 1,200 ft upstream from old diversion dam, 3,000 ft upstream from mouth at Mendenhall Lake and 5.2 mi northeast of Auke Bay. DRAINAGE AREA.-- 15.8 mi². PERIOD OF RECORD. -- March 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 590 ft above sea level, from topographic map. ${\tt REMARKS.--Records\ fair\ except\ estimated\ daily\ discharges,\ which\ are\ poor.}$ | | | DISCHAR | GE, CUBIC | FEET PER | | WATER Y
Y MEAN V | EAR OCTOBER
ALUES | 2000 5 | TO SEPTEMBE | R 2001 | | | |---|---|--|---|---|--|---|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 122
99
88
76
319 | 55
78
273
116
83 | 80
79
71
70
245 | 47
50
146
83
63 | 86
63
55
48
42 | 31
28
27
27
26 | 11
12
12
12
12 | 36
38
55
54
40 | 346
313
336
310
272 | 361
354
314
427
609 | 343
344
329
415
413 | 270
474
275
289
518 | | 6
7
8
9
10 | 643
590
391
339
276 | 71
70
59
51
47 | 134
93
77
66
64 | 60
62
78
60
51 | 39
39
35
34
29 | 28
30
28
30
39 | 12
12
12
13
12 | 33
34
40
56
42 | 276
295
328
364
380 | 657
726
590
513
471 | 288
244
236
219
198 | 520
474
481
266
185 | | 11
12
13
14
15 | 453
810
665
402
276 | 70
93
60
49
48 | 59
54
51
e50
49 | 46
44
42
41
49 | 32
34
36
32
31 | 61
37
25
22
21 | 13
13
13
13 | 46
51
78
72
79 | 307
321
372
321
341 | 372
329
447
397
345 | 187
214
261
285
303 | 147
219
925
734
400 | | 16
17
18
19
20 | 195
148
119
109 | 49
78
51
53
89 | 46
45
45
42
40 | 48
52
60
55
47 | 31
30
30
29
28 | 20
19
17
16
e15 | 14
17
22
23
24 | 84
85
80
75
74 | 343
355
366
406
582 | 324
286
299
383
458 | 249
227
325
497
398 | 467
423
327
261
289 | | 21
22
23
24
25 | 99
140
197
143
106 | 265
406
210
146
114 | 38
37
36
35
35 | 44
44
54
45
41 | 28
27
26
26
26 | 14
14
14
14 | 27
30
33
33
32 | 93
160
165
116
90 | 554
452
432
397
325 | 467
763
778
662
727 | 365
301
234
227
206 | 224
305
230
190
186 | | 26
27
28
29
30
31 | 86
72
63
55
57
62 | 100
90
80
68
73 | 34
33
33
33
51
59 | 40
57
52
42
39
61 | 31
61
36
 | 14
13
12
12
12
12 | 34
53
50
41
37 | 90
130
173
218
224
340 | 318
506
612
437
365 | 676
439
330
421
474
396 | 304
769
382
391
358
318 | 144
130
112
104
237 | | TOTAL
MEAN
MAX
MIN
MED
AC-FT
CFSM
IN. | 7302
236
810
55
140
14480
14.9
17.19 | 3095
103
406
47
76
6140
6.53
7.29 | 1884
60.8
245
33
50
3740
3.85
4.44 | 1703
54.9
146
39
50
3380
3.48
4.01 | 1044
37.3
86
26
32
2070
2.36
2.46 | 692
22.3
61
12
20
1370
1.41
1.63 | 655
21.8
53
11
14
1300
1.38
1.54 | 2951
95.2
340
33
78
5850
6.02
6.95 | 11332
378
612
272
350
22480
23.9
26.68 | 14795
477
778
286
439
29350
30.2
34.83 | 9830
317
769
187
303
19500
20.1
23.14 | 9806
327
925
104
272
19450
20.7
23.09 | | | | STATISTICS | OF MONTE | HLY MEAN 1 | DATA FOR | WATER Y | EARS 2000 - | 2001, | BY WATER Y | EAR (WY)‡ | ‡ | | | MEAN
MAX
(WY)
MIN
(WY) | 236
236
2001
236
2001 | 103
103
2001
103
2001 | 60.8
60.8
2001
60.8
2001 | 54.9
54.9
2001
54.9
2001 | 37.3
37.3
2001
37.3
2001 |
22.3
22.3
2001
22.3
2001 | 24.4
26.9
2000
21.8
2001 | 120
146
2000
95.2
2001 | 427
476
2000
378
2001 | 532
586
2000
477
2001 | 377
436
2000
317
2001 | 382
438
2000
327
2001 | | SUMMARY | STATISTI | CS | | FOR 2001 | WATER Y | EAR | | | WATER Y | EARS 2000 | - 2001# | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 18
1293
1 | 278
225
11
12
320
24.42
9.8 | Oct 12 | | | 178
178
178
1380
11
12
2220
24.8
9.8
129200
11
153.5
548
146
23 | Aug
Apr
Mar
Sep
36 Sep
3 Apr | 2001
2001
22 2000
1 2001
28 2001
4 2000
4 2000
2 2001 | | [#] See period of Record; partial years used in monthly statistics e Estimated #### 15052500 MENDENHALL RIVER NEAR AUKE BAY LOCATION.--Lat $58^{\circ}25'47''$, long $134^{\circ}34'22''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 6, T. 40 S., R. 66 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301, at the north end of Mendenhall Lake, 1.2 mi north of Mendenhall Lake Outlet and 4.1 mi northeast of Auke Bay, and 7 mi upstream from mouth at Fritz Cove. DRAINAGE AREA. -- 85.1 mi². Date Jul 23 Aug 29 PERIOD OF RECORD.--May 1965 to October 1994, annual maximum, water years 1995-96, October 1996 to current year. Prior to April 15, 1983, at site 1.3 mi southeast at east end of Mendenhall Lake, same datum. REVISED RECORDS. -- WDR AK-95-1: 1981(M) Time 0445 GAGE. -- Water-stage recorder. Elevation of gage is 60 ft above sea level, from topographic map. (ft) 7.02 6.62 Discharge Gage Height (ft^3/s) 5750 5000 REMARKS.--Records fair except estimated daily discharges, which are poor. Streamflow is augmented and diurnal fluctuations caused by melting from Mendenhall Glacier, which covers two-thirds of the basin. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--During late summer 1961, flood flows of 27,000 $\mathrm{ft^3/s}$ were estimated at the mouth of the Mendenhall River. For discussion of this flood, see USGS Hydrologic Atlas HA-259. Date Sep 15 Time 0315 Discharge (ft^3/s) *6380 Gage Height (ft) *7.33 EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,600~{\rm ft}^3/{\rm s}$ and maximum (*):. | | 5 | | | | | | | | | | | | |----------|--------------|------------|--------------|------------|-------------|------------|----------------------|------------|--------------|----------------|--------------|--------------| DISCHA | RGE, CUBI | C FEET PI | | WATER Y | YEAR OCTOB
VALUES | ER 2000 | TO SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1780 | 370 | 324 | 142 | 193 | 102 | 46 | 140 | 1010 | e2850 | 3230 | 2880 | | 2 | 1260 | 365 | e303 | 150 | 195 | 90 | 42 | 144 | 1050 | e2600 | 2970 | 3240 | | 3 | 962 | 516 | e280 | 250 | 191 | 80 | 40 | 176 | 1150 | e2400 | 3170 | 2900 | | 4
5 | 797
874 | 632
598 | e300
e500 | 312
300 | 176
159 | 71
64 | 43
46 | 209
202 | 1290
1390 | e2800
e3600 | 3230
3270 | 2620
3000 | | 5 | 0/4 | 390 | 6300 | 300 | 159 | 04 | 40 | 202 | 1390 | 63000 | 3270 | 3000 | | 6 | 1800 | 569 | e465 | 295 | 141 | 61 | 45 | 179 | 1280 | e3700 | 2890 | 4090 | | 7 | 3300 | 597 | e395 | 290 | 136 | 68 | 44 | 166 | 1260 | e4200 | 2650 | 3580 | | 8 | 3290 | 583 | e315 | 311 | 126 | 71 | 44 | 176 | 1270 | e3400 | 2570 | 3860 | | 9
10 | 2990
2630 | 496
424 | e272
e250 | 294
266 | 115
e103 | 76
93 | 48
48 | 220
223 | 1390
1480 | 3170
3060 | 2480
2390 | 2550
1950 | | 10 | 2030 | 121 | 6230 | 200 | 6103 | 93 | 40 | 223 | 1400 | 3000 | 2390 | 1930 | | 11 | 2270 | 416 | e220 | 245 | e95 | 140 | 48 | 214 | 1360 | 2510 | 2260 | 1850 | | 12 | 2500 | 472 | e205 | 228 | e87 | 164 | 49 | 216 | 1390 | 2250 | 2300 | 1750 | | 13
14 | 3510
3280 | 427
378 | e190
161 | 215
195 | 99
94 | 149
130 | 49
48 | 238
254 | 1530
1570 | 2420
2560 | 2720
3130 | 3250
6030 | | 15 | 2310 | 365 | 159 | 191 | 82 | 116 | 47 | 276 | 1680 | 2430 | 3170 | 5640 | | | | | | | | | | | | | | | | 16 | 1660 | 347 | 149 | 187 | 73 | 118 | 48 | 293 | 1800 | 2430 | 2890 | 4710 | | 17 | 1380 | 405 | 140 | 172 | 66 | 109 | 50 | 308 | 1860 | 2360 | 2740 | 4120 | | 18
19 | 1060
909 | 357
333 | 141
137 | 169
157 | 60
55 | 100
88 | 57
64 | 310
309 | 1860
1960 | 2380
2610 | 2790
3170 | 3460
2610 | | 20 | 837 | 338 | 128 | 137 | 51 | 77 | 71 | 308 | 2130 | 3190 | 3300 | 2480 | | | | | | | | | | | | | | | | 21 | 804 | 483 | 121 | 119 | 48 | 67 | 81 | 365 | 2440 | 3540 | 3430 | 1880 | | 22 | 788 | 777 | 114 | 110 | 46 | 60 | 88 | 437 | 2600 | 4400 | 3260 | 2050 | | 23
24 | 934
983 | 703
690 | 110
105 | 127
131 | 44
41 | 55
52 | 96
104 | 536
573 | 2970
2630 | 5410
4380 | 2830
2560 | 2360
2090 | | 25 | 963
876 | 578 | 103 | 120 | 39 | 50 | 104 | 513 | 2220 | 4440 | 2460 | 1790 | | | | | | | | | | | | | | | | 26
27 | 719 | 529 | 100
97 | 113 | 43
82 | 49
49 | 110 | 469 | 2130 | 4110 | 2810 | 1450 | | 28 | 574
466 | 368
247 | 96 | 128
157 | 82
105 | 50 | 126
154 | 513
607 | 2350
3020 | 3260
2930 | 4330
4840 | 1160
1080 | | 29 | 395 | 289 | 94 | 146 | | 50 | 153 | 711 | e3200 | 3020 | 4770 | 1030 | | 30 | 364 | 319 | 106 | 132 | | 49 | 146 | 768 | e3000 | 3470 | 4020 | 1280 | | 31 | 369 | | 133 | 138 | | 49 | | 863 | | 3700 | 3470 | | | TOTAL | 46671 | 13971 | 6212 | 5927 | 2745 | 2547 | 2143 | 10916 | 56270 | 99580 | 96100 | 82740 | | MEAN | 1506 | 466 | 200 | 191 | 98.0 | 82.2 | 71.4 | 352 | 1876 | 3212 | 3100 | 2758 | | MAX | 3510 | 777 | 500 | 312 | 195 | 164 | 154 | 863 | 3200 | 5410 | 4840 | 6030 | | MIN | 364 | 247 | 94 | 110 | 39 | 49 | 40 | 140 | 1010 | 2250 | 2260 | 1030 | | AC-FT | 92570 | 27710 | 12320 | 11760 | 5440 | 5050 | 4250 | 21650 | 111600 | 197500 | 190600 | 164100 | | CFSM | 17.7 | 5.47 | 2.35 | 2.25 | 1.15 | .97 | .84 | 4.14 | 22.0 | 37.7 | 36.4 | 32.4 | | IN. | 20.40 | 6.11 | 2.72 | 2.59 | 1.20 | 1.11 | .94 | 4.77 | 24.60 | 43.53 | 42.01 | 36.17 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER Y | EARS 1965 | - 2001, | BY WATER | YEAR (WY |) # | | | MEAN | 1350 | 351 | 157 | 113 | 90.9 | 93.1 | 140 | 648 | 1870 | 3005 | 3321 | 2683 | | MAX | 2649 | 920 | 526 | 600 | 254 | 379 | 313 | 1227 | 2819 | 3835 | 4701 | 4100 | | (WY) | 1987 | 1977 | 2000 | 1981 | 1977 | 1992 | 1994 | 1993 | 1969 | 1979 | 1990 | 1991 | | MIN | 532 | 110 | 40.0 | 30.8 | 21.5 | 22.3 | 56.9 | 268 | 732 | 1939 | 2025 | 1380 | | (WY) | 1969 | 1986 | 1984 | 1969 | 1969 | 1974 | 1967 | 1985 | 1985 | 1985 | 1985 | 1984 | [#] See Period of Record; partial years used in monthly summary statistics and break in record e Estimated # 15052500 MENDENHALL RIVER NEAR AUKE BAY--Continued | SUMMARY STATISTICS | FOR 2000 CA | LENDAR YEAR | FOR 2001 W | ATER | YEAR | WATER YEARS | 1965 | - 2 | 2001# | |--------------------------|-------------|-------------|------------|------|------|-------------|------|-----|-------| | ANNUAL TOTAL | 446110 | | 425822 | | | | | | | | ANNUAL MEAN | 1219 | | 1167 | | | 1164 | | | | | HIGHEST ANNUAL MEAN | | | | | | 1547 | | | 1990 | | LOWEST ANNUAL MEAN | | | | | | 758 | | | 1985 | | HIGHEST DAILY MEAN | 7630 | Aug 22 | 6030 | Sep | 14 | 13700 | Sep | 8 | 1981 | | LOWEST DAILY MEAN | 39 | Mar 13 | 39 | Feb | 25 | 19 | Mar | 1 | 1969 | | ANNUAL SEVEN-DAY MINIMUM | 41 | Mar 10 | 43 | Apr | 2 | 19 | Mar | 5 | 1974 | | MAXIMUM PEAK FLOW | | | 6380 | Sep | 15 | 16000 | Sep | 11 | 1995 | | MAXIMUM PEAK STAGE | | | 7.33 | Sep | 15 | all.18 | Sep | 11 | 1995 | | INSTANTANEOUS LOW FLOW | | | | Apr | 3 | b19 | Mar | 1 | 1969 | | ANNUAL RUNOFF (AC-FT) | 884900 | | 844600 | | | 843000 | | | | | ANNUAL RUNOFF (CFSM) | 14.3 | | 13.7 | | | 13.7 | | | | | ANNUAL RUNOFF (INCHES) | 195.01 | | 186.14 | | | 185.79 | | | | | 10 PERCENT EXCEEDS | 3190 | | 3230 | | | 3210 | | | | | 50 PERCENT EXCEEDS | 474 | | 378 | | | 401 | | | | | 90 PERCENT EXCEEDS | 75 | | 60 | | | 48 | | | | [#] See Period of Record; partial years used in monthly summary statistics and break in record a From floodmarks b Mar. 1-3, 1969, and Mar. 7-11, 1974 ## SOUTHEAST ALASKA #### 15052800 MONTANA CREEK NEAR AUKE BAY LOCATION.--Lat $58^{\circ}23'53''$, long $134^{\circ}36'34''$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 13, T. 40 S., R. 65 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301,On right bank 30 ft upstream from bridge on Mendenhall Loop Road, 1.2 mi upstream from mouth at Mendenhall River, 1.5 mi northeast of Auke Lake, and 3.9 mi downstream from McGinnis Creek. DRAINAGE AREA.--14.1 mi². PERIOD OF RECORD.-- August 1965 to September 1975, July 1983 to September 1987, Annual Maximum 1996 to 2000, November 2000 to September 2001. REVISED RECORDS.--WDR-99-1: 1996-98 (M). GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level, from topographic map. REMARKS.--Records fair, except estimated daily discharges, which are poor. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER | 2000 | TO SEPTEMBE | R 2001 | | | |--|------------------------------------|---------------------------------|---|---
---|---|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |

 | e68
e62
e95
e60
e68 | 53
59
53
59
868 | 32
40
124
62
48 | 152
62
70
48
38 | 81
58
46
38
28 | 18
17
16
21
25 | 42
42
135
154
79 | 164
142
198
152
131 | 105
103
91
115
210 | 108
103
97
117
137 | 121
230
118
128
376 | | 6
7
8
9
10 |

 | e60
e70
65
54
49 | 262
134
108
91
83 | 75
58
75
54
37 | 32
31
28
e25
e22 | 26
43
37
56
149 | 22
20
21
29
25 | 54
44
48
156
69 | 120
126
122
134
146 | 292
452
329
227
182 | 94
77
69
56
61 | 304
268
203
137
100 | | 11
12
13
14
15 | | 157
163
73
59
67 | 77
e69
e56
e48
e44 | 31
28
31
43
87 | e21
e20
e20
e19
e19 | 236
94
55
41
36 | 22
26
25
23
24 | 68
68
82
64
66 | 114
111
124
114
117 | 123
106
170
154
123 | 58
58
63
65
66 | 84
131
1300
481
175 | | 16
17
18
19
20 |

 | 65
139
77
70
68 | e41
e39
e40
e42
e40 | 76
67
65
50
39 | e19
e18
e18
e18
e18 | 50
44
36
e24
e19 | 26
31
52
42
39 | e60
e57
e56
e57
e54 | 118
122
119
130
162 | 108
93
87
96
115 | 61
58
89
77
84 | 215
164
175
140
242 | | 21
22
23
24
25 |

 | 89
134
139
107
76 | e37
e34
e28
e24
e23 | 34
38
64
48
37 | e17
e17
e16
e16
e36 | e16
e14
e14
e13
e12 | 40
40
44
40
40 | e60
e75
e130
e105
77 | 171
137
126
118
101 | 116
400
504
221
302 | 63
56
50
50 | 120
165
158
110
90 | | 26
27
28
29
30
31 |

 | 66
64
60
51
47 | e22
e22
22
21
44
51 | 37
69
86
47
36
81 | 56
194
120
 | 25
20
19
20
19
20 | 40
75
82
47
40 | 67
79
95
116
132
151 | 96
116
143
110
94 | 246
138
109
141
140
118 | 84
295
107
252
203
248 | 77
69
63
58
196 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | | 80.7
163
47 | 2594
83.7
868
21
5150
5.93
6.84 | 1699
54.8
124
28
3370
3.89
4.48 | 1170
41.8
194
16
2320
2.96
3.09 | 1389
44.8
236
12
2760
3.18
3.66 | 1012
33.7
82
16
2010
2.39
2.67 | 2542
82.0
156
42
5040
5.82
6.71 | 3878
129
198
94
7690
9.17
10.23 | 5716
184
504
87
11340
13.1
15.08 | 3056
98.6
295
50
6060
6.99
8.06 | 6198
207
1300
58
12290
14.7
16.35 | | | | STATISTICS | OF MONTE | HLY MEAN | DATA FOR | WATER | YEARS 1965 - | 2001, | BY WATER YE | EAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 158
285
1975
89.7
1969 | 21.4 | 46.2
112
1986
15.9
1972 | 43.2
186
1985
5.02
1974 | 39.1
121
1971
7.52
1972 | 50.2
195
1972
9.64
1974 | 54.3
88.5
1969
33.7
2001 | 132
185
1972
72.6
1984 | 164
207
1967
71.1
1971 | 148
213
1975
52.5
1971 | 160
246
1972
69.2
1968 | 166
263
1987
70.9
1984 | | SUMMARY | STATISTI | cs | FC | OR 2001 W | ATER YEAR | | WATER YE | ARS 19 | 65 - 2001# | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOMEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 1300
12
1670
14.7 | Sep 13
Mar 25
Sep 13
5 Sep 13 | | 104
131
80.8
1350
3.4
3.5
3800
17.36
3.2
75660
7.41
100.64
224
77 | Fe
Ja
Oc
Oc
Fe | 1975
1971
p 29 1970
b 8 1972
n 13 1974
t 20 1998
t 20 1998
b 8 1972 | | | | See Period of Record, partial years used in monthly statistics Estimated ## 15053200 DUCK CREEK BELOW NANCY STREET NEAR AUKE BAY LOCATION.--Lat 58°22'31", long 134°34'38", in NW\(\) SW\(\) A E\(\) Sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW), Hydrologic Unit 19010301, City and Borough of Juneau, on right bank, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, and 1.44 mi upstream from mouth. DRAINAGE AREA. -- 1.30 mi². PERIOD OF RECORD. -- December 1993 to current year. GAGE.--Water-stage recorder. Datum of gage is 21.87 ft above sea level, determined by levels survey. REMARKS.--Records fair except for estimated daily discharges, which are poor. | | | DISCH | ARGE, CUB | IC FEET P | | D, WATER | YEAR OCTOBER | R 2000 | TO SEPTEME | BER 2001 | | | |---|--|--------------------------------------|--|--|--|---|--------------------------------------|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.8
8.1
8.8
8.1 | 4.9
4.6
6.8
4.4
4.9 | 5.0
5.2
5.0
5.7
24 | 2.7
3.0
7.2
5.1
4.5 | 6.1
5.0
5.0
4.4
3.9 | 5.4
3.6
2.7
2.0
1.7 | | 2.1
2.5
5.3
6.4
5.2 | 2.7
2.6
3.0
2.9
2.7 | .92
.95
.89
.91 | 2.7
2.4
2.2
2.6
2.4 | 3.1
4.6
3.9
4.0
4.5 | | 6
7
8
9
10 | 21
21
23
19
18 | 4.6
5.1
4.7
4.3
4.0 | 16
10
8.1
7.1
6.5 | 5.4
5.0
5.1
4.5
3.9 | 3.5
3.4
3.2
2.9
2.6 | 2.2
2.7
2.7
3.6
7.0 | | 4.5
4.2
5.1
8.0
6.1 | 2.5
2.3
2.2
2.1
2.0 | 1.5
1.6
2.4
2.3
2.0 | 2.2
2.2
2.1
1.9 | 5.1
5.2
4.9
4.2
3.6 | | 11
12
13
14
15 | 23
22
24
18
14 | 7.1
8.9
6.4
5.3
5.3 | 5.2
4.8
4.0
2.9
2.5 | 3.5
3.2
3.4
3.9
6.7 | 2.2
e2.1
e2.1
e2.1
e2.0 | 9.2
7.0
5.4
4.6
4.1 | 1.2
1.1 | 5.1
4.6
4.4
3.7
3.4 | 1.9
1.8
1.7
1.7 | 1.8
1.6
2.0
2.0 | 1.9
1.8
1.8
1.8 | 3.2
3.1
5.6
6.4
5.3 | | 16
17
18
19
20 | 8.8
7.4
6.3
6.3 | 4.8
9.2
6.9
6.2
5.6 | 2.4
2.3
3.9
3.0
2.5 | 5.3 | e2.0
e2.0
e1.9
e1.9 | 5.1
4.7
4.0
3.4
2.9 | .98
1.1 | 3.2
3.1
3.1
3.0
2.9 | 1.6
1.5
1.4
1.4 | 3.6
2.8
1.9
1.7 | 1.7
1.7
1.8
2.6
2.4 | 6.5
5.9
5.4
5.1
7.2 | | 21
22
23
24
25 | 6.9
7.9
7.9
7.1
5.7 | 6.3
9.1
11
9.9
7.8 | 2.2
2.0
2.1
2.1
2.1 | 3.8
3.7
4.9
4.9 | 1.9
1.8
1.8
1.7 | 2.4
2.0
1.8
e1.7
e1.7 | 1.2
1.2
1.3
1.5 | 3.2
3.8
4.5
4.4
3.6 | 1.2
1.4
1.3
1.2 | 1.8
6.4
9.8
5.2
5.1 | 2.1
2.0
1.9
1.8
1.8 | 6.1
5.8
5.8
5.3
5.0 | | 26
27
28
29
30
31 | 4.9
4.3
3.7
3.1
4.2
4.9 | 6.8
6.2
5.7
5.2
4.8 | 2.1
2.1
2.1
2.0
3.1
3.2 | 3.9
5.9
6.8
5.2
4.5
5.3 | 3.6
16
8.4
 | e1.6
e1.5
1.9
1.9
1.7 | 2.4 | 3.3
3.1
2.9
2.8
2.9
2.9 | 1.1
1.0
.97
.96
.95 | 4.5
3.9
3.5
3.3
3.1
2.9 | 1.8
4.3
3.2
3.2
3.2
3.3 | 4.5
4.1
3.9
3.7
6.4 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | | 6.23 | 151.2
4.88 | 146.3
4.72
7.2
2.7
290
3.63
4.19 | 97.1
3.47
16
1.7
193
2.67
2.78 | 103.9
3.35
9.2
1.5
206
2.58
2.97 | 1.45
2.4
.92
86
1.11 | 123.3
3.98
8.0
2.1
245
3.06
3.53 | 52.28
1.74
3.0
.95
104
1.34
1.50 | 84.87
2.74
9.8
.89
168
2.11
2.43 | 70.5
2.27
4.3
1.7
140
1.75
2.02 | 147.4
4.91
7.2
3.1
292
3.78
4.22 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FO | OR WATER | YEARS 1994 - | 2001, | BY WATER | YEAR (WY)# | <u> </u> | | | MEAN
MAX
(WY)
MIN
(WY) | 9.48
18.1
2000
5.29
1998 | 4.91
10.3
2000
2.36
1996 | 5.51
12.2
2000
1.95
1996 | 2.66
4.85
2000
.85
1997 |
2.18
3.55
1997
.79
1999 | 2.42
5.08
1994
.94
1995 | 3.09
6.16
1999
1.45
2001 | 3.04
4.97
1999
1.60
1996 | 2.24
3.47
1999
1.20
1998 | 2.84
4.23
1997
1.75
1995 | 3.72
6.13
2000
1.31
1994 | 7.95
14.5
2000
3.81
1997 | | SUMMARY | STATIST | ics | FOR 2000 | CALENDAR | YEAR | FOR 2001 | l WATER YEAR | | WATER YE. | ARS 1994 - | 2001# | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | 30
3890
4
56
12 | .35
Sep
.19 Mar
.26 Mar | 15 | 308 | 4.25 24 Oct 13 .89 Jul 3 .94 Jun 28 34 Dec 5 5.96 Dec 5 b.80 Jul 3 80 3.27 444.39 7.1 | 3 5 5 5 | 6
3
68
80
6
a7
c
3030
3
433
8 | .19 Mar
.26 Mar
Dec
.80 Dec
.59 Sep
.18 Mar
.21
.67 | 2000
1995
28 1999
15 2000
10 2000
28 1999
28 1999
25 1996
8 1999 | | | | | | | | .7 | | | 3.2
1.5 | | | .7 | | | See period of Record; partial years used in monthly summary statistics Backwater caused by culvert, which was removed Apr. 1998 Jul. 3 and 4 Mar. 8, 1999 and Mar. 14 and 15, 2000 Estimated ## 15055500 ANTLER RIVER BELOW ANTLER LAKE NEAR AUKE BAY LOCATION.--Lat $58^{\circ}51'07''$, long $134^{\circ}42'31''$, in $NE^{1}_{/4}$ $SE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 10, T. 35 S., R. 64 E. (Juneau D-3 quad), Hydrologic Unit 19010301, in Tongass National Forest, 200 ft below outlet of Antler Lake, 10 mi northeast of Berners Bay, and located 32 mi northwest of Auke Bay. DRAINAGE AREA.--26.0 \mbox{mi}^{2} , approximately. PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records fair, | | | DISCHA | RGE, CUBIC | FEET PER | | , WATER
LY MEAN | YEAR OCTOBER
VALUES | 2000 | TO SEPTEMBER | 2001 | | | |--|---|---|--|--|---|--|--|---|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 168
137
117
100
108 | 72
69
84
86
80 | 65
66
61
57
76 | 28
29
61
75
68 | 72
72
69
63
56 | 46
42
37
33
30 | 18
18
17
18 | 53
52
60
71
71 | 222
258
279
270
258 | 368
365
352
352
324 | 233
240
255
255
255 | 219
229
217
195
199 | | 6
7
8
9
10 | 283
406
416
341
270 | 73
69
64
59
54 | 97
90
79
69
61 | 65
66
81
79
70 | 50
46
41
37
33 | 29
32
31
30
30 | 18
17
17
17 | 66
61
60
63
62 | 245
256
269
291
333 | 309
309
322
306
297 | 239
219
207
202
197 | 217
221
251
226
191 | | 11
12
13
14
15 | 255
304
476
380
380 | 54
64
65
61
58 | 55
49
44
39
36 | 61
54
49
45
45 | 30
28
29
28
26 | 34
41
40
38
36 | 17
17
16
16 | 59
60
68
75
80 | 333
349
354
338
305 | 278
256
241
238
246 | 192
191
206
228
237 | 163
152
377
704
569 | | 16
17
18
19
20 | 305
233
183
154
133 | 55
58
56
52
51 | 33
31
32
32
30 | 44
44
49
49 | 25
23
21
20
19 | 35
33
31
29
26 | 16
16
18
19
21 | 87
92
91
90
88 | 291
320
337
360
382 | 267
273
280
305
359 | 226
212
201
216
227 | 409
343
322
261
213 | | 21
22
23
24
25 | 121
123
147
144
126 | 83
162
172
151
128 | 28
27
25
24
23 | 44
43
47
46
43 | 18
18
17
17 | 25
23
22
20
19 | 24
26
29
33
36 | 88
97
118
120
111 | 432
425
386
372
343 | 389
454
501
410
366 | 220
205
185
166
154 | 177
191
184
171
179 | | 26
27
28
29
30
31 | 109
94
83
73
67
70 | 111
96
83
72
64 | 23
22
21
21
22
27 | 39
45
53
50
46
50 | 17
39
50
 | 19
19
18
18
18 | 37
45
55
56
55 | 105
111
128
154
168
183 | 323
336
388
413
379 | 334
305
284
270
252
240 | 169
281
321
287
260
244 | 162
144
127
113
116 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 6306
203
476
67
12510
7.82
9.02 | 2406
80.2
172
51
4770
3.08
3.44 | 1365
44.0
97
21
2710
1.69
1.95 | 1615
52.1
81
28
3200
2.00
2.31 | 980
35.0
72
16
1940
1.35
1.40 | 903
29.1
46
18
1790
1.12
1.29 | 743
24.8
56
16
1470
.95
1.06 | 2792
90.1
183
52
5540
3.46
3.99 | 12.6 | 9852
318
501
238
19540
12.2 | 6930
224
321
154
13750
8.60
9.92 | 7242
241
704
113
14360
9.28
10.36 | | | | STATISTIC | S OF MONTE | HLY MEAN | DATA FOR | WATER | YEARS 1997 - | 2001, | BY WATER YE | AR (WY)# | <u></u> | | | MEAN
MAX
(WY)
MIN
(WY) | 180
240
1999
104
1998 | 65.9
80.2
2001
50.8
1999 | 76.1
134
2000
33.9
1999 | 37.2
52.1
2001
21.2
1999 | 24.0
35.0
2001
11.5
1999 | 21.6
29.1
2001
14.6
1999 | 43.0
55.8
1999
24.8
2001 | 136
204
1998
90.1
2001 | 318
330
1999
290
1998 | 281
327
2000
215
1998 | 216
231
2000
189
1998 | 237
271
1999
207
1998 | | SUMMARY | STATISTI | CS F | OR 2000 CA | LENDAR Y | EAR | FOR 2 | 2001 WATER YEA | AR. | WATER YEA | ARS 1997 | - 2001# | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL, RINOFF (AC-FT) | | | | 7 3 3) | 7
33
7 | 10 Sep 14
.6 Feb 25
.6 Apr 11
.8 Sep 14
.22.95 Sep 14
.5 Feb 25
.0 5
.37
.2.94 | | 137
147
124
993
7.8
8.0
b1300
34.0'
7.8
99160
5.2(
71.5)
324
111
21 | Oct
Mar
Mar
Oct
Oct
Mar | 2000
1998
20 1998
9 1999
5 1999
20 1998
20 1998
9 1999 | | | See period of Record; partial years used in monthly summary statistics Feb. 25 and Apr. 13-17 $\,$ b From rating curve extended above $600 \text{ ft}^3/\text{s}$ on basis of slope-area measurement at gage height, 34.07 ft ## 15056030 KAKUHAN CREEK NEAR HAINES LOCATION.--Lat $59^{\circ}00'19''$, long $135^{\circ}11'02''$, in $SW^1/_4$ $NE^1/_4$ $SE^1/_4$ sec. 14, T. 33 S., R. 61 E. (Skagway A-1 quad), Hydrologic Unit 19010301, in Tongass National Forest, about 200 ft upstream from mouth on west side of Lynn Canal, 19 mi southeast of Haines, and 60 mi northwest of Juneau. DRAINAGE AREA.--1.53 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1997 to current year. ${\tt GAGE.--Water-stage}$ recorder. Elevation of gage is 25 ft above sea level, from topographic map. REMARKS.--Records poor. | | | DISCHA | RGE, CUBI | C FEET PI | | , WATER Y
LY MEAN V | EAR OCTOBI
ALUES | ER 2000 1 | TO SEPTEM | BER 2001 | | | |--
--|---|---|--|---|---|--|--------------------------------------|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.9
5.9
5.8
5.4
25 | 3.0
3.1
4.4
3.0
2.7 | 2.0
1.8
1.7
2.0
4.0 | 1.6
1.8
4.8
2.3
1.6 | 2.3
1.4
1.1
1.0
.78 | 1.2
.98
.89
.87 | .64
.62
.64
.74 | 2.8
2.9
2.9
2.7
2.3 | 13
15
13
11
9.6 | 38
36
35
47
37 | 20
24
23
21
19 | 30
29
17
14
14 | | 6
7
8
9
10 | 47
50
20
13
10 | 2.6
2.6
2.6
2.4
2.2 | 3.3
2.4
1.8
1.5 | 1.5
2.0
2.2
1.6
1.1 | e.65
e.60
e.60
e.55
e.55 | 1.0
1.6
1.3
1.2 | .88
.99
1.1
1.1 | 2.1
2.2
2.1
2.1
2.0 | 9.5
10
12
17
17 | 48
49
39
39
29 | 17
16
16
17
16 | 11
13
10
9.5
9.0 | | 11
12
13
14
15 | 11
80
26
14
15 | 2.4
3.1
2.6
2.3
2.0 | 1.5
1.4
e1.2
e1.1
e1.1 | .94
e.90
e.85
1.1 | e.50
e.50
e.48
e.48
e.46 | 1.5
1.4
1.2
1.2 | 1.3
1.3
.98
.93 | 2.2
2.6
3.5
4.0
5.6 | 16
18
19
14
13 | 24
22
27
33
40 | 16
18
22
25
22 | 8.1
19
67
39
23 | | 16
17
18
19
20 | 9.4
7.9
6.9
6.3
5.9 | 2.0
2.5
2.0
1.9
3.0 | e1.0
e.95
e1.0
e1.1 | 1.5
2.2
2.8
1.9
1.4 | e.46
e.44
e.44
e.42
e.44 | 1.0
.93
e.80
e.70
e.65 | 1.2
1.8
2.1
2.8
3.5 | 5.6
5.3
5.5
5.6
5.8 | 16
24
26
29
40 | 45
44
54
57
42 | 20
20
20
21
20 | 27
37
31
21
17 | | 21
22
23
24
25 | 5.3
6.2
6.0
5.0
4.4 | 6.3
8.7
4.7
3.8
3.2 | 1.1
1.0
1.1
1.0 | 1.2
1.4
1.6
1.2 | e.44
e.42
e.40
e.36
e.40 | e.60
e.55
e.55
e.50
e.60 | 4.1
3.7
3.0
2.9
2.9 | 5.8
6.4
5.8
5.0
4.8 | 41
29
26
31
25 | 37
62
45
32
30 | 19
18
16
15
15 | 17
17
12
16
15 | | 26
27
28
29
30
31 | 4.0
3.4
3.0
2.9
3.1
3.3 | 2.9
2.7
2.3
2.0
1.9 | 1.1
1.1
1.0
1.2
3.1
2.5 | 1.1
1.8
1.6
1.0
.88
2.1 | .87
2.4
1.5
 | e.65
e.70
e.70
.73
.68 | 2.9
3.7
3.5
2.8
2.6 | 5.7
8.4
9.4
10
8.8 | 27
32
42
41
32 | 24
21
22
24
20
18 | 23
51
27
38
42
40 | 11
9.1
8.2
7.4
7.7 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 418.0
13.5
80
2.9
829
8.81
10.16 | 90.9
3.03
8.7
1.9
180
1.98
2.21 | 48.75
1.57
4.0
.95
97
1.03
1.19 | 50.57
1.63
4.8
.85
100
1.07
1.23 | 20.94
.75
2.4
.36
42
.49 | 28.64
.92
1.6
.50
57
.60 | 57.71
1.92
4.1
.62
114
1.26
1.40 | | 668.1
22.3
42
9.5
1330
14.6
16.24 | 1120
36.1
62
18
2220
23.6
27.23 | 697
22.5
51
15
1380
14.7
16.95 | 566.0
18.9
67
7.4
1120
12.3
13.76 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER Y | EARS 1997 | - 2001, | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.1
14.9
1999
4.70
1998 | 3.32
4.16
1999
2.81
2000 | 3.32
5.70
2000
1.57
2001 | 1.36
1.63
2001
1.12
1998 | 1.06
1.28
1998
.75
2001 | 1.21
1.76
1999
.92
2001 | 2.35
3.85
1999
1.20
2000 | 6.68
10.7
1998
4.87
2001 | 22.2
25.2
1999
20.9
2000 | 32.0
37.5
1999
27.0
1997 | 26.5
37.0
1999
22.2
2000 | 18.6
23.8
1999
13.4
1998 | | SUMMARY | STATIST: | ICS : | FOR 2000 | CALENDAR ' | YEAR | FOR 20 | 01 WATER Y | EAR | WATER | YEARS 1997 | - 2001# | | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
ANNUAL
ANNUAL
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL MANNUAL MA | MEAN EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) EDS EDS EDS | 88
28
3 | Oct : .55 Feb : .59 Feb : | 12
16
10 | a342
8
7770
7
95
31 | | .9
.2 | 13
9
152
a415
7860
7
96 | Sep
.36 Feb
.41 Feb
.42 Aug
.77 Aug | 1999
1998
2 22 1999
2 24 2001
5 19 2001
5 31 1998
7 31 1998 | | [#] See Period of Record; partial years used in monthly statistics a $\,$ From rating curve extended above 51 $\,$ ft $^3/s$ e Estimated ## SOUTHEAST ALASKA ## 15056030 KAKUHAN CREEK NEAR HAINES--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year. INSTRUMENTATION.-- Electronic water-temperature recorder set for 15-minute recording interval. REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ}C$. EXTREMES FOR PERIOD OF RECORD. -- WATER TEMPERATURE: Maximum, 15.0°C, August 1-2, 1999; minimum, 0.0°C, on many days during winter periods. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum, 14.5°C, August 14 and 15; minimum, 0.0°C, on many days during winter. TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|------------------------|--------------------------------|--|---------------------------------|---------------------------------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 2.0
2.0
3.0
3.0
6.5 | 1.0
1.0
1.5
1.0
2.5 | 1.5
1.5
2.0
2.0
4.0 | 4.0
2.5
5.0
2.5
1.5 | 2.0
1.5
2.5
1.0 | 3.5
2.0
4.0
1.5 | 1.5
1.5
2.0
2.0
3.0 | .0
.5
1.5
.5 | .5
1.0
1.5
1.5 | 1.5
2.0
2.5
2.5
2.0 | 1.0
1.5
1.5
2.0
1.5 | 1.5
1.5
2.5
2.0
1.5 | | 6
7
8
9
10 | 7.5
7.0
6.5
7.0
6.0 | 5.5
5.5
4.5
5.0 | 6.5
6.5
5.5
6.0
5.5 | 1.5
2.0
3.0
1.5
2.0 | .5
.5
1.5
1.0 | 1.0
1.5
2.0
1.0 | 3.0
2.5
1.5
.5 | 2.0
1.5
.5
.0 | 2.5
2.0
1.0
.0 | 2.5
3.5
3.5
2.5
.5 | 2.0
2.5
2.5
.5
.0 | 2.0
3.0
2.5
1.5 | | 11
12
13
14
15 | 7.5
7.5
7.0
6.0
7.0 | 5.0
6.0
5.0
5.5 | 6.5
6.5
6.0
5.0 | 3.5
4.0
3.5
3.5
3.5 | 2.0
3.0
3.0
3.0
3.0 | 3.0
3.5
3.5
3.5
3.5 | . 5
. 5
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | .0
.5
1.0 | .0
.0
.0
.5 | .0
.0
.0
.5 | | 16
17
18
19
20 | 6.0
7.0
5.5
6.0
4.5 | 5.0
4.5
4.5
4.5
3.5 | 5.5
5.5
4.5
5.0
4.0 | 3.0
3.5
3.5
3.5
4.5 | 2.5
2.5
2.5
2.0
3.5 | 2.5
3.0
3.0
2.5
4.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 1.5
2.5
2.5
2.5
2.0 | 1.5
1.5
2.0
2.0 | 1.5
2.0
2.5
2.5
1.5 | | 21
22
23
24
25 |
4.5
6.0
6.0
5.0
4.5 | 2.5
3.0
5.0
4.5
3.5 | 4.0
5.0
5.5
4.5 | 5.0
5.0
4.0
3.5
3.0 | 4.5
3.5
3.0
3.0
2.0 | 5.0
4.5
3.5
3.5
2.5 | . 5
. 0
. 5
. 5 | .0.0.0.0.5 | .0
.0
.0
.5 | 2.0
2.0
2.5
1.5 | 1.0
1.5
1.0
.5 | 1.5
2.0
2.0
1.0 | | 26
27
28
29
30
31 | 3.5
3.0
2.0
.5
2.0
3.5 | 3.0
2.0
.5
.5
.5 | 3.5
2.5
1.5
.5
1.0
3.0 | 3.5
3.5
3.0
1.0
.5 | 3.0
3.0
1.0
.5 | 3.0
3.0
2.5
.5
.5 | 1.0
1.0
1.0
1.0
1.5
2.0 | .5
.5
.5
.5 | .5
1.0
1.0
1.0
1.0 | 2.5
2.5
2.0
1.5
1.0
2.0 | 1.5
1.5
1.5
1.0
.5 | 2.0
2.0
2.0
1.5
1.0 | | MONTH | 7.5 | .5 | 4.2 | 5.0 | .5 | 2.6 | 3.0 | .0 | .6 | 3.5 | .0 | 1.5 | # 15056030 KAKUHAN CREEK NEAR HAINES--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |--|--|--|--|---|---|---|--|--|---|--|---|--| | | FEBRU | ARY | MZ | ARCH | A | PRIL | I | MAY | | | | | | 1
2
3
4
5 | 2.5
2.0
2.0
1.0 | 2.0
1.5
1.0
.5 | 2.5
1.5
2.0
1.0 | 1.0
1.0
1.0
1.0 | .5
.5
.0
.5 | .5
.5
.5
.5 | .5
.5
.5
1.0 | | 0 | 5.0
3.5
4.0
4.5
3.5 | 2 - | 4.0
3.5
3.0
3.5
3.0 | | 6
7
8
9
10 | .0.0.0 | .0.0.0.0.0 | .0.0.0.0 | 1.0
1.5
2.0
2.0
2.5 | .5
.5
1.0
1.5 | .5
1.0
1.5
2.0 | 1.0
1.0
1.5
1.5 | .5
.5
1.0
.5 | .5
1.0
1.0
1.0 | 4.0
4.0
4.0
4.0 | 2.5
3.5
3.0
3.5
2.5 | 3.0
3.5
3.5
3.5
3.5 | | 11
12
13
14
15 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 3.0
2.5
3.0
2.5
2.0 | 2.0
2.0
1.5
2.0
2.0 | 2.5
2.0
2.0
2.5
2.0 | 1.5
2.5
2.5
3.0
3.0 | 1.0
1.5
1.5
1.5 | | 5.0
6.0
5.5
6.5
5.5 | | 4.5
4.5
5.0
5.0 | | 16
17
18
19
20 | .0.0.0.0 | .0.0.0.0 | | 2.0
2.0
1.5
.5 | | 2.0
1.5
.5
.0 | 3.5
3.5
4.0
4.5
4.5 | 1.5
2.5
2.5
2.5
2.5 | 2.5
3.0
3.0
3.5
3.5 | 5.5
6.0
6.0
6.5
5.0 | 4.0
4.0
3.5
3.5
4.0 | 4.5
4.5
4.5
4.5
4.5 | | 21
22
23
24
25 | .5
.5
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 5.0
4.5
4.0
4.0
5.0 | 2.5
3.0
3.0
2.5
3.0 | 3.5
3.5
3.5
3.5
4.0 | 6.5
6.0
5.0
5.5 | 4.0
4.0
4.0
3.5
3.5 | 5.0
5.0
4.5
4.5
4.5 | | 26
27
28
29
30
31 | .0
.5
1.0
 | .0
.0
.5
 | | .0
.0
.0
.5
.5 | .0.0.0.0.0 | .0
.0
.0
.0 | 4.5
5.0
4.0
4.0
5.0 | 3.5
3.0
2.5
2.5
3.0 | 4.0
4.0
3.5
3.5
4.0 | 7.5
6.5
7.5
6.0
6.5
7.0 | 3.0
5.0
5.0
5.0
4.0
5.0 | 5.0
5.5
6.0
5.5
5.0 | | MONTH | 2.5 | .0 | .3 | 3.0 | .0 | .8 | 5.0 | .0 | 2.3 | 7.5 | 2.0 | 4.4 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBEI | ₹. | | 1
2
3
4
5 | 5.5 | JUNE 4.0 5.0 4.5 4.5 4.5 | 5.5
5.0
5.0
5.5
5.5 | 10.5
9.5
11.0
8.0
7.5 | | 8.0
8.0
8.5
7.5
6.5 | | 8.0
9.5
9.0
9.0
8.5 | 10.0
11.0
10.5
9.5
9.5 | 9.0
8.5
9.0
8.5
8.0 | SEPTEMBER
6.5
6.5
6.5
7.0
7.0 | 7.5
7.5
7.5
7.5
7.5 | | 2
3
4 | 5.5
7.0
6.5 | 4.0
5.0
4.5
4.5 | | 10.5
9.5
11.0
8.0
7.5
7.0
6.5
7.5
8.5 | 6.5
6.5
6.0
6.5
6.5 | | 13.0
13.5
12.0
10.5 | 8.0
9.5
9.0
9.0
8.5 | | | SEPTEMBEI
6.5
6.5
7.0
7.0
6.5
6.0
6.5 | 7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9 | 5.5
7.0
6.5
8.0
7.0
9.0
8.5
6.0 | 4.0
5.0
4.5
4.5
4.5
5.0
5.0
5.0 | 6.0
6.0
6.5
5.5 | 7.0
6.5
7.5
7.5
8.5 | 6.5
6.5
6.0
6.5
6.5 | 6.5
6.5
6.5
6.5 | 13.0
13.5
12.0
10.5
11.0
12.0
11.0
10.5
12.0 | 8.0
9.5
9.0
9.0
8.5 | 9.5
10.0
9.5
9.5
9.0 | 9.0
8.5
9.0
8.5
8.0
9.0
9.0
10.0 | 6.0
6.5
6.0
6.5 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 5.5
7.0
6.5
8.0
7.0
9.0
8.5
6.0
7.5
7.0
6.5
7.0 | 4.0
5.0
4.5
4.5
4.5
5.0
5.0
5.0
5.0
4.5 | 6.0
6.0
6.5
5.5
6.0
5.5
5.5 | 7.0
6.5
7.5
7.5
8.5
8.0
8.0
10.0 | 6.55
6.055
6.55
5.055
6.55
6.55
6.55
6.5 | 6.5
6.5
6.5
6.5
7.0
7.5
7.5
8.0 | 13.0
13.5
12.0
10.5
11.0
12.0
11.0
10.5
12.0
10.0 | 8.0
9.5
9.0
9.0
8.5
7.5
9.0
8.5
8.5
9.5 | 9.5
10.0
9.5
9.5
9.0
10.0
10.5
11.5 | 8.5
9.0
9.0
9.0
10.0
8.0
8.0
9.0 | 6.0
6.5
6.0
6.5
7.0
7.5 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 5.5
7.0
6.5
8.0
9.0
8.5
6.0
7.5
7.0
8.0
9.5
7.5
9.0
8.0 | 4.5
4.5
5.0
5.0
5.0
5.0
5.0
6.0
6.5 | 6.0
6.0
6.5
5.5
6.0
5.5
6.0
6.5
7.0
6.5 | 7.0
6.5
7.5
7.5
8.5
8.0
8.0
10.0
12.0
9.5
11.5 | 66.055 50550 55505 55555
66666 5.556 66676 777.5 | 6.5
6.5
6.5
6.5
7.0
7.5
7.5
8.0
9.0
8.5
9.0 | 13.0
13.5
12.0
10.5
11.0
12.0
11.0
10.5
12.0
10.5
12.0
10.5
14.0
14.5
14.5
14.5
14.5
14.5 | 8.5
9.0
9.0
9.5
7.5
9.0
8.5
9.5
8.5
9.5
8.5
9.0
9.0
9.0 | 9.5
10.0
9.5
9.5
9.0
10.0
10.5
11.5
11.5
11.0 | 8.0
9.0
9.0
10.0
8.0
9.0
9.0
9.0
9.0
9.5
7.5 | 6.5
6.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 5.5
7.0
6.5
8.0
9.0
8.5
6.0
7.5
7.0
8.0
9.5
7.5
9.0
8.5
8.5
7.5
9.0
8.5
8.5
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 4.55
4.55
5.00
4.55
5.00
5.00
5.00
5.00 | 6.0
6.0
6.5
5.5
6.0
5.5
6.5
7.0
6.5
7.0
6.5
7.0 | 7.0
6.5
7.5
7.5
8.5
8.5
8.0
10.0
12.0
9.0
9.5
11.5
13.5
13.5 | 66.0555 50550 555555 777.50 0500 877.0 | 6.5
6.5
6.5
6.5
7.0
7.5
7.5
7.5
8.0
9.0
8.0
8.5
9.0
10.0
10.0 | 13.0
13.5
12.0
10.5
11.0
12.0
11.0
10.5
12.0
10.0
12.5
14.0
14.5
14.5
14.5
10.5
10.0
11.5 | 8.5
9.0
9.0
9.0
8.5
9.0
8.5
9.5
8.5
9.5
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.5
10.0
9.5
9.5
9.0
10.0
10.5
11.5
11.0
10.5
10.5
9.0
9.5
9.0 | 8.0
9.0
9.0
10.0
8.0
9.0
9.0
9.0
9.5
8.5
7.5
7.5
6.5 | 6.5
6.5
6.5
7.5
7.5
7.5
8.0
7.5
6.5
6.5
6.5
6.5
6.5 | 7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55 | ## 15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS LOCATION.--Lat $58^{\circ}26'37''$, long $135^{\circ}36'01''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 36, T. 39 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1.7 miles above the mouth at Icy Passage, 4.5 mi east of Gustavis, and 44 mi west of Juneau. DRAINAGE AREA.--10.1 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage
is 560 ft above sea level, from topographic map. ${\tt REMARKS.--Records\ fair\ except\ for\ estimated\ daily\ discharges\ and\ those\ above\ 130\ {\tt ft}^3/{\tt s},\ {\tt which\ are\ poor.}$ | | 1100010 | DISCH | ARGE, CUB | IC FEET | | | YEAR OCTO | BER 2000 | TO SEPTEM | BER 2001 | c poor. | | |----------------|-----------------------|-------------------------|-------------------------------|----------------------------|--------------|-----------------|--------------------|--------------|---------------|----------------------|--|--------------| | | | | | | | ILY MEAN | | | | | | | | DAY
1 | OCT
33 | NOV
34 | DEC
47 | JAN
29 | FEB
56 | MAR
21 | APR
9.8 | MAY
40 | JUN
144 | JUL
45 | AUG
57 | SEP
85 | | 2 | 30
28 | 28
111 | 38
29 | 58
218 | 35
39 | 14
12 | 9.7 | 40
52 | 157
206 | 42
39 | 44
36 | 92
64 | | 4 5 | 26
72 | 59
43 | 37
274 | 77
57 | 24
19 | 13
11 | 9.8
e11 | 52
38 | 151
129 | 39
46 | 32
28 | 54
75 | | 6 | 79 | 37 | | | 21 | 12 | e12 | 28 | 133 | 75 | 25 | 64 | | 7
8 | 134
120 | 47
33 | 66
43 | 54
43 | 16
e14 | 25
24 | e11
e11 | 27
26 | 132
122 | 104
101 | 22
21 | 105
83 | | 9
10 | 100
99 | 27
24 | 30
25 | 80
54
43
32
25 | e13
e12 | 22
52 | e11
15 | 45
33 | 121
128 | 79
64 | 19
17 | 60
44 | | 11
12 | 148
222 | 41
41 | 22
20 | 22
19
18 | e11
e23 | 87
38 | 15
27 | 39
47 | 116
94 | 52
45 | 16
15 | 35
47 | | 13 | 222 | 30 | e19 | 18 | e34 | 30 | 19 | 54 | 93 | 57 | 14 | 283 | | 14
15 | 159
120 | 27
30 | e17
e14 | 18
21 | e22
e18 | 34
25 | 18
17 | 56
57 | 96
94 | 52
48 | 13
13 | 218
107 | | 16
17 | 81
62 | 27
41 | e13
e11 | 21
61 | e14
e13 | 22
18 | 17
20 | 58
62 | 84
87 | 44
38 | 12
12 | 126
152 | | 18
19 | 48
42 | 27
26 | e12
e12 | 35
30 | e11
e10 | 16
e15 | 34
30 | 63
60 | 85
83 | 33
30 | 12
12 | 120
84 | | 20 | 37 | 28 | e11 | 22 | e9.5 | e13 | 27 | 57 | 107 | 29 | 12 | 94 | | 21
22 | 42
64 | 98
208 | e10
e10 | 21
29 | e9.5
e12 | e12
e11 | 29
30 | 59
69 | 115
84 | 27
31 | 12
11 | 72
76 | | 23
24 | 90
70 | 132
81
55 | e12
e11 | 35
23 | e14
e13 | e10
e10 | 33
34 | 85
73 | 69
70 | 41
91 | 11
11 | 72
52 | | 25 | 59
45 | | e17 | 19 | e12 | e10 | 36 | 62
57 | 65
59 | 107
165 | 11 | 43
35 | | 26
27 | 37 | 41
35
31
26 | e33
e14
15
19
e90 | 19
32
27
19
16 | e17
e113 | e12
10
10 | 33
48 | 67 | 70 | 93 | 12
62 | 33 | | 28
29 | 31
26 | 31
26 | 15
19 | 19 | 50
 | 10 | 61
45 | 82
92 | 81
65 | 93
66
65
84 | 27
56 | 28
26 | | 30
31 | 27
36 | 23 | e90
53 | 16
71 | | 10
10 | 42 | 89
125 | 50
 | 84
73 | 97
85 | 105 | | TOTAL | 2389 | 1491 | 1138 | 1251 | 655.0 | 619 | 724.8 | 1794 | 3090 | 1905 | 827 | 2534 | | MEAN
MAX | 77.1
222 | 49.7
208 | 36.7
274 | 1251
40.4
218 | 23.4
113 | 20.0
87 | 24.2
61 | 57.9
125 | 103
206 | 61.5
165 | 26.7
97 | 84.5
283 | | MIN
MED | 26
62 | 208
23
34
2960 | 274
10
19 | 218
16
29 | 9.5
15 | 10
13 | 9.5
20 | 26
57 | 50
94 | 27
52 | 11
16 | 26
74 | | AC-FT | 4740 | 2960 | 2260 | 2480 | 1300 | 1230 | 1440 | 3560 | 6130 | 3780 | 1640 | 5030 | | CFSM
IN. | 7.63
8.80 | 4.92
5.49 | 3.63
4.19 | 4.00
4.61 | 2.32 2.41 | 1.98
2.28 | 2.39
2.67 | 5.73
6.61 | 10.2
11.38 | 6.08
7.02 | 97
11
16
1640
2.64
3.05 | 8.36
9.33 | | | | STATISTI | CS OF MO | NTHLY MEA | AN DATA FO | OR WATER | YEARS 1999 | 9 - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 98.9 | 52.3 | 82.2 | 29.5 | 17.1 | 21.4 | 31.0 | 74.2 | 108 | 70.3 | 44.1 | 105 | | MAX
(WY) | 121
2000 | 54.9
2000 | 128
2000 | 40.4
2001 | 23.4
2001 | 22.7
2000 | 37.8
2000 | 90.6
2000 | 114
2000 | 79.1
2000 | 61.6
2000 | 128
1999 | | MIN
(WY) | 77.1
2001 | 49.7
2001 | 36.7
2001 | 18.7
2000 | 11.0
2000 | 20.0
2001 | 24.2
2001 | 57.9
2001 | 103
2001 | 61.5
2001 | 26.7
2001 | 84.5
2001 | | SUMMARY | STATIST | TCS | FOR 2000 | CALENDAR | YEAR | FOR 2 | 2001 WATER | YEAR | WATER | YEARS 1999 | 9 - 2001# | | | ANNUAL ' | | | 21396 | | | 1841 | | | | | | | | ANNUAL HIGHEST | | MEAN | 58 | | | | 50.5 | | | 0.4 | 2000
2001 | | | HIGHEST | DAILY M | EAN | 296 | Sep | 16 | | 33 Sep
19.5 Feb | | 1110 |) Dec | 27 1999
10 2000 | | | ANNUAL | SEVEN-DA | Y MINIMUM | 1 6 | 5.9 Feb | 11 | | 9.8 Mar | 29 | | 5.9 Feb | 10 2000 | | | MAXIMUM | PEAK FL | AGE | | | | | 9 Sep
29.31 Sep | | 30 | 0.52 Dec | 27 1999 | | | | ANEOUS L
RUNOFF (. | OW FLOW
AC-FT) | 42440 |) | | 3653 | | 20 | 43750 | 0 | 10 2000 | | | | RUNOFF (| | 78 | 3.81 | | | 5.00
57.84 | | 82 | 5.98
1.24 | | | | 10 PERC | ENT EXCE | EDS | 126
41 | 5 | | 10 | 06 | | 128 | В | | | | | ENT EXCE | | 11 | | | | L2 | | 12 | | | | See Period of Record, partial years used in monthly statistics Estimated Feb. 20-21 ## 15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1999 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1999 to current year. INSTRUMENTATION.-- Electronic water-temperature recorder set for 1-hour recording interval. REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on January 25 and March 22. Temperature cross sections found no variation. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 13.5°C, August 13-15, 2001; minimum, 0.0°C, on many days during winter periods. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 13.5°C, August 13-15; minimum, 0.0°C, on many days during the winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH | TEMPER-
ATURE
WATER | CHARGE,
INST.
CUBIC
FEET
PER | GAGE
HEIGHT | SAM-
PLING
METHOD, | |------|------|-----------------|---------------------------|--|-------------------|--------------------------| | | | (FT)
(00004) | (DEG C)
(00010) | SECOND
(00061) | (FEET)
(00065) | CODES
(82398) | | JAN | | | | | | | | 25 | 1402 | 39.0 | 2.0 | 19 | 27.62 | 10 | | 25 | 1403 | 39.0 | 2.0 | 19 | 27.62 | 10 | | 25 | 1404 | 39.0 | 2.0 | 19 | 27.62 | 10 | | 25 | 1405 | 39.0 | 2.0 | 19 | 27.62 | 10 | | MAR | | | | | | | | 22 | 1135 | 37.0 | .00 | 11 | | 10 | | 22 | 1136 | 37.0 | .00 | 11 | | 10 | | 22 | 1137 | 37.0 | .00 | 11 | | 10 | | 22 | 1138 | 37.0 | .00 | 11 | | 10 | | 22 | 1139 | 37.0 | .00 | 11 | | 10 | | | | | | | | | TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 4.0
4.0
3.5
3.5 | 3.0
3.0
2.5
2.0
3.5 | 3.5
3.0
3.0
3.0
4.5 | 3.5
3.5
4.0
3.5
3.0 | 2.5
2.5
3.5
2.0
2.0 | 3.0
3.0
4.0
2.5
2.5 | 2.5
2.5
2.5
2.5
3.0 | 1.0
2.0
2.0
2.0
2.0 | 2.0
2.5
2.5
2.5
2.5 | 2.0
2.0
1.5
2.0
2.0 | 1.0
.5
.5
1.5 | 1.5
1.5
1.5
2.0 | | 6
7
8
9
10 | 6.5
7.0
6.0
6.0 | 6.0
6.0
5.0
5.5 | 6.5
6.5
5.5
5.5 | 3.0
3.5
3.5
2.5
2.5 | 3.0
3.0
2.5
1.5 | 3.0
3.5
3.0
2.0
2.0 | 3.0
3.0
2.0
.5
1.0 | 3.0
2.0
.5
.0 | 3.0
2.5
1.5
.5 | 1.5
2.5
2.5
2.0
.5 | 1.5
1.5
2.0
.5 | 1.5
2.0
2.0
1.5 | | 11
12
13
14
15 | 6.5
7.5
6.5
6.0
5.5 | 5.0
6.0
5.5
5.0 | 6.0
6.5
6.0
5.5
5.5 | 3.5
4.0
3.5
3.5
3.5 | 2.5
3.0
2.5
3.0
2.5 | 3.0
3.5
3.0
3.5
3.5 | 1.5
.5
.0
.0 | .5
.0
.0
.0 | 1.0
.0
.0
.0 | 1.0
.5
1.0
1.5 | .0
.0
.0
1.0 | .5
.0
.5
1.5 | | 16
17
18
19
20 | 5.5
5.5
5.0
5.0 | 5.0
4.5
4.0
4.5
4.5 | 5.5
5.0
4.5
5.0
4.5 | 3.0
3.5
3.0
3.5
4.5 | 2.5
3.0
3.0
3.0
3.0 | 2.5
3.0
3.0
3.0
3.5 | .0.0.0.0 | .0.0.0 | .0.0.0 | 1.5
2.0
2.0
2.0
2.0 | 1.0
1.5
1.5
1.5 | 1.5
1.5
1.5
2.0
1.5 | | 21
22
23
24
25 | 5.0
5.5
5.5
5.0
4.5 | 4.5
4.5
5.0
4.5
4.0 | 4.5
5.0
5.0
5.0
4.5 | 4.5
4.5
3.5
3.5
3.0 | 4.0
3.5
3.0
3.0
3.0 | 4.5
4.0
3.5
3.5
3.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 2.0
2.0
2.0
1.5
2.0 | 1.5
2.0
1.0
1.0 | 2.0
2.0
1.5
1.5 | | 26
27
28
29
30
31 | 4.5
3.5
3.5
2.5
3.0
3.5 | 3.5
3.0
2.5
1.0
2.0
3.0 | 4.0
3.5
3.0
2.0
2.5
3.5 | 3.0
3.0
3.0
2.0
2.0 | 3.0
3.0
1.5
1.0 | 3.0
3.0
2.5
1.5
2.0 | .0
.0
1.0
1.0
1.0 | .0
.0
.0
.0 | .0
.5
1.0
.5 | 2.0
2.0
1.5
1.5
1.5 |
1.5
1.5
1.0
1.0 | 2.0
2.0
1.5
1.0
1.0 | | MONTH | 7.5 | 1.0 | 4.6 | 4.5 | 1.0 | 3.0 | 3.0 | .0 | .8 | 2.5 | .0 | 1.4 | # 15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS--Continued TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|--|----------------------------------|--------------------------------------|----------------------------------|--|--|---------------------------------|--| | | ; | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.0
2.0
2.0
1.5 | 1.5
1.5
1.5
.5 | 1.5
2.0
1.5
1.0 | .0.0.0.0 | .0.0.0 | .0.0.0 | .0
.0
.0
.0 | .0.0.0 | .0.0.0 | 4.0
3.5
4.0
3.5
4.0 | 2.5
2.0
2.5
2.5
2.0 | 3.5
3.0
3.0
3.0 | | 6
7
8
9
10 | .5
1.0
.5
.0 | .0.0.0.0 | .0 | .0
.0
.0
1.0 | .0.0.0 | .0
.0
.0
.5 | 1.0
1.0
.5
2.0
2.0 | .0 | .0
.5
.5
.5 | 4.5
5.0
4.5
4.5
5.0 | 3.0
3.0 | 3.5
4.0
3.5
3.5
4.0 | | 11
12
13
14
15 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 1.0
1.5
2.0
2.0
2.5 | .5
.5
1.0
1.0 | 1.0
1.0
1.5
1.5 | 1.5
1.0
3.0
3.0
3.5 | 1.0 | .5
.5
1.5
1.5 | 5.0
5.5
5.5
5.5
6.0 | 2.5
4.0
3.0 | 4.0
4.0
4.5
4.5 | | 16
17
18
19
20 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 2.0
2.5
1.5
.0 | 1.0
1.0
.0
.0 | 1.5
2.0
1.0
.0 | 4.0
3.0
3.5
3.0
4.5 | .0
1.0
1.0
1.0 | 1.5
2.0
2.0
2.0
2.0 | 5.5
5.5
5.5
4.5 | 3.0
2.5 | 4.5
4.5
4.5
4.0 | | 21
22
23
24
25 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0 | .0.0.0 | 5.0
3.0
3.5
2.5
4.5 | | 2.5
2.5
2.5
2.5
3.0 | 6.0
4.5
4.5
6.0
5.0 | 3.5 | 4.5
4.0
4.0
4.5
4.0 | | 26
27
28
29
30
31 | .0 | .0.0.0 | .0.0.0 | .0.0.0.0.0 | .0.0.0.0 | .0.0.0.0.0 | 3.5
4.0
4.0
4.0
4.5 | 2.0
2.0
2.0
2.5
2.5 | 3.0
3.0
3.0
3.0
3.5 | 6.5
6.0
6.0
5.5
5.5
6.0 | 3.5
3.5 | 4.5
5.0
4.5
4.5
4.0
5.0 | | MONTH | 2.0 | .0 | .2 | 2.5 | .0 | . 4 | 5.0 | .0 | 1.5 | 6.5 | 2.0 | 4.0 | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 6.0
4.5
5.0
5.5 | 3.5
4.0
4.0
4.0 | 4.5
4.0
4.5
4.5 | 9.5
9.0
10.0
9.0
8.0 | 6.5
7.0
6.5
7.0
6.5 | 8.0
8.5
7.5 | 9.0
10.5
9.5
9.0
10.0 | 7.5
8.0
8.5
8.5 | 8.5
9.5
9.0
8.5
9.0 | 9.0
9.0
8.5
9.0
9.0 | 8.5
8.0
7.5
8.0 | 9.0
8.5
8.0
8.5 | | 6
7
8
9
10 | 6.0
6.0
7.5
6.5
5.5 | 4.0
4.0
3.5
4.0
4.5 | 5.0
5.0
5.5
5.0 | 8.0
7.5
8.0
8.5
9.0 | 7.0
6.5
6.5
6.5 | 7.5
7.0
7.0
7.5
7.5 | 11.0
10.5
10.0
11.0 | 7.5
8.5
8.5
8.5
8.5 | 9.5
9.5
9.0
9.5
9.5 | 8.5
8.5
8.0
8.0 | 7.5
7.5
6.0 | 8.0
8.0
8.0
7.0 | | 11
12
13
14
15 | 5.5
5.5
5.5
7.0
6.5 | 4.5
4.5
4.5
4.5 | 5.0 | 8.5
8.0
8.0
9.0
8.5 | 7.0
7.0
7.5
7.0
7.5 | 7.5
7.5
7.5
8.0
8.0 | 11.0
13.0
13.5
13.5 | | 9.5
10.0
10.5
10.5
11.0 | 8.0
8.5
9.5
8.5
8.0 | 7.5
8.5 | 7.5
8.0
9.0
8.0
7.5 | | 16
17
18
19
20 | 8.0
6.5
7.5
7.0
7.5 | 4.0
5.0
5.0
5.0
5.5 | 6.0
5.5
6.0
6.0 | 8.0
9.5
9.0
11.0 | 7.5
7.5
8.0
7.0
8.0 | 8.0
8.5
8.5
9.0
9.5 | 13.0
12.0
11.5
11.5 | 8.0
9.5
10.0
9.5
9.5 | 10.0
10.5
10.5
10.5 | 9.0
9.5
9.0
8.0
8.5 | 8.0
8.5
8.0
7.5
7.5 | 8.5
9.0
8.5
8.0 | | 21
22
23
24
25 | 6.5
6.5
7.5
8.5
7.5 | 5.0
5.0
5.0
5.0 | 5.5
5.5
6.0
7.0
6.5 | 11.0
10.0
10.0
9.5
9.0 | 8.5
9.0
9.0
8.5
8.0 | 10.0
9.5
9.0
9.0
8.5 | 12.0
11.5
11.0
10.5 | 9.0
9.5
8.5
9.0
8.0 | 10.5
10.5
9.5
10.0
9.5 | 8.0
8.0
8.0
7.5
7.5 | 7.0
7.5
7.0
7.0
6.5 | 7.5
8.0
7.5
7.0 | | 26
27
28
29
30
31 | 9.0
9.5
8.0
8.0 | 4.5
6.0
6.5
6.0 | 7.0
8.0
7.0
7.5 | 9.0
8.5
8.5
9.0
9.0 | 8.0
7.5
7.5
8.0
8.0
7.5 | 8.5
8.0
8.0
8.5
8.5 | 11.0
11.0
10.5
10.0
10.5 | 9.0
9.5
9.5
9.5
9.5 | 10.0
10.0
10.0
9.5
10.0
9.5 | 7.5
7.5
7.5
7.0
7.5 | 6.0
6.5
6.5
6.0
7.0 | 7.0
7.0
7.0
6.5
7.5 | | MONTH | 9.5 | 3.5 | 5.7 | 11.5 | 6.5 | 8.2 | 13.5 | 7.5 | 9.8 | 9.5 | 6.0 | 7.8 | ### 15057590 KAHTAHEENA RIVER NEAR GUSTAVUS LOCATION.--Lat $58^{\circ}25'24''$, long $135^{\circ}35'53''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 12, T. 40 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1000 ft above the mouth at Icy Passage, 4.5 mi east of Gustavis, and 44 mi west of Juneau. DRAINAGE AREA. -- 10.7 mi² ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1998 to April 2001 (discontinued). REVISED RRECORD. -- WRD AK-00-1 1999 GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map. Prior to April 2000, at a site 800 ft downstream at a different datum. REMARKS.--Records fair, except for daily discharges above $150 \text{ ft}^3/\text{s}$ and estimated daily discharges, which are poor. EXTREMES FOR CURRENT YEAR--Maximum discharge during period October to April, 629 $\rm ft^3/s$ October 12, gage height 19.57; minimum discharge, 6.3 $\rm ft^3/s$, March 19, gage height 17.17. | | | DISCHAF | RGE, CUBI | C FEET F | | , WATER
LY MEAN | YEAR OCTOBER
VALUES | 2000 | TO SEPTEMBER | 2001 | | | |------------------------------------|---|---|---|---|---|--|--------------------------------------|------------------------------------|--------------------|--------------------------------------|--------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
31
30
27
70 | 38
31
113
60
44 | 48
42
33
38
333 | 35
63
273
76
58 | 59
39
44
31
25 | 28
18
15
13 | 8.9
8.6
8.1
 | |

 | |

 |

 | | 6
7
8
9 | 76
132
119
94
95 | 39
48
36
30
26 | 108
61
43
33
29 | 80
55
44
36
30 | 22
20
17
15
e12 | 14
31
32
31
56 |

 | |

 | |

 |

 | | 11
12
13
14
15 | 149
252
246
157
112 | 42
44
32
29
33 | 26
22
17
e16
e15 | 26
23
22
21
26 | e11
26
38
24
e19 | 97
46
38
43
32 |

 | |

 | |

 |

 | | 16
17
18
19
20 | 77
60
47
42
38 | 30
43
30
29
30 | e14
e13
e15
e14 | 27
61
40
35
28 | e15
e14
e12
e11
e9.7 | 29
23
19
12
e12 |

 | |

 | |

 | | | 21
22
23
24
25 | 42
64
90
70
59 | 97
227
130
79
55 | 11
11
13
12
19 | 25
32
40
30
24 | e9.7
e13
16
15 | e11
e11
e11
e10 |

 | |

 | |

 |

 | | 26
27
28
29
30
31 | 46
39
34
30
30
38 | 43
38
35
29
26 | 36
20
16
20
97
58 | 23
35
33
25
20
72 | 19
e120
56
 | e12
e11
11
10
9.7
9.2 |

 | |

 | |

 | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 2430
78.4
252
27
4820
7.33
8.45 | 1566
52.2
227
26
3110
4.88
5.44 | 1246
40.2
333
11
2470
3.76
4.33 | 1418
45.7
273
20
2810
4.27
4.93 | 726.4
25.9
120
9.7
1440
2.42
2.53 | 717.9
23.2
97
9.2
1420
2.16
2.50 |

 | |

 | |

 | | | | | STATISTIC | S OF MONT | HLY MEA | N DATA FO | R WATER | YEARS 1999 - | 2001, | BY WATER YEA | R (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 103
129
2000
78.4
2001 | 45.7
61.7
2000
23.1
1999 | 66.2
133
2000
25.2
1999 | 28.3
45.7
2001
19.0
1999 | 15.2
25.9
2001
7.70
1999 | 22.5
25.1
2000
19.2
1999 | 54.1
67.3
1999
40.9
2000 | 106
118
1999
93.5
2000 | 115
2000
113 | 73.4
82.7
2000
64.1
1999 | 64.4
66.0
2000
62.8
1999 | 120
135
1999
105
2000 | See period of record, pratial years used in monthly statistics # 15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | WATER YEARS 1999 - 2001# | |--------------------------|------------------------|--------------------------| | ANNUAL TOTAL | 22338.2 | | | ANNUAL MEAN | 61.0 | 68.7 | | HIGHEST ANNUAL MEAN | | 74.0 2000 | | LOWEST ANNUAL MEAN | | 63.3 1999 | | HIGHEST DAILY MEAN | 333 Dec 5 | 1140 Dec 27 1999 | | LOWEST DAILY MEAN | 5.5 Mar 10 | 5.5 Mar
10 2000 | | ANNUAL SEVEN-DAY MINIMUM | 7.4 Feb 11 | 6.8 Feb 11 1999 | | MAXIMUM PEAK FLOW | | a1980 Dec 27 1999 | | MAXIMUM PEAK STAGE | | b22.18 Dec 27 1999 | | INSTANTANEOUS LOW FLOW | | 5.5 Mar 10 2000 | | ANNUAL RUNOFF (AC-FT) | 44310 | 49740 | | ANNUAL RUNOFF (CFSM) | 5.70 | 6.42 | | ANNUAL RUNOFF (INCHES) | 77.66 | 87.18 | | 10 PERCENT EXCEEDS | 126 | 132 | | 50 PERCENT EXCEEDS | 44 | 42 | | 90 PERCENT EXCEEDS | 12 | 11 | [#] See Period of Record, partial years used in monthly statistics a From rating curve extended above 450 ft³/s on the basis of a slope-area measurement of peak flow at gage height 21.67 ft site and datum then in use b Site and datum then in use ### 15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1999 to April 2001 (discontinued). PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1998 to April 2001. INSTRUMENTATION.-- Electronic water-temperature recorder set for 1-hour recording interval. REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on January 25. Temperature cross sections found no variation. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 13.5° C, August 4-6, 1999; minimum, 0.0° C, on many days during the winter periods. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 8.0 C October 12; minimum, 0.0°C, on many days during the winter. ### WATER-QUALITY DATA | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |----------|------|------------------------------------|--|-------------------------------------|---|---|---| | JAN 2001 | | | | | | | | | 25 | 1242 | 19.0 | 17.0 | 17.51 | 22 | 2.0 | 3.5 | | 25 | 1243 | 19.0 | 22.0 | 17.51 | 22 | 2.0 | 3.5 | | 25 | 1244 | 19.0 | 27.0 | 17.51 | 22 | 2.0 | 3.5 | | 25 | 1245 | 19.0 | 32.0 | 17.51 | 22 | 2.0 | 3.5 | TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 4.5
4.0
3.5
3.5 | 3.0
3.0
2.5
2.0
3.5 | 3.5
3.5
3.0
3.0
5.0 | 4.0
4.0
4.5
4.0
3.0 | 3.0
3.0
4.0
2.5
2.5 | 3.5
3.5
4.5
3.0
3.0 | 2.5
3.0
3.0
3.0
3.5 | 1.5
2.5
2.5
2.5
2.5 | 2.0
2.5
2.5
3.0
3.0 | 2.0
2.0
2.0
2.5
2.5 | 1.5
1.5
1.5
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | | 6
7
8
9
10 | 7.0
7.5
6.5
6.5 | 6.5
6.5
5.5
6.0
5.5 | 7.0
7.0
6.0
6.0 | 3.5
4.0
4.0
3.0
2.5 | 3.0
3.5
3.0
2.0
2.0 | 3.5
4.0
3.5
2.5
2.0 | 3.5
3.5
2.5
1.0 | 3.5
2.5
1.0
.5 | 3.5
3.0
2.0
.5
1.0 | 2.0
3.0
3.0
2.5 | 2.0
2.0
2.5
1.0 | 2.0
2.5
2.5
2.0 | | 11
12
13
14
15 | 7.0
8.0
7.0
6.5
6.5 | 5.5
6.5
6.0
6.0 | 6.5
7.0
6.5
6.0 | 4.0
4.0
4.0
4.0 | 2.5
3.5
3.0
3.5
3.0 | 3.5
4.0
3.5
4.0
4.0 | 1.5
1.0
.5
.0 | 1.0
.0
.0
.0 | 1.5
.5
.0
.0 | 1.5
1.0
1.5
2.0 | .5
.5
1.0
1.0
2.0 | 1.0
.5
1.0
1.5
2.0 | | 16
17
18
19
20 | 6.0
6.0
5.5
5.5 | 5.5
5.0
4.5
5.0
5.0 | 6.0
5.5
5.0
5.5
5.0 | 3.5
4.0
3.5
3.5
4.5 | 3.0
3.5
3.0
3.0
3.5 | 3.0
3.5
3.5
3.5
4.0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0 | .0
.0
.0
.0 | 2.0
2.5
2.5
2.5
2.5 | 2.0
2.0
2.0
2.0
1.5 | 2.0
2.0
2.5
2.5
2.0 | | 21
22
23
24
25 | 5.0
6.0
6.0
5.5
5.0 | 5.0
5.0
5.5
5.0
4.5 | 5.0
5.5
5.5
5.5 | 5.0
5.0
4.0
4.0
3.5 | 4.5
4.0
3.5
3.5
3.5 | 5.0
4.5
4.0
4.0
3.5 | .5
.0
.5
.5 | .0.0.0.0 | .0
.0
.5 | 2.5
3.0
2.5
2.0 | 2.5
2.5
1.5
1.5
2.0 | 2.5
2.5
2.0
1.5
2.0 | | 26
27
28
29
30
31 | 5.0
4.0
4.0
3.0
3.5
4.0 | 4.0
3.5
3.0
1.5
2.0
3.5 | 4.5
3.5
3.5
2.0
2.5
4.0 | 3.5
3.5
3.5
2.0
2.0 | 3.0
3.5
2.0
1.5
2.0 | 3.5
3.5
3.0
1.5
2.0 | .5
.5
1.0
1.5
1.5 | .0
.5
.5
.0 | .0
.5
.5
1.0
.5 | 2.5
2.5
2.5
2.0
2.0 | 2.0
2.5
1.5
1.5
1.5 | 2.0
2.5
2.0
1.5
1.5 | | MONTH | 8.0 | 1.5 | 5.0 | 5.0 | 1.5 | 3.5 | 3.5 | .0 | 1.0 | 3.0 | .5 | 1.9 | # SOUTHEAST ALASKA # 15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|------------------|--------------|------------------|----------|----------|----------| | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.5
2.5
2.5
1.5 | 2.0
2.0
1.5
1.0 | 2.0
2.0
2.0
1.5 | 1.0
.5
1.0
.5 | .5
.0
.0
.0 | .5
.5
.5
.5 | .5
.5

 | .0
.0
 | .5
.5

 |

 |

 |

 | | 6
7
8
9
10 | .5
1.0
1.0
.5 | .0
.5
.0
.0 | .5
.5
.0 | 1.0
1.0
1.0
1.5 | .5
.5
.5
.5 | .5
.5
1.0
1.0 |

 |

 |

 |

 |

 |

 | | 11
12
13
14
15 | .5
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 1.5
2.0
2.5
2.5
2.5 | 1.0
1.0
1.0
1.5
2.0 | 1.5
1.5
1.5
2.0
2.0 |

 |

 |

 |

 |

 |

 | | 16
17
18
19
20 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | 2.5
2.5
2.0
.5 | 1.5
1.5
.5
.5 | 2.0
2.0
1.5
.5 |

 |

 |

 |

 |

 |

 | | 21
22
23
24
25 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .5
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0 |

 |

 |

 |

 |

 |

 | | 26
27
28
29
30
31 | .0
.5
 | .0 | .0
.0
.5
 | .0
.0
.5
.5 | .0.0.0.0 | .0
.0
.0
.5 |

 |

 |

 |

 |

 | | | MONTH | 2.5 | .0 | . 4 | 2.5 | .0 | .7 | | | | | | | #### 15070000 SWAN LAKE NEAR KETCHIKAN LOCATION.--Lat $55^{\circ}36'54''$, long $131^{\circ}20'14''$, in $SW^{1}_{/4}$ NE $^{1}_{/4}$ sec. 20, T. 72 S., R. 92 E. (Ketchikan C-4 quad), Hydrologic Unit 19010102, Ketchikan Gateway Borough, on Revillagigedo Island, in Tongass National Forest, 0.7 mi upstream from mouth at Carroll Inlet, and 22 mi northeast of Ketchikan. DRAINAGE AREA. -- 36.5 mi². PERIOD OF RECORD.--September 1916 to January 1926, September 1927 to December 1933 and October 1946 to September 1959 (discharge). Published as "Swan Lake Outlet at Carroll Inlet" prior to 1946 and as "Falls Creek near Ketchikan" October 1946 to September 1959. Monthly discharges only for some periods, published in WSP 1372. October 1984 to current year (month end reservoir contents and monthly discharges). REVISED RECORDS. -- WSP 1372: Drainage area, 1918. GAGE.--Non-recording lake-level staff gage. Datum of lake-level staff gage is at sea level. Totalizing MWH meters on the two turbines in Swan Lake Powerhouse. September 1916 to January 1926 and September 1927 to December 1933 at site 1,500 ft downstream at different datum. October 1946 to September 1959, recording gage at site 2,500 ft downstream, elevation of gage was 130 ft above sea level, from topographic map. REMARKS.--Reservoir is formed by a concrete arch dam located at the outlet of Swan Lake; construction began in August 1980 and was completed in March 1983. Total and usable capacities below spillway crest of 330 ft are 126,200 and 82,800 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed from relation between discharge, head, and power generation; release flow enters directly into Carroll Inlet and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above crest of the spillway. Turbine and spillway ratings and reservoir capacity table furnished by the City of Ketchikan in 1985. COOPERATION. -- Reservoir elevations and release flow provided by the City of Ketchikan. AVERAGE DISCHARGE.--45 years (water years 1917-25, 1928-33, 1947-59, 1985-2001), 444 $\mathrm{ft^3/s}$, 165.2 in/yr, 321,700 acre-ft/yr. Mean discharge for water years 1985-2001 adjusted for change in contents of Swan Lake. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 132,200 acre-ft, November 29, 1987, elevation, 334.2 ft; minimum contents
observed, 51,770 acre-ft, September 22, 1993, elevation, 278.4 ft. Maximum discharge, about 5,500 ft³/s, November 1, 1917; minimum daily discharge, 19 ft³/s, February 21 to 25, 1925. Maximum daily discharge since construction of dam, 3,680 ft³/s, November 30, 1988; no flow released several days most years. EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 131,960 acre-ft, September 23, 2001, elevation, 334.00 ft; minimum contents observed, 77,556 acre-ft, April 16, 2001, elevation, 296.4 ft. Maximum release from reservoir (mean daily, not adjusted for changes in storage), 2,213 ft³/s, September 23, 2001; minimum release, undetermined. MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ELEVATION | CONTENTS | CHANGE IN CONTENTS | |--------|-----------|-------------|--------------------| | SEP 30 | 329.0 | 124,700 | | | OCT 31 | 328.6 | 124,140 | -560 | | NOV 30 | 329.7 | 125,740 | +1,600 | | DEC 31 | 317.7 | 108,380 | -17,360 | | JAN 31 | 319.1 | 110,400 | +2,020 | | FEB 28 | 305.6 | 90,860 | -19,540 | | MAR 31 | 300.3 | 83,200 | -7,660 | | APR 30 | 301.6 | 85,080 | +1,880 | | MAY 31 | 302.5 | 86,380 | +1,300 | | JUN 30 | 317.6 | 108,230 | +21,850 | | JUL 31 | 321.3 | 113,580 | +5,350 | | AUG 31 | 322.5 | 115,320 | +1,740 | | SEP 30 | 333.9 | 131,880 | +16,560 | | | | CAL YR 2000 | -8,390 | | | | WTR YR 2001 | +7,180 | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES | MONTH | RELEASE | SPILL | TOTAL | ADJUSTED | |-------------|---------|-------|-------|----------| | OCT | 373 | 0.2 | 373.2 | 364 | | NOV | 398 | 0.1 | 398.1 | 425 | | DEC | 498 | 0.1 | 498.1 | 216 | | JAN | 473 | 0 | 473 | 506 | | FEB | 522 | 0 | 522 | 170 | | MAR | 309 | 0 | 309 | 184 | | APR | 309 | 0 | 309 | 341 | | MAY | 528 | 0 | 528 | 549 | | JUN | 337 | 0 | 337 | 704 | | JUL | 401 | 0 | 401 | 488 | | AUG | 431 | 0 | 431 | 459 | | SEP | 681 | 282 | 963 | 1241 | | CAL YR 2000 | 431 | 0.03 | 431 | 419 | | WTR YR 2001 | 438 | 23.2 | 461 | 471 | ### 15072000 FISH CREEK NEAR KETCHIKAN LOCATION.--Lat $55^{\circ}23'31''$, long $131^{\circ}11'38''$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec. 6, T. 75 S., R. 94 E. (Ketchikan B-4 quad.), Gateway Borough, Hydrologic Unit 19010102, on Revillagigedo Island, in Tongass National Forest, on right bank 250 ft upstream from outlet of Low Lake, 750 ft upstream from mouth at Thorne Arm, and 18 mi east of Ketchikan. DRAINAGE AREA.--32.1 mi², excludes that of Granite Lake drainage basin. PERIOD OF RECORD.--May 1915 to October 1936, October 1938 to current year. Prior to October 1945, monthly discharge only. Records of daily discharge prior to October 1945 are available in computer files of the Geological Survey. Prior to January 1921, published as "near Sea Level, Revillagigedo Island." REVISED RECORDS. -- WSP 1372: 1918. GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to October 1935, at site 150 ft downstream at different datum. October 1935 to October 3, 1975, at prior site and present datum. REMARKS.--No estimated daily discharges. Records fair. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,200 ft^3/s and/or maximum (*): | Dat | te | Time | Dischard
(ft³/s) | | Gage height
(ft) | | Date | Time | | ischarge
(ft ³ /s) | Gage he | | |---------------------------------------|---|--|---|--|--|---|--|---|---|--|--|--| | *Sep | 23 | 0230 | *328 | 0 | *4.16 | | No ot | her peak | greater | than base | discharge | | | | | DISCHA | RGE, CUBIC | FEET P | | | YEAR OCTOBI | ER 2000 T | TO SEPTEM | IBER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 709
550
453
384
325 | 327
378
669
681
560 | 614
914
902
687
588 | 443
923
1600
1620
1730 | 686
843
912
713
538 | 233
215
211
201
176 | 217
192
172
175
184 | 723
618
792
731
608 | 993
839
682
570
504 | 373
344
332
347
412 | 184
200
207
205
210 | 990
1640
1910
1920
1490 | | 6
7
8
9 | 280
328
383
389
370 | 466
466
400
335
288 | 781
698
539
422
337 | 1410
1010
880
827
685 | 417
336
286
245
216 | 163
181
182
169
184 | 170
155
145
140
134 | 487
485
465
426
375 | 477
463
448
458
462 | 538
933
1010
1040
902 | 219
225
217
203
188 | 1410
1080
771
590
460 | | 11
12
13
14
15 | 345
361
451
442
798 | 247
294
292
247
218 | 283
238
210
183
160 | 539
418
339
288
261 | 191
170
160
167
160 | 357
447
381
318
285 | 129
131
132
130
125 | 479
502
520
511
473 | 443
416
402
427
448 | 708
567
559
621
580 | 175
163
152
143
136 | 370
317
279
244
218 | | 16
17
18
19
20 | 766
656
572
565
554 | 199
246
291
288
282 | 155
137
198
180
150 | 316
359
368
396
386 | 148
136
127
118
109 | 307
328
286
266
243 | 124
130
149
167
174 | 478
609
673
691
569 | 448
442
418
415
575 | 488
454
427
381
342 | 130
125
122
120
146 | 196
183
196
236
346 | | 21
22
23
24
25 | 499
779
844
680
525 | 297
690
1230
1500
1470 | 132
121
110
104
208 | 380
324
291
261
241 | 103
96
90
86
83 | 214
190
170
155
150 | 180
188
319
717
635 | 507
656
773
689
576 | 720
691
618
594
578 | 321
311
296
280
261 | 342
393
380
435
612 | 500
1920
2910
1840
1410 | | 26
27
28
29
30
31 | 418
348
337
310
289
305 | 1190
911
683
523
446 | 329
371
305
283
318
397 | 223
295
343
305
274
400 | 80
139
261
 | 158
239
242
222
219
248 | 572
652
799
771
829 | 499
463
448
460
469
795 | 520
471
462
449
413 | 241
225
215
204
193
185 | 1080
1570
1290
869
670
664 | 1140
1000
988
1030
1410 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 15015
484
844
280
442
29780
15.1
17.40 | 16114
537
1500
199
389
31960
16.7
18.67 | 11054
357
914
104
283
21930
11.1
12.81 | 18135
585
1730
223
380
35970
18.2
21.02 | 7616
272
912
80
164
15110
8.47
8.83 | 7340
237
447
150
219
14560
7.38
8.51 | 8737
291
829
124
173
17330
9.07
10.13 | 17550
566
795
375
511
34810
17.6
20.34 | 15846
528
993
402
462
31430
16.5
18.36 | 14090
455
1040
185
373
27950
14.2
16.33 | 11775
380
1570
120
207
23360
11.8
13.65 | 28994
966
2910
183
989
57510
30.1
33.60 | | MEAN
MAX
(WY)
MIN
(WY) | 699
1326
1975
237
1926 | 567
1767
1918
89.2
1974 | 421
1081
1931
83.4
1984 | 350
975
1926
37.9
1950 | 318
944
1993
37.8
1969 | 264
673
1986
71.4
1969 | 355
655
1949
130
1967 | - 2001,
504
867
1999
182
1998 | 471
764
1951
142
1998 | YEAR (WY) 335 718 1976 65.3 1958 | #
332
767
1972
50.7
1965 | 441
966
2001
80.0
1965 | [#] See period of record # 15072000 FISH CREEK NEAR KETCHIKAN--Continued | SUMMARY STATISTICS FOR | 2000 CALENDA | AR YEAR | FOR 2001 WATER | YEAR | WATER YEARS 1 | 915 - 2001# | |--------------------------|--------------|---------|----------------|--------|---------------|-------------| | ANNUAL TOTAL | 177723 | | 172266 | | | | | ANNUAL MEAN | 486 | | 472 | | 422 | | | HIGHEST ANNUAL MEAN | | | | | 556 | 1992 | | LOWEST ANNUAL MEAN | | | | | 302 | 1978 | | HIGHEST DAILY MEAN | 3040 | Aug 22 | 2910 | Sep 23 | 4410 | Oct 15 1961 | | LOWEST DAILY MEAN | 89 | Jan 26 | 80 | Feb 26 | 20 | Sep 9 1928 | | ANNUAL SEVEN-DAY MINIMUM | 100 | Jan 20 | 92 | Feb 20 | 23 | Sep 5 1928 | | MAXIMUM PEAK FLOW | | | 3280 | Sep 23 | a5400 | Oct 15 1961 | | MAXIMUM PEAK STAGE | | | 4.16 | Sep 23 | b5.85 | Oct 15 1961 | | INSTANTANEOUS LOW FLOW | | | 76 | Feb 26 | 20 | Sep 9 1928 | | ANNUAL RUNOFF (AC-FT) | 352500 | | 341700 | | 306000 | | | ANNUAL RUNOFF (CFSM) | 15.1 | | 14.7 | | 13.2 | | | ANNUAL RUNOFF (INCHES) | 205.96 | | 199.64 | | 178.79 | | | 10 PERCENT EXCEEDS | 896 | | 906 | | 864 | | | 50 PERCENT EXCEEDS | 406 | | 375 | | 319 | | | 90 PERCENT EXCEEDS | 179 | | 150 | | 98 | | $[\]begin{tabular}{ll} \# & See Period of Record \\ a & From rating curve extended above 3,600 ft^3/s \\ b & At site then in use \\ \end{tabular}$ ### 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK LOCATION.--Lat $55^{\circ}43'58''$, long $132^{\circ}58'02''$, in $NE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 10, T. 71 S., R. 81 E. (Craig C-4
quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank, immediately upstream from bridge on Forest Road 2050, 6 mi upstream from Middle Fork Staney Creek and 12.4 mi north of Klawock. DRAINAGE AREA.--3.07 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1990 to current year. REVISED RECORDS.--WDR AK-92-1: 1991. WDR AK-00-1: 1990(M), 1991-92(P), 1993, 1994-99(P). Discharge GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map. Gage height REMARKS.--Records good except for those above 200 ${\rm ft}^3/{\rm s}$ which are fair and estimated daily discharges which are poor. Discharge Gage height EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 350 ft³/s (revised) and maximum (*): | Da | te | Time | (ft ³ / | | (ft) | - | Date | Time | | (ft ³ /s) | | neight
t) | |------------------------------------|--|--|---|---|---|--|---|--|---|---|--|---| | Sep | 30 | 0015 | * | 612 | *5.19 | | No oth | ner peak | greater | than base | discharg | ge | | | | DISCH | ARGE, CUB | IC FEET | | | YEAR OCTOBE | R 2000 | TO SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
8.4
12
7.7
34 | 12
24
61
5.8 | 79
54
2.4
3.2
104 | 35
96
132
44
96 | 38
35
26
10
6.2 | 15
13
11
8.5
6.1 | 5.9
4.3
3.6
7.2
7.2 | 14
18
48
17
8.7 | 24
16
10
9.4
11 | 3.8
3.4
3.1
4.8
8.7 | 2.0
2.1
1.8
1.6
1.4 | 62
48
54
25
51 | | 6
7
8
9
10 | 56
44
19
16
8.5 | 25
19
5.1
1.9
1.3 | 27
4.9
2.8
1.9
1.4 | 38
24
40
19
9.4 | 5.0
4.3
3.9
3.5
e3.0 | 6.9
24
9.7
12
87 | 6.0
5.7
5.2
5.6
5.6 | 5.9
15
47
16
13 | 12
11
10
14
13 | 32
20
19
19 | 1.4
1.3
1.2
1.2 | 19
9.9
9.3
5.4
3.9 | | 11
12
13
14
15 | 46
40
20
9.8
47 | 3.0
22
4.3
1.8
1.3 | 1.2
e1.1
e.95
e.90
e.85 | 6.0
4.5
4.6
4.6
28 | e2.8
e2.5
e14
e12
e15 | 141
19
10
6.4
7.2 | 6.0
8.2
6.2
6.3
7.1 | 22
19
14
14
15 | 8.7
7.0
8.4
14 | 5.4
5.3
15
11
7.0 | 1.0
1.0
1.0
.98 | 4.0
8.3
6.4
4.1
3.5 | | 16
17
18
19
20 | 26
9.3
6.5
14
84 | 2.8
40
2.3
2.6
1.3 | e.80
e.75
e.85
e1.0
e.90 | 59
24
23
15
16 | e4.4
e3.2
e2.9
e2.7
e2.5 | 7.9
13
9.5
10
4.9 | 9.2
18
18
13 | 18
21
24
19
13 | 9.5
8.1
6.9
7.1
18 | 7.2
9.1
4.7
3.5
2.8 | .97
.97
1.7
2.1
3.9 | 11
41
89
91
36 | | 21
22
23
24
25 | 13
46
34
8.0
4.8 | .83
41
48
29
21 | e.80
e.70
e.55
e.60 | 24
19
26
25
13 | e2.4
e2.2
e2.1
e2.0
2.2 | e3.4
2.5
e2.2
2.5
12 | 9.2
10
43
30
19 | 19
41
14
10
8.0 | 21
13
10
17
13 | 2.4
2.2
2.4
2.4
2.1 | 45
8.0
10
15
24 | 45
126
40
14
14 | | 26
27
28
29
30
31 | 3.3
5.7
8.4
3.3
9.2
27 | 8.3
11
4.4
1.4
1.4 | 6.6
5.5
5.2
12
24
8.6 | 7.7
49
26
9.8
7.2 | 5.2
80
22

 | 10
11
9.8
8.5
9.2
9.4 | 38
48
15
20
19 | 8.8
11
11
12
14
29 | 8.8
5.6
4.9
3.8
3.3 | 2.0
1.9
1.9
1.8
1.7 | 30
88
10
10
11 | 12
17
14
126
218 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 689.9
22.3
84
3.3
1370
7.25
8.36 | 413.83
13.8
61
.83
821
4.49
5.01 | 376.45
12.1
104
.55
747
3.96
4.56 | 1011.8
32.6
132
4.5
2010
10.6
12.26 | 315.0
11.2
80
2.0
625
3.66
3.82 | 502.6
16.2
141
2.2
997
5.28
6.09 | 409.5
13.6
48
3.6
812
4.45
4.96 | 559.4
18.0
48
5.9
1110
5.88
6.78 | 329.5
11.0
24
3.3
654
3.58
3.99 | 215.7
6.96
32
1.7
428
2.27
2.61 | 294.69
9.51
88
.97
585
3.10
3.57 | 1207.8
40.3
218
3.5
2400
13.1
14.64 | | | | STATISTI | ICS OF MOI | NTHLY ME | AN DATA FOR | WATER | YEARS 1990 - | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 34.3
61.1
2000
18.5
1993 | 24.1
40.2
1994
12.9
1997 | 27.7
49.1
1991
11.5
1997 | 26.7
48.9
1997
12.0
1996 | 20.4
51.7
1993
7.51
2000 | 16.7
35.1
1994
7.38
1991 | 17.8
29.7
1997
7.76
1998 | 14.4
33.8
1999
3.87
1998 | 9.03
21.0
1999
1.59
1993 | 5.94
11.8
1997
1.46
1993 | 9.80
17.9
1998
1.80
1993 | 25.2
45.1
1994
10.4
1993 | See Period of Record; partial years used in monthly summary statistics ${\tt Estimated}$ # 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued | SUMMARY STATISTICS FOR | R 2000 CALENDAR YE | AR FOR 2001 WATER | YEAR WA | TER YEARS 1990 - 2001# | |--------------------------|--------------------|-------------------|---------|------------------------| | ANNUAL TOTAL | 5978.04 | 6326.17 | | | | ANNUAL MEAN | 16.3 | 17.3 | | 19.5 | | HIGHEST ANNUAL MEAN | | | | 24.7 1994 | | LOWEST ANNUAL MEAN | | | | 15.4 1996 | | HIGHEST DAILY MEAN | 218 Aug | 21 218 | Sep 30 | 793 Oct 26 1993 | | LOWEST DAILY MEAN | .55 Dec | 23 .55 | Dec 23 | .38 Jul 21 1993 | | ANNUAL SEVEN-DAY MINIMUM | .77 Dec | 18 .77 | Dec 18 | .49 Jul 15 1993 | | MAXIMUM PEAK FLOW | | 612 | Sep 30 | all10 Jan 29 1993 | | MAXIMUM PEAK STAGE | | 5.19 | Sep 30 | 6.34 Jan 29 1993 | | INSTANTANEOUS LOW FLOW | | | | b.37 Jul 20 1993 | | ANNUAL RUNOFF (AC-FT) | 11860 | 12550 | | 14100 | | ANNUAL RUNOFF (CFSM) | 5.32 | 5.65 | | 6.34 | | ANNUAL RUNOFF (INCHES) | 72.44 | 76.66 | | 86.11 | | 10 PERCENT EXCEEDS | 39 | 43 | | 43 | | 50 PERCENT EXCEEDS | 9.6 | 9.7 | | 9.2 | | 90 PERCENT EXCEEDS | 1.6 | 1.7 | | 2.2 | [#] See Period of Record; partial years used in monthly summary statistics a From rating extended above 140 ft $^3/s$ b Jul. 20 and 21, 1993 ### 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1991 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1990 to current year. INSTRUMENTATION.--Electronic water temperature recorder since November 20, 1990, set for 2-hour recording interval. New water temperature recorder installed April 11, 1996 with a 15-minute recording interval. REMARKS.--Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on August 27. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE.--Maximum recorded, 18.5° C, June 30, 1992, July 16, 1993, and July 2-4, 1998; minimum, 0.0°C, on many days during winters. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE.--Maximum, 17.0°C August 13; minimum, 0.0°C, on many days during winter. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |------|------|------------------------------------|--|-------------------------------------|---|---|---| | AUG | | | | | | | | | 27 | 1332 | 28.5 | 1.5 | 2.64 | 45 | 10.5 | 14.0 | | 27 | 1333 | 28.5 | 6.5 | 2.64 | 45 | 10.5 | 14.0 | | 27 | 1334 | 28.5 | 11.5 | 2.64 | 45 | 10.5 | 14.0 | | 27 | 1335 | 28.5 | 16.5 | 2.64 | 45 | 10.5 | 14.0 | | 27 | 1336 | 28.5 | 21.5 | 2.64 | 45 | 10.5 | 14.0 | | 27 | 1337 | 28.5 | 26.5 | 2.64 | 45 | 10.5 | 14.0 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NC | VEMBER | | DI | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.0
6.5
7.0
7.5 | 6.0
5.0
6.0
6.5
7.0 | 7.0
6.0
6.5
7.0 | 5.0
6.5
6.5
5.5 | 4.5
5.0
5.5
4.5
4.5 | 4.5
5.5
6.5
5.0
5.0 | 4.0
4.5
4.0
3.5
4.5 | 3.5
4.0
3.5
3.0
3.5 | 4.0
4.0
3.5
3.5
4.0 |
2.0
3.0
2.5
2.5
3.0 | 1.5
2.0
2.5
2.0
2.5 | 2.0
2.5
2.5
2.5
2.5 | | 6
7
8
9
10 | 8.0
8.0
7.5
7.5 | 7.5
7.5
6.5
6.5 | 7.5
8.0
7.0
7.0 | 5.5
5.0
5.0
4.0
3.0 | 5.0
4.5
4.0
3.0
2.5 | 5.0
5.0
4.5
3.5
2.5 | 4.5
3.0
2.5
1.5 | 3.0
2.5
1.5
.5 | 4.0
2.5
2.5
1.0 | 2.5
3.0
3.0
2.5
1.5 | 2.0
2.0
2.5
1.5 | 2.5
2.5
2.5
2.0
1.5 | | 11
12
13
14
15 | 8.0
8.5
8.0
7.0 | 7.0
7.5
7.0
6.5
7.0 | 7.5
8.0
7.5
7.0 | 4.0
4.5
4.0
3.5
3.5 | 2.5
4.0
3.0
3.0
3.0 | 3.0
4.5
4.0
3.0
3.5 | .5
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 1.0
.5
1.0
1.0 | .0
.0
.5
.5 | .5
.0
.5
1.0 | | 16
17
18
19
20 | 7.0
7.0
7.0
6.5
6.0 | 6.0
6.5
6.5
6.0 | 6.5
7.0
7.0
6.0 | 4.5
4.5
3.5
4.5
5.0 | 3.5
3.0
2.5
3.5
4.5 | 4.0
4.0
3.0
4.0
5.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 2.0
2.5
3.0
2.0
2.5 | 1.5
2.0
2.0
2.0
2.0 | 2.0
2.5
2.5
2.0
2.5 | | 21
22
23
24
25 | 6.0
7.0
7.0
6.0
5.5 | 5.0
6.0
6.0
5.5
4.5 | 5.5
6.5
6.0
4.5 | 5.5
6.0
5.5
4.5 | 5.0
5.5
4.5
4.5
4.0 | 5.5
5.5
5.0
4.5
4.5 | .0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 2.5
2.5
3.0
3.5
3.5 | 2.0
2.0
2.5
3.0
3.0 | 2.0
2.5
3.0
3.0 | | 26
27
28
29
30
31 | 5.0
5.5
5.0
4.5
5.0 | 4.0
5.0
5.0
3.5
3.5
4.5 | 4.5
5.0
5.5
4.5
4.0
5.0 | 4.0
3.5
3.0
2.5
3.5 | 3.5
3.0
2.0
2.0
2.5 | 4.0
3.5
2.5
2.5
2.5 | .5
1.0
1.0
1.5
2.0 | .0
.5
1.0
1.0 | .0
.5
1.0
1.5
2.0 | 3.0
3.0
3.0
1.5
1.5 | 2.5
3.0
1.5
1.0
.5 | 3.0
3.0
2.0
1.5
1.0 | | MONTH | 8.5 | 3.5 | 6.4 | 6.5 | 2.0 | 4.2 | 4.5 | .0 | 1.2 | 3.5 | .0 | 2.0 | # 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | MAX | | | TEMPER | RATURE, | WATER, D | EGREES C. | ELSIUS, | WATER YEAR | OCTOBER | 2000 10 | SEPTEMBER | 2001 | | |---|----------------------|---------------------|-------------------|-------------------|-------------------------|----------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | 1 | DAY | MAX | MIN | MEAN | | 2 3.0 2.5 3.5 2.5 2.5 1.0 2.0 5.5 1.0 2.5 1.0 1.0 4.0 3.0 3.5 3.5 4.0 5.5 1.0 1.5 1.5 1.5 1.0 2.0 2.0 1.0 1.0 2.5 1.5 1.5 1.5 3.0 4.0 5.5 1.0 1.0 1.0 4.0 3.0 3.0 4.0 5.5 1.0 1.0 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 7 1.0 | 2
3
4 | 3.0
2.5
1.5 | 2.5
1.5
.5 | 2.5
2.0
1.0 | 2.0
1.0
2.0 | .5
.5
.5 | 1.0
1.0
1.0 | 2.5
3.0
2.5 | .0
.0
.5 | 1.0
1.5
1.5 | 4.0
4.0
5.0 | 3.0
3.0
3.0 | 3.5
3.5
4.0 | | 12 | 7
8
9 | 1.0
1.0
.5 | .0
.5
.0 | .5
.5
.5 | 2.0
2.0
2.0 | 1.0
1.0
1.0 | 1.5
1.5
1.5 | 3.5
2.5
3.5 | .5
1.0
1.0 | 2.0
1.5
2.5 | 4.5
3.5
5.0 | 3.5
3.0
2.5 | 4.0
3.0
3.5 | | 17 | 12
13
14 | .0 | .0.0 | .0 | 2.5
2.5
2.0 | 1.5
1.0
.5 | 2.0
2.0
1.5 | 3.5
3.5
5.0 | 1.5
1.0
2.0 | 2.5
2.5
3.5 | 5.5
6.0
6.0 | 3.5
3.5
4.0 | 4.5
4.5
5.0 | | 22 | 17
18
19 | .0 | .0.0 | .0 | 3.0
2.5
2.0 | 1.5
2.0
1.0 | 2.5
2.0
1.5 | 3.0
4.0
4.5 | 2.0
2.0
2.0 | 2.5
2.5
3.0 | 5.5
4.5
6.0 | 3.5
3.5
3.5 | 4.5
4.0
4.5 | | 27 | 22
23
24 | .5
.5
.0 | .0.0 | .0 | .5
.5
1.0 | .0 | .0
.0
.5 | 4.5
3.0
3.5 | 3.0
2.0
2.0 | 3.5
2.5
3.0 | 6.5
6.5
6.5 | 4.5
4.0
4.0 | 5.5
5.0
5.5 | | DAY MAX MIN MEAN JUNE JULY AUGUST SEPTEMBER 1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5 9.5 9.5 9.5 2 6.5 12.5 10.5 11.0 11.0 11.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 11.0 12.5 9.5 8.5 9.0 9.5 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 11.0 11.0 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11 | 27
28
29
30 | .5
.5
 | .0
.0
 | .0
.5
 | 2.0
1.0
2.0
.5 | .5
.0
.0 | 1.0
.5
1.0
.5 | 4.0
4.5
4.0
4.5 | 3.0
2.5
3.0
3.0 | 3.5
3.5
3.5
3.5 | 7.0
6.5
8.0
6.5 | 5.0
4.5
5.0
5.0 | 6.0
5.5
6.5
5.5 | | 1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5 | MONTH | 3.0 | .0 | . 4 | 3.0 | .0 | 1.1 | 5.5 | .0 | 2.6 | 8.0 | 2.5 | 4.6 | | 1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5 | | | | | | | | | | | | | | | 2 6.5 5.0 5.0 5.5 12.0 10.0 11.0 13.5 11.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.0 12.5 10.5 11.0 14.0 10.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 14.0 11.5
12.5 9.5 8.5 9.0 9.5 5 7.5 5.5 6.5 11.0 10.5 11.0 14.0 11.5 12.5 9.5 9.5 9.0 9.5 5 7.5 5.5 6.5 10.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 12.5 9.0 14.5 11.0 13.0 9.5 9.0 9.0 9.0 14.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12 | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | | | 7 8.0 6.0 7.0 9.5 8.5 9.0 14.5 11.0 13.0 9.5 9.0 9.0 8 9.0 6.0 7.5 9.0 8.5 8.5 16.0 11.5 14.0 10.5 8.5 9.5 10 8.0 6.0 7.0 10.0 8.5 9.0 16.0 12.0 14.0 10.0 8.5 9.5 11 7.5 6.5 7.0 10.5 8.5 9.5 15.0 13.0 14.0 9.5 8.5 9.0 12 9.0 6.5 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 13 8.0 7.0 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 14 9.0 6.5 7.5 9.5 8.5 9.0 15.5 14.0 14.5 10.5 9.0 19.0 15 9.0 7.5 10.5 9.5 10.0 16.5 | 2
3
4 | 6.5
7.0
7.5 | 5.0
5.5
5.5 | 5.5
6.0
6.5 | 12.0
12.5
11.0 | 10.0
10.5
10.5 | 11.0
11.0
11.0 | 13.5
14.0
13.0 | 11.5
10.5
12.0 | 12.5
12.5
12.5 | 9.5
9.5
10.0 | 8.5
8.5
9.0 | 9.0
9.0
9.5 | | 12 9.0 6.5 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 13 8.0 7.0 7.5 9.0 8.5 9.0 15.5 14.0 14.5 10.5 9.0 9.5 14 9.0 6.5 7.5 9.5 8.5 9.0 15.5 14.0 14.5 10.5 9.0 10.0 15 9.0 7.0 8.0 11.0 8.5 10.0 16.5 13.5 15.0 11.5 10.0 10.5 16 8.0 7.0 7.5 10.5 9.5 10.0 16.5 13.0 15.0 11.5 10.5 11.0 17 8.5 7.0 7.5 11.0 9.0 10.0 16.5 13.0 15.0 11.5 10.5 11.0 18 11.0 7.5 9.0 12.5 9.5 11.0 14.5 13.0 13.5 10.5 9.5 10.0 18 11.0 7.5 8.0 14.5 10.5 | 7
8
9 | 8.0
9.0
7.5 | 6.0
6.0
6.5 | 7.0
7.5
7.0 | 9.5
9.0
9.5 | 8.5
8.5
8.0 | 9.0
8.5
9.0 | 14.5
16.0
16.0 | 11.0
11.5
12.0 | 13.0
14.0
14.0 | 9.5
10.5
10.0 | 9.0
8.5
8.5 | 9.0
9.5
9.5 | | 17 8.5 7.0 7.5 11.0 9.0 10.0 15.0 14.0 14.5 11.5 10.5 11.0 18 11.0 7.5 9.0 12.5 9.5 11.0 14.5 13.0 13.5 10.5 9.5 10.0 19 10.0 8.5 9.0 14.5 10.5 12.5 14.0 12.5 13.5 9.5 9.0 9.5 20 9.5 8.0 9.0 15.5 11.5 13.5 13.0 11.0 12.5 9.5 9.0 9.5 21 9.0 7.5 8.0 16.5 12.5 14.5 11.0 10.5 11.0 9.5 9.0 9.0 22 9.5 7.5 8.5 14.5 13.0 14.0 11.5 10.5 11.0 9.5 9.0 9.0 23 8.5 8.0 8.0 13.0 11.5 12.5 11.5 10.0 11.0 9.5 9.0 9.0 24 9.0 7.5 8.5 12.5 11.0 <t< th=""><th>12
13
14</th><th>9.0
8.0
9.0</th><th>6.5
7.0
6.5</th><th>7.5
7.5
7.5</th><th>9.5
9.0
9.5</th><th>9.0
8.5
8.5</th><th>9.5
9.0
9.0</th><th>16.0
17.0
15.5</th><th>12.0
12.5
14.0</th><th>14.5
15.0
14.5</th><th>9.5
10.5
10.5</th><th>9.0
9.0
9.0</th><th>9.0
9.5
10.0</th></t<> | 12
13
14 | 9.0
8.0
9.0 | 6.5
7.0
6.5 | 7.5
7.5
7.5 | 9.5
9.0
9.5 | 9.0
8.5
8.5 | 9.5
9.0
9.0 | 16.0
17.0
15.5 | 12.0
12.5
14.0 | 14.5
15.0
14.5 | 9.5
10.5
10.5 | 9.0
9.0
9.0 | 9.0
9.5
10.0 | | 22 9.5 7.5 8.5 14.5 13.0 14.0 11.5 10.5 11.0 9.5 9.0 9.0 23 8.5 8.0 8.0 13.0 11.5 12.5 11.5 10.0 11.0 9.0 8.0 8.5 24 9.0 7.5 8.5 12.5 11.0 12.0 10.5 10.0 10.0 8.5 8.0 8.5 25 9.0 8.0 8.5 13.5 11.0 12.0 10.5 10.0 10.0 9.0 8.0 8.5 26 11.5 7.5 9.5 14.0 11.5 12.5 10.5 9.5 10.0 8.5 8.0 8.5 27 11.0 8.5 10.0 13.0 12.0 12.5 11.0 10.0 10.5 8.5 8.0 8.5 28 11.0 9.5 10.0 13.0 11.5 12.0 11.5 10.0 10.5 8.5 8.0 8.5 29 11.5 9.5 10.5 13.0 11.5 < | 17
18
19 | 8.5
11.0
10.0 | 7.0
7.5
8.5 | 7.5
9.0
9.0 | 11.0
12.5
14.5 | 9.0
9.5
10.5 | 10.0
11.0
12.5 | 15.0
14.5
14.0 | 14.0
13.0
12.5 | 14.5
13.5
13.5 | 11.5
10.5
9.5 | 10.5
9.5
9.0 | 11.0
10.0
9.5 | | 27 11.0 8.5 10.0 13.0 12.0 12.5 11.0 10.0 10.5 8.5 8.0 8.5 28 11.0 9.5 10.0 13.0 11.5 12.0 11.5 10.0 10.5 8.5 8.0 8.5 29 11.5 9.5 10.5 13.0 11.5 12.0 11.0 10.5 10.5 8.0 7.5 8.0 30 13.0 9.0 11.0 13.0 11.5 12.5 11.5 10.0 10.5 8.0 7.5 8.0 31 12.5 12.0 12.0 10.5 9.5 10.0 | 22
23
24 | 9.5
8.5
9.0 | 7.5
8.0
7.5 | 8.5
8.0
8.5 | 14.5
13.0
12.5 | 13.0
11.5
11.0 | 14.0
12.5
12.0 | 11.5
11.5
10.5 | 10.5
10.0
10.0 | 11.0
11.0
10.0 | 9.5
9.0
8.5 | 9.0
8.0
8.0 | 9.0
8.5
8.5 | | | 27
28 | 11.0 | 8.5
9.5 | 10.0
10.0 | 13.0
13.0 | 12.0
11.5 | 12.5
12.0 | 11.0
11.5 | 10.0
10.0 | 10.5
10.5 | 8.5
8.5 | 8.0
8.0 | 8.5
8.5 | | | | 11.5
13.0 | 9.0 | 11.0 | 13.0 | 11.5 | 12.5 | 11.5 | 10.0 | 10.5 | 8.0 | 7.5 | 8.0 | ### SOUTHEAST ALASKA ### 15081497 STANEY CREEK NEAR KLAWOCK LOCATION.--Lat $55^{\circ}48'05''$, long $133^{\circ}06'31''$, in $SW_{4}^{1}NW_{4}^{1}$ sec. 14, T. 70 S., R. 80 E. (Craig D-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on right bank, approximately 2.9 mi upstream from mouth, and 17 mi north of Klawock. DRAINAGE AREA. -- 50.6 mi². Date *Sep 30 0230 ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1989 to current year. Equivalent daily discharge record collected at station No. 15081500 near Craig during water years 1964-81. Drainage area, 51.6 mi². GAGE.--Water-stage recorder. Elevation of gage is 47 ft above sea level, by barometer. Discharge (ft^3/s) *11100 REMARKS.--Records fair, except for discharges above $6,000~{\rm ft}^3/{\rm s}$, and estimated daily discharges, which are poor. Date Discharge (ft³/s) No other peak greater than base discharge Gage height (ft) EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,000 $\mathrm{ft^3/s}$ and maximum (*): Gage height (ft) *15.00 | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | | | |-----------------------------------|--|---------------------------------|--|--|----------------------------------|--|---------------------------------|--|-------------------------------|----------------------------------|---|-----------------------------------|--|--| | | | | | | DAII | LY MEAN V | ALUES | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 478 | 481 | 2040 | 647 | 864 | 376 | 219 | 286 | 338 | 51 | 31 | 1380 | | | | 2 | 221 | 391 | 1990 | 1530 | 492 | 251 | 135 | 372 | 371 | 55 | 35 | 1390 | | | | 3 | 277 | 1160 | 342 | 2920 | 589 | 240 | 99 | 1290 | 156 | 51 | 33 | 847 | | | | 4 | 219 | 341 | 208 | 1030 | 246 | 223 | 162 | 489 | 129 | 76 | 29 | 500 | | | | 5 | 281 | 267 | 1540 | 1730 | 144 | 151 | 208 | 237 | 118 | 116 | 26 | 708 | | | | 6 | 1060 | 624 | 1010 | 949 | 107 | 177 | 154 | 141 | 171 | 314 | 24 | 523 | | | | 7 | 875 | 607 | 246 | 493 | 94 | 433 | 124 | 309 | 164 | 278 | 25 | 188 | | | | 8 | 496 | 357 | 143 | 1030 | 96 | 240 | 108 | 1090 | 138 | 220 | 23 | 177 | | | | 9 | 483 | 209 | 102 | 448 | 91 | 176 | 121 | 412 | 128 | 296 | 20 | 114 | | | | 10 | 275 | 157 | e71 | 219 | 76 | 1520 | 105 | 211 | 178 | 168 | 18 | 86 | | | | 11
12
13
14
15 | 680
594
609
281
1150 | 137
866
345
192
146 | e58
e55
e48
e42
e36 | 140
101
100
98
264 | e70
e66
e320
480
142 | 3300
441
228
144
132 | 101
128
113
91
95 | 304
299
243
182
185 | 125
90
83
151
148 | 116
88
169
175
126 | 16
15
14
13 | 76
109
124
86
69 | | | | 16 | 589 | 150 | e40 | 944 | e82 | 154 | 102 | 238 | 128 | 98 | 12 | 62 | | | | 17 | 293 | 1400 | e60 | 470 | e65 | 223 | 187 | 355 | 96 | 168 | 12 | 75 | | | | 18 | 205 | 344 | e360 | 406 | e46 | 172 | 235 | 347 | 82 | 100 | 16 | 549 | | | | 19 | 228 | 287 | 216 | 363 | e44 | 232 | 217 | 348 | 77 | 71 | 43 | 1260 | | | | 20 | 1270 | 226 | 105 | 221 | e40 | 141 | 134 | 233 | 102 | 58 | 46 | 450 | | | | 21 | 484 | 207 | e80 | 610 | e36 | e69 | 123 | 203 | 197 | 50 | 474 | 266 | | | | 22 | 1140 | 1730 | e70 | 486 | e34 | e65 | 119 | 564 | 197 | 44 | 183 | 1350 | | | | 23 | 876 | 2100 | e60 | 642 | e30 | e55 | 556 | 256 | 155 | 44 | 103 | 608 | | | | 24 | 407 | 1270 | e60 | 570 | e25 | 60 | 810 | 159 | 161 | 49 | 142 | 250 | | | | 25 | 230 | 763 | 683 | 242 | 51 | 170 | 421 | 121 | 179 | 43 | 224 | 344 | | | | 26
27
28
29
30
31 | 170
150
201
150
390
904 | 558
593
403
199
140 | 320
191
187
325
675
374 | 157
1190
821
260
214
2810 | 117
2170
682
 | 284
248
325
329
507
528 | 391
992
338
320
433 | 105
122
113
115
121
431 | 149
88
75
66
56 | 39
37
34
33
30
29 | 349
1610
284
140
147
179 | 198
282
196
1840
5200 | | | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 15666 | 16650 | 11737 | 22105 | 7299 | 11594 | 7341 | 9881 | 4296 | 3226 | 4298 | 19307 | | | | | 505 | 555 | 379 | 713 | 261 | 374 | 245 | 319 | 143 | 104 | 139 | 644 | | | | | 1270 | 2100 | 2040 | 2920 | 2170 | 3300 | 992 | 1290 | 371 | 314 | 1610 | 5200 | | | | | 150 | 137 | 36 | 98 | 25 | 55 | 91 | 105 | 56 | 29 | 12 | 62 | | | | | 31070 | 33030 | 23280 | 43850 | 14480 | 23000 | 14560 | 19600 | 8520 | 6400 | 8530 | 38300 | | | | | 9.99 | 11.0 | 7.48 | 14.1 | 5.15 | 7.39 | 4.84 | 6.30 | 2.83 | 2.06 | 2.74 | 12.7 | | | | | 11.52 | 12.24 | 8.63 | 16.25 | 5.37 | 8.52 | 5.40 | 7.26 | 3.16 | 2.37 | 3.16 | 14.19 | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 2001, BY WATER YEAR (WY)# 359 565 204 1994 319 559 1997 173 230 558 1999 79.0 1998 97.6 1997 22.1 200 121 252 1999 26.5 184 384 1998 26.6 448 783 1994 166 1995 407 983 1991 152 464 782 1992 240 688 1123 2000 1997 443 581 996 201 1992 1997 622 1270 1992 267 MEAN (WY) (WY) MTN MAX See
Period of Record Estimated # 15081497 STANEY CREEK NEAR KLAWOCK--Continued | SUMMARY STATISTICS FOR | 2000 CALENDA | R YEA | R | FOR 2001 | WATER | YEAR | | WATER YEARS 1 | 990 - | 20 | 01# | |--------------------------|--------------|-------|----|----------|-------|------|----|---------------|-------|----|------| | ANNUAL TOTAL | 131906 | | | 1334 | 100 | | | | | | | | ANNUAL MEAN | 360 | | | 3 | 365 | | | 377 | | | | | HIGHEST ANNUAL MEAN | | | | | | | | 506 | | | 1992 | | LOWEST ANNUAL MEAN | | | | | | | | 283 | | | 1995 | | HIGHEST DAILY MEAN | 3530 | Aug : | 21 | 52 | 200 | Sep | 30 | 14900 | Oct | 26 | 1993 | | LOWEST DAILY MEAN | 25 | Aug | 14 | ā | 12 | Aug | 15 | 4.4 | Jul | 21 | 1993 | | ANNUAL SEVEN-DAY MINIMUM | 1 31 | Aug | 8 | | 13 | Aug | 11 | 6.0 | Jul | 15 | 1993 | | MAXIMUM PEAK FLOW | | | | 111 | .00 | Sep | 30 | b19800 | | | 1993 | | MAXIMUM PEAK STAGE | | | | | 15.00 | Sep | 30 | 17.20 | Oct | 26 | 1993 | | INSTANTANEOUS LOW FLOW | | | | | 11 | Aug | 17 | 4.0 | Jul | 21 | 1993 | | ANNUAL RUNOFF (AC-FT) | 261600 | | | 2646 | 00 | | | 272800 | | | | | ANNUAL RUNOFF (CFSM) | 7.12 | | | | 7.22 | | | 7.44 | | | | | ANNUAL RUNOFF (INCHES) | 96.97 | | | | 98.07 | | | 101.12 | | | | | 10 PERCENT EXCEEDS | 880 | | | | 387 | | | 902 | | | | | 50 PERCENT EXCEEDS | 191 | | | 1 | .96 | | | 173 | | | | | 90 PERCENT EXCEEDS | 61 | | | | 44 | | | 37 | | | | $[\]begin{tabular}{lll} \# & See Period of Record \\ a & Aug. 15-17 \\ b & From rating curve extended above 3300 ft^3/s \\ \end{tabular}$ ### SOUTHEAST ALASKA ### 15081497 STANEY CREEK NEAR KLAWOCK--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1990 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1990 to current year. INSTRUMENTATION.--Electronic water temperature recorder since January 11, 1990, set for 2-hour recording interval. As of April 9, 1996, recorder set to 15-minute recording interval. REMARKS.--No record due to malfunctioning probe October 25-30, November 9-11, 14-16, 28-30, December 7 to January 1, 10-15, 29-30, February 4-11, 16-26, and March 17-24. Partial water temperature on November 12-13, January 28, February 12, March 16, and April 20. Records represent water temperature at sensor within 0.5°C. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE.--Maximum recorded, 26.0°C, June 29, 1990, but may have been higher during period of instrument malfunction July 9 to August 23, 1990; minimum, 0.0°C on many days during winter. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE.--Maximum, 19.5°C, August 13; minimum, 0.0°C on several days during the winter. TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.5
7.5
8.0
8.5
9.0 | 7.0
5.5
7.0
7.0
8.0 | 8.0
6.5
7.5
7.5 | 5.5
7.0
7.0
6.0
5.5 | 5.0
5.5
6.0
4.5
5.0 | 5.0
6.0
7.0
5.5
5.5 | 5.0
5.0
5.0
4.5
5.5 | 4.0
4.5
4.0
4.0
4.5 | 4.5
5.0
4.5
4.0
5.0 | 3.0
3.0
3.0
3.5 | 2.0
3.0
2.5
3.0 | 2.5
3.0
3.0 | | 6
7
8
9
10 | 8.5
9.0
8.5
8.0 | 8.0
8.5
7.5
7.5 | 8.5
8.5
8.0
7.5 | 6.0
5.5
5.5
 | 5.5
5.5
4.0
 | 5.5
5.5
5.0
 | 5.5

 | 4.0 | 5.0

 | 3.0
3.5
3.5
3.0 | 3.0
3.0
3.0
2.5 | 3.0
3.0
3.0
3.0 | | 11
12
13
14
15 | 8.5
9.5
9.0
8.0 | 7.5
8.5
8.0
7.5
7.5 | 8.0
9.0
8.5
7.5
8.0 | 5.0
4.5
 | |

 |

 | |

 |

 |

 | | | 16
17
18
19
20 | 8.0
8.0
8.0
7.5
7.0 | 7.0
7.0
7.5
6.0
6.5 | 7.5
7.5
7.5
6.5 | 4.5
4.0
4.5
5.5 | 4.0
3.0
3.5
4.5 | 4.5
3.5
4.0
5.0 |

 | |

 | 2.5
3.0
3.5
3.0 | 2.0
2.5
3.0
2.5
2.5 | 2.5
3.0
3.0
2.5
3.0 | | 21
22
23
24
25 | 6.5
7.5
7.5
7.0 | 5.5
6.5
7.0
6.0 | 6.0
7.0
7.0
6.5 | 6.0
6.5
6.0
5.5
5.5 | 5.5
6.0
5.5
5.0
4.5 | 5.5
6.0
6.0
5.5
5.0 |

 | |

 | 3.0
3.5
3.5
4.0
4.0 | 2.5
2.5
3.0
3.5
3.5 | 2.5
3.0
3.5
3.5 | | 26
27
28
29
30 | | |

 | 4.5
4.5
 | 4.5
3.5
 | 4.5
4.0
 |

 | |

 | 4.0
4.0
3.5
 | 3.5
3.5
 | 4.0
3.5
 | | 31
MONTH | 5.5 | 5.0 | 5.5 | | | | | | | 3.5 | 2.0 | 2.5 | # 15081497 STANEY CREEK NEAR KLAWOCK--Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|---|---|--|---|---|---|--|--| | | | FEBRUARY | | MA | RCH | | APRII | | | MAY | | | | 1
2
3
4
5 | 4.0
4.0
3.5
 | 3.0
3.5
2.5
 | 3.5
3.5
3.0
 | 2.0
2.5
2.5
3.0
2.5 | 1.0
1.5
1.5
1.5 | 1.5
2.0
2.0
2.0
2.0 | 3.5
4.0
4.0
4.0 | 1.5
1.5
1.5
2.5
2.0 | 2.5
2.5
3.0
3.0 | 7.5
6.0
6.0
6.5 | 5.0
5.0
4.5
4.5 | 6.0
5.5
5.0
5.5 | | 6
7
8
9
10 |

 |

 | | 3.0
3.0
3.0
3.0 | 2.0
2.0
1.5
2.0
2.5 | 2.5
2.5
2.5
2.5
2.5 | 5.0
4.5
3.5
5.0
5.5 | 2.0
2.0
2.0
2.0
2.5 | 3.5
3.5
3.0
3.5
4.0 | 6.0
5.0 | 4.0
5.0
4.5
4.0
5.0 | 5.5
4.5 | | 11
12
13
14 | .5
.5
1.5
2.0 |
.0
.0 |
.0
.5 | 3.0
3.5
3.5
3.5
4.0 | 2.5
3.0
2.0
1.0
2.5 | 3.0
3.0
3.0
2.5
3.5 | 4.0
5.5
5.0
7.5
7.0 | 3.0
3.0
2.5
3.5
3.0 | 3.5
4.0
4.0
5.0 | 7.0
8.0 | 5.5
5.5
5.0
6.0 | 6.0
6.5 | | 16
17
18
19
20 |

 |

 | | 3.5

 |

 |

 | 6.0
5.5
6.0
6.5
7.0 | 3.5
4.5
3.5
3.5 | 5.0
5.0
5.0
5.0 | 7.5
7.5
6.5
8.0
6.0 | 5.5
5.0
5.5
5.0 | 6.5
6.0 | | 21
22
23
24
25 |

 |

 | |

3.5 |

1.5 |

2.5 | 7.5
7.0
6.0
5.0
6.0 | 3.5
4.5
4.0
3.5
4.0 | 5.5
5.5
5.0
4.5
5.0 | 8.5
9.0
8.5
8.0
10.5 | 5.5
6.5
6.0
6.0
5.5 | 7.5
7.0 | | 26
27
28
29
30
31 | 1.0
1.0
 | .0
.5
 | .5
1.0
 | 2.5
3.5
2.5
3.0
2.0
3.0 | 1.5
1.5
1.5
1.0
1.5 | 2.0
2.0
2.0
2.0
1.5
2.0 | 6.0
6.0
7.0
6.0
7.0 | 4.5
4.5
4.0
5.0
4.5 | 5.5
5.0
5.5
5.5 | 8.5
9.5
8.5
11.0
8.5
9.0 | 6.0
6.5
6.5
7.5
7.5 | 7.5
7.5
7.5
8.5
8.0
8.5 | | | | | | | | | 7.5 | | | 11.0 | 4 0 | 6.5 | | MONTH | | | | | | | 7.3 | | | 11.0 | 4.0 | 0.5 | | MONTH | MAX | MIN | MEAN | | MIN | MEAN | MAX | MIN | MEAN | MAX | | MEAN | | | | | | | | | MAX | | | MAX | | MEAN | | | | MIN | | MAX
13.5
13.0
12.5
12.0 | MIN | | MAX
14.5
16.0 | MIN | | MAX
S | MIN
SEPTEMBE
10.5
10.0
9.5 | MEAN | | DAY 1 2 3 4 | 9.0
9.0
9.0
9.0 | MIN
JUNE
7.5
7.0
7.0
7.0 | MEAN
8.0
8.0
8.0
8.0 | 13.5
13.0
12.5
12.0
11.5
11.0
11.5 | MIN
JULY
10.5
10.0
10.5
10.5 | MEAN 12.0 11.5 11.5 | MAX
14.5
16.0
17.0
16.0 | MIN 12.0 12.0 11.5 13.5 11.5 | MEAN 13.0 14.0 14.5 14.0 | MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10. | MIN
SEPTEMBE
10.5
10.0
9.5
9.5
9.5
9.5
9.5 | MEAN 10.5 10.0 10.0 10.5 10.0 10.5 10.0 10.0 | | DAY 1 2 3 4 5 5 6 7 8 8 9 9 | 9.0
9.0
9.0
9.5
9.5
10.5
11.0
9.0 | MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 | MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 8.5 | 13.5
13.0
12.5
12.0
11.5
11.0
11.5 | MIN JULY 10.5 10.0 10.5 10.5 9.5 9.5 10.0 9.5 10.0 9.0 | MEAN 12.0 11.5 11.5 11.0 10.5 10.5 10.5 10.5 | MAX 14.5 16.0 17.0 16.0 16.0 17.5 18.5 18.5 | MIN AUGUST 12.0 12.0 11.5 13.5 11.5 13.0 12.0 13.0 13.0 13.0 13.0 13.0 | MEAN 13.0 14.0 14.5 14.0 14.0 15.0 16.0 16.0 | MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10. | MIN
SEPTEMBE
10.5
10.0
9.5
9.5
9.5
9.5
9.5 | MEAN 10.5 10.0 10.0 10.5 10.0 10.5 10.0 10.0 | | DAY 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 |
9.0
9.0
9.0
9.5
9.5
11.0
11.0
10.0 | MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 9.5 9.0 9.5 9.0 | 13.5
13.0
12.5
12.0
11.5
11.0
11.5
10.5
11.0
10.5
10.5 | MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 | MEAN 12.0 11.5 11.5 11.0 10.5 10.5 10.0 10.5 10.0 10.0 | MAX 14.5 16.0 17.0 16.0 16.0 17.5 18.5 18.5 18.5 18.5 19.5 17.0 | MIN AUGUST 12.0 12.0 11.5 13.5 11.5 13.0 12.0 13.0 13.0 13.0 13.5 | MEAN 13.0 14.0 14.5 14.0 14.0 15.0 16.0 16.0 16.0 16.0 17.0 16.0 | MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10. | MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.5 9.0 9.0 8.0 8.5 9.0 9.5 9.5 | MEAN 10.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 9.0 9.5 10.5 10.5 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 9.0
9.0
9.0
9.5
9.5
10.5
11.0
9.0
10.0
11.0
11.5
9.5
10.0
11.5 | MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8 | MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 8.5 9.0 9.0 9.5 9.5 10.0 | 13.5
13.0
12.5
12.0
11.5
11.0
11.5
11.0
10.5
11.0
10.5
11.0
10.5
12.5
12.5
12.5 | MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.5 10.0 9.0 9.0 9.5 9.5 9.5 9.5 10.0 10.0 10.0 | MEAN 12.0 11.5 11.5 11.5 11.0 10.5 10.0 10.5 10.0 10.5 10.0 10.0 | MAX 14.5 16.0 17.0 16.0 17.5 18.5 18.5 18.5 18.0 18.5 17.0 18.5 18.0 17.0 16.0 17.5 | MIN AUGUST 12.0 11.5 13.5 11.5 11.5 13.0 12.0 13.0 13.0 13.0 14.0 15.0 14.5 14.5 15.0 13.0 14.5 | MEAN 13.0 14.0 14.5 14.0 14.5 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16 | MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10. | MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.0 9.0 8.0 8.5 9.0 9.5 10.0 | MEAN R 10.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 9.0 9.5 10.5 10.5 10.5 11.0 11.0 11.0 11.0 | | DAY 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 9.0
9.0
9.0
9.5
10.5
11.0
11.0
11.0
11.0
11.5
12.0
11.5
12.0
12.5 | MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 10.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 9.0 9.5 9.0 9.1 10.5 11.5 11.0 | MAX 13.5 13.0 12.5 12.0 11.5 11.0 11.5 10.5 11.0 10.5 11.0 10.5 11.0 10.5 13.0 12.5 12.5 15.0 17.0 18.5 | MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.0 9.5 9.5 9.5 10.0 10.0 10.0 10.0 10.5 11.5 | MEAN 12.0 11.5 11.5 11.5 11.0 10.5 10.0 10.5 10.0 10.0 | MAX 14.5 16.0 17.0 16.0 17.5 18.5 18.5 18.5 18.5 18.5 17.0 18.5 17.0 18.5 18.0 17.0 16.0 17.5 18.0 17.0 18.5 18.0 17.0 18.5 | MIN AUGUST 12.0 12.0 11.5 13.5 11.5 11.5 13.0 12.0 13.0 13.0 14.0 14.0 15.0 14.5 14.5 15.0 14.5 12.0 13.0 13.0 | MEAN 13.0 14.0 14.5 14.0 14.5 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16 | MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10. | MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.0 9.0 9.0 9.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10 | MEAN R 10.5 10.0 10.0 10.5 10.0 10.0 10.0 10. | ### 15081610 THREEMILE CREEK NEAR KLAWOCK LOCATION.--Lat $53^{\circ}32'06''$, long $132^{\circ}57'17''$, in $SW^{1}_{/4}$ $SW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 2.0 mi upstream from the mouth at Klawock Lake, and 5.2 mi east of the city of Klawock. DRAINAGE AREA.--6.62 mi² PERIOD OF RECORD. -- March 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage is 295 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records fair except for those above 250 ft³/s, which are poor. | REPRINCES. | . 110 656 | DISCHARG | = | _ | | _ | YEAR OCTOBE | | TO SEPTEME | | re poor. | | |--------------------|-----------------------|------------------------|--------------------------|-------------------|--------------------|-------------------|--|-------------------|-------------------|-------------------|--------------------------|-------------------| | | | DIBCHING | n, cobic | | | ILY MEAN | | 2000 | TO DELTERE | ,ER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 56
36 | 51
57 | 173
132 | 67
156 | 85
88 | 31
26 | 26
21 | 51
66 | 138
108 | 43
45 | 24
24 | 179
158 | | 3
4 | 66
44 | 114
61 | 67
54 | 155
93 | 70
43 | 25
20 | 19
34 | 136
68 | 75
81 | 50
65 | 20
18 | 175
143 | | 5
6 | 42
55 | 56
63 | 120
97 | 142
87 | 34
28 | 16
22 | 23
20 | 40
29 | 91
98 | 82
102 | 17
17 | 138
96 | | 7
8 | 100
64 | 66
46 | 56
43 | 104
85 | 28
26 | 47
23 | 22
19 | 79
105 | 102
104 | 151
115 | 16
15 | 60
57 | | 9
10 | 51
41 | 36
30 | 33
28 | 60
39 | 23
21 | 19
136 | 21
18 | 43
36 | 102
85 | 112
84 | 15
14 | 38
26 | | 11
12 | 78
72 | 28
60 | 25
23 | 31
27 | 18
18 | 240
72 | 18
19 | 50
58 | 61
51 | 55
51 | 13
12 | 23
24 | | 13
14 | 73
73 | 38
31 | 20
16 | 27
24 | 68
37 | 36
24 | 16
16 | 56
54 | 78
101 | 68
133 | 12
11 | 20
17 | | 15 | 117 | 27 | 15 | 37 | 19 | 28 | 16 | 55 | 95 | 80 | 11 | 15 | | 16
17 | 72
48 | 30
80 | 16
22 | 66
72 | 15
14 | 32
42 | 20
47 | 56
83 | 78
72 | 72
63 | 10
9.9 | 14
17 | | 18
19 | 47
58 | 45
45 | 71
31 | 66
49 | 13
13 | 28
26 | 51
36 | 89
103 | 65
92 | 45
40 | 10
12 | 43
83 | | 20
21 | 90
67 | 55
49 | 21
19 | 48
61 | 12
12 | 19
14 | 27
29 | 55
63 | 133
115 | 42
41 | 36
101 | 54
66 | | 22
23 | 91
68 | 143
112 | 17
17 | 69
74 | 12
11 | 13
12 | 38
128 | 142
81 | 87
84 | 37
38 | 41
42 | 172
88 | | 24
25 | 51
40 | 106
82 | 27
71 | 58
44 | 9.9
10 | 15
77 | 90
56 | 53
45 | 81
67 | 48
33 | 52
50 | 64
56 | | 26
27 | 33
33 | 68
65 | 41
32 | 36
104 | 27
164 | 44
38 | 141
139 | 49
60 | 52
55 | 25
23 | 98
215 | 39
37 | | 28
29 | 38
29 | 43
33 | 35
41 | 66
41 | 58 | 29
28 | 67
87 | 63
65 | 65
52 | 22
22 | 72
47 | 38
221 | | 30
31 | 54
62 | 51 | 78
50 | 38
139 | | 76
47 | 66
 | 93
190 | 42 | 20
19 | 38
98 | 200 | | TOTAL | 1849 | | 1491 | 2165 | 976.9 | 1305 | 1330 | 2216 | 2510 | 1826 | 1170.9 | 2361 | | MEAN
MAX
MIN | 59.6
117
29 | 59.0
143
27 | 48.1
173
15 | 69.8
156
24 | 34.9
164
9.9 | 42.1
240
12 | 44.3
141
16 | 71.5
190
29 | 83.7
138
42 | 58.9
151
19 | 37.8
215
9.9 | 78.7
221
14 | | AC-FT
CFSM | 3670
9.00 | 3510 | 2960
7.25 | 4290
10.5 | 1940
5.26 | 2590
6.35 | 2640
6.69 | 4400
10.8 | 4980
12.6 | 3620
8.88 | 2320
5.70 | 4680
11.9 | | IN. | 10.37 | | 8.37 | 12.15 | 5.48 | 7.32 | 7.46 | 12.43 | 14.08 | 10.25 | 6.57 | 13.25 | | | | STATISTICS (| OF MONTH | ILY MEA | N DATA FO | R WATER Y | ZEARS 1999 - | - 2001, | BY WATER Y | EAR (WY) | # | | | MEAN
MAX | 86.2
113 | | 52.7
57.3 | 52.9
69.8 | 30.8
34.9 | 32.7
42.1 | 43.5
50.1 | 72.2
88.8 | 85.7
108 | 62.3
68.3 | 50.4
58.6 | 76.4
92.9 | | (WY)
MIN | 2000
59.6 | 2000 | 2000
48.1 | 2001
36.0 | 2001
26.8 | 2001 | 1999
36.0 | 1999
56.1 | 1999
65.8 | 1999
58.9 | 2000
37.8 | 1999
57.5 | | (WY) | 2001 | | 2001 | 2000 | 2000 | 1999 | 2000 | 2000 | 2000 | 2001 | 2001 | 2000 | | SUMMARY | STATIST | ICS FOR | 2000 Ci
18215.: | | YEAR | FOR 2001
2097 | L WATER YEAR | ! | WATER | YEARS 199 | 99 - 2001# | | | ANNUAL | | MEAN | 49. | | | | 57.5 | | 56
57 | | 2001 | | | LOWEST | ANNUAL M | EAN | 272 | Aug | 21 | 24 | 10 Mar 1 | .1 | 55
482 | . 8 | 2000
et 21 1999 | | | LOWEST
ANNUAL | DAILY ME.
SEVEN-DA | EAN
AN
Y MINIMUM | 7.:
9.: | 3 Mar
2 Mar | 9 6 | a
1 | 19.9 Feb 2
11 Aug 1 | .2 | 7
9 | .3 Ma | r 9 2000
r 4 1999 | | | MAXIMUM | PEAK FL | AGE | | | | 53 | 10 Mar 1
19.9 Feb 2
11 Aug 1
30 Sep 2
29.79 Jan
9.1 Feb 2 | 2 | b1390
11 | .55 Au | ig 21 2000
ig 21 2000 | | | ANNUAL | RUNOFF (RUNOFF (| AC-FT) | 36130 | 5.1 | | | 9.1 Feb 2
00
8.67 | ** | 41020
8 | | t 10 2000 | | | ANNUAL | | INCHES)
EDS | 7.!
102.:
79
47 | 20 | | | L7.67 | | 116
104 | .03 | | | | 50 PERC | CENT EXCE | EDS
EDS | 47
16 | | | 4 | 19
L7 | | 52
17 | | | | | | | | | | | | | | | | | | See Period of Record Feb. 24 and Aug. 17 From rating curve extended above 130 ${\rm ft}^3/{\rm s}$ Result of backwater from log on control. Maximum stage after log was removed, 9.69 ft Sep. 29. ### 15081614 HALFMILE CREEK ABOVE DIVERSION NEAR KLAWOCK LOCATION.--Lat $55^{\circ}33'26''$, long $133^{\circ}01'01''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 7, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 1.1 mi upstream from the mouth at Klawock Lake, and 2.9 mi east of the city of Klawock. DRAINAGE AREA. -- 4.73 mi². PERIOD OF RECORD. -- December 2000 to September 2001. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 400 ft above sea level, from topographic map. REMARKS.--Records poor. EXTREMES FOR CURRENT YEAR:-- Maximum discharge during period December to September 597 ${\rm ft}^3/{\rm s}$; September 29, gage height 10.07 ft. from rating curve extended above 53.8 ${\rm ft}^3/{\rm s}$; minimum daily discharge about 5.0 ${\rm ft}^3/{\rm s}$, Feb. 24-25. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------------------------------------|--------------|----------|--------------------------------------|--
--|--|---|--|--|--|--|---| | 1
2
3
4
5 |

 |

 |

 | e46
e152
e150
e80
e120 | e70
e75
e55
e40
e28 | 26
17
18
15
12 | 17
12
12
27
20 | 31
46
100
39
17 | e120
e80
e50
e65
e80 | e37
e38
e41
e48
e55 | 7.9
8.2
7.7
7.4
7.1 | 158
96
135
105
94 | | 6
7
8
9 |

 |

 | e20
14
11
10 | e80
e100
e70
e48
e34 | e20
e19
e16
e12
e9.5 | 14
58
26
21
200 | 16
17
18
24
19 | 12
51
112
35
23 | e90
e95
e100
e75
e60 | e80
e138
e100
e80
e36 | 6.9
6.7
6.5
6.3 | 59
24
23
15
11 | | 11
12
13
14
15 | | | 9.8
e9.3
e9.0
e8.5
e8.0 | e25
e18
e13
e12
e27 | e8.0
e7.0
e10
e8.0
e7.0 | 288
61
24
14
16 | 18
21
16
15
18 | e36
e50
e48
e50
e52 | e50
e36
e48
e97
e85 | 16
21
40
65
24 | 6.0
5.9
5.8
e5.7
e5.5 | 14
18
12
10
9.4 | | 16
17
18
19
20 | | | 9.9
11
91
28
14 | e60
e65
e50
e40
e38 | e6.5
e6.3
e6.0
e5.9
e5.7 | 18
33
25
22
14 | 22
53
54
38
24 | e55
e75
e85
e95
e40 | e75
e65
e50
e70
e120 | 28
24
13
10
9.2 | e5.3
e5.3
e5.3
e6.5 | 8.9
16
68
122
45 | | 21
22
23
24
25 |

 |

 | 11
10
8.8
11
80 | e46
e55
e70
e50
e38 | e5.5
e5.5
e5.3
e5.0 | 13
11
9.2
10
58 | 20
22
113
89
50 | e42
e120
e70
e44
e36 | e100
e80
e70
e60
e50 | 8.5
8.8
13
12 | e80
e34
e36
e44
e42 | 45
157
57
26
26 | | 26
27
28
29
30
31 |

 |

 | 37
24
e26
e28
e65
e44 | e30
e95
e50
e30
e29
e120 | 36
221
69
 | 37
27
25
20
57
38 | 112
95
33
46
51 | e38
e46
e55
e60
e110
e185 | e36
e46
e50
e40
e36 | 9.0
8.5
8.1
7.8
7.6
7.5 | e95
e195
e100
e50
e19
97 | 18
19
25
247
201 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | | |

 | 1841
59.4
152
12
50
3650
12.6
14.48 | 767.2
27.4
221
5.0
8.8
1520
5.79
6.03 | 1227.2
39.6
288
9.2
22
2430
8.37
9.65 | 1092
36.4
113
12
22
2170
7.70
8.59 | 1858
59.9
185
12
50
3690
12.7
14.61 | 2079
69.3
120
36
68
4120
14.7
16.35 | 1004.0
32.4
138
7.5
21
1990
6.85
7.90 | 939.1
30.3
195
5.3
7.4
1860
6.40
7.39 | 1864.3
62.1
247
8.9
26
3700
13.1
14.66 | e Estimated ### 15081995 REYNOLDS CREEK BELOW LAKE MELLEN NEAR HYDABURG LOCATION.--Lat $55^{\circ}13'05''$, long $132^{\circ}34'50''$, in SW^{1}_{4} SE^{1}_{4} sec. 3, T. 77 S., R. 84 E.(Craig A-2 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, 0.1 mi below Lake Mellen, approximately 1 mi upstream from mouth at Copper Harbor in Hetta Inlet, and 10 mi east of Hydaburg. DRAINAGE AREA. -- 5.20 mi². PERIOD OF RECORD.--July 1982 to September 1985, October 1997 to current year GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level, from topographic map. Prior to January 1, 1984, at datum 2.00 ft higher. REMARKS.--Records good, except for estimated daily discharges which are poor. GOES satellite telemetry at station. Streamflow affected by storage in lakes, which cover 30 percent of the basin. | | | DISCHA | RGE, CUBI | C FEET PE | | , WATER Y
LY MEAN V | EAR OCTOBE
ALUES | R 2000 | TO SEPTEM | BER 2001 | | | |---|--|--|--|-------------------------------------|-------------------------------------|--------------------------------------|--|--|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 58
49
48
46
45 | 75
80
109
92
82 | 162
200
128
107
118 | 71
106
169
134
184 | 133
146
133
107
92 | 57
53
45
39
35 | 33
33 | 81
83
113
102
87 | 107
92
81
82
85 | e54
e51
e50
e60
e83 | e33
e34
e32
e33
e34 | 151
164
199
169
136 | | 6
7
8
9
10 | 57
108
88
80
68 | 84
88
77
67
59 | 128
103
89
79
70 | 161
138
169
136
112 | 82
74
68
62
57 | 39
48
42
37
55 | 30
29
28
28
27 | 78
100
99
85
79 | 82
78
76
71 | e90
e95
e100
e102
e95 | e35
e36
e34
e33
e32 | 136
114
104
93
83 | | 11
12
13
14
15 | 80
89
91
78
126 | 54
87
85
67
58 | 64
58
52
46
42 | 97
86
78
70
68 | 51
46
46
53
44 | | 27
26
25
25 | | 62
63
72
70 | e90
e85
e75
e84
e77 | e30
e29
e28
e26
e25 | 76
73
65
58
52 | | 16
17
18
19
20 | 105
88
79
80
92 | 55
82
70
61
58 | 42
41
74
57
44 | 104
115
102
93
87 | 38
34
32
30
29 | 58
65
58
58
50 | 25
29
36
35
30 | 92
96
102
98
85 | 62
58
54
58
89 | e74
e70
e65
e60
e56 | e24
e23
e22
e30
e42 | 47
52
73
84
71 | | 21
22
23
24
25 | 91
124
111
95
82 | 58
125
180
163
150 | 38
34
32
33
68 | 89
89
99
94
81 | 28
27
26
25
25 | 42
37
34
32
46 | 31
35
68
95
75 | 82
110
99
86
78 | | e54
e50
e48
e45
e43 | e46
e48
e55
e70
e95 | 75
127
118
98
103 | | 26
27
28
29
30
31 | 73
69
68
61
68
87 | 129
122
107
91
86 | 71
67
54
51
75
78 | 72
95
107
86
77
107 | 26
68
76

 | 58
52
50
43
46
51 | 75
74
100
86
98
93 | 74
73
70
67
68
122 | e65
e63
e60
e57
e55 | e40
e38
e36
e34
e33
e32 | e120
e140
e98
80
75
94 | 85
87
91
121
170 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 2484
80.1
126
45
4930
15.4
17.77 | 2701
90.0
180
54
5360
17.3
19.32 | | | 1658
59.2
146 | 1635
52.7
125
32 | 1353
45.1
100 | 2749
88.7
122
67
5450
17.1
19.67 | 2175
72.5
107
54
4310
13.9
15.56 | 1969
63.5
102
32
3910
12.2
14.09 | 1536
49.5
140
22
3050
9.53
10.99 | 3075
102
199
47
6100
19.7
22.00 | | | | STATISTIC | S OF MONT | THLY MEAN
| DATA FOR | R WATER Y | EARS 1982 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 95.9
172
2000
71.6
1986 | 75.6
142
2000
44.1
1986 | 70.5
131
1998
20.7
1984 | 90.4
129
1985
61.4
1998 | 74.2
107
1984
47.7
1999 | 61.5
97.9
1984
38.3
1999 | 66.4
90.9
2000
45.1
2001 | 81.3
128
1999
40.4
1998 | 65.8
103
1999
22.9
1998 | 46.5
63.5
2001
20.2
1998 | 49.3
78.7
1983
19.3
1982 | 64.2
102
2001
32.2
1982 | | SUMMAR | RY STATIS | TICS FOR | 2000 CAI | ENDAR YE | AR F | OR 2001 W | NATER YEAR | | WATER Y | EARS 1982 | - 2001# | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN F ANNUAL M ANNUAL M F DAILY M DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS | 27633
75.
250
29
33
54810
14.
197.
118
71
38 | Aug 2
Aug 1
Jan 2 | L4 | 200
22
25
225
6
53390 | Dec 2 Aug 1 Aug 1 Dec 5.70 Dec 6.70 | 2
8
2
2
2
2 | | Oc. 0.0 Ju 1.8 Ju 1.8 Oc. 0.1 Oc. 0.1 Oc. 0.1 Ju 1.8 S.8 S.90 | 2000
1983
t 23 1999
1 9 1998
1 4 1998
t 23 1999
t 23 1999
1 9 1998 | | See Period of Record; partial years used in monthly summary statistics and break in record Not determined; see lowest daily mean Jul. 9 and 10, 1998 Estimated Discharge (ft³/s) 499 529 548 799 631 605 Gage Height (ft) 4.30 4.40 4.46 5.20 4.72 4.64 ### 15085100 OLD TOM CREEK NEAR KASAAN LOCATION.--Lat $55^{\circ}23'44''$, long $132^{\circ}24'25''$, in NN_{4}^{1} SN_{4}^{1} sec. 6, T. 75 S., R. 86 E. (Craig B-2 quad) Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank 1,000 ft upstream from mouth at Skowl Arm of Kasaan Bay, 0.4 mi downstream from unnamed tributary, and 10 mi south of Kasaan. DRAINAGE AREA. -- 5.90 mi². Date Oct 15 Nov 23 Dec 1 Dec 18 Jan 2 Jan 4 ### WATER-DISCHARGE RECORDS Date Jan 20 Feb 2 Aug 21 Aug 31 Sept 2 Sept 29 Time 1630 0430 0730 1915 2200 2145 PERIOD OF RECORD. -- June 1949 to current year. Time 0500 0330 1545 0545 2330 2315 REVISED RECORDS. -- WDR AK-85-1: 1950-1983 (P), 1984. GAGE.--Water-stage recorder. Elevation of gage is 10 ft above sea level, from topographic map. Gage Height (ft) 4.63 4.35 *5.60 4.26 4.80 4.45 REMARKS.--Records fair except estimated daily discharges, which are poor. Discharge (ft³/s) 602 514 *951 487 658 545 EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (*): | Jan 4 | | 2315 | 545 | | 4.45 | | Sept 29 | 2145 | , | 005 | 4.0 | 04 | |---|---|--|---|---|--|---|--|--|---|---|--|---| | Jan 7 | | 2315 | 496 | | 4.29 | | | | | | | | | | | DISCH | ARGE, CUBI | C FEET 1 | PER SECOND,
DAII | WATER | | BER 2000 TO | O SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.7
5.8
8.5
7.5 | 59
54
78
35
28 | 683
212
60
36
51 | 108
310
362
231
295 | 166
387
128
48
29 | 84
87
42
24
18 | 30
19
14
16
16 | 69
64
139
58
34 | 69
48
32
33
32 | 11
9.7
10
11
10 | 3.2
4.4
3.7
3.4
3.0 | 338
311
265
96
55 | | 6
7
8
9
10 | 16
97
42
37
21 | 32
56
29
21
17 | 99
41
27
20
16 | 132
150
212
150
e55 | 21
17
17
16
13 | 23
62
29
20
56 | 14
12
11
11
9.9 | 32
158
84
47
39 | 27
26
24
22
19 | 16
18
17
22
16 | 3.4
3.1
2.8
2.5
2.2 | 40
26
20
16
13 | | 11
12
13
14
15 | 31
36
36
50
291 | 15
87
38
24
19 | 13
11
9.2
e8.0
e7.5 | e34
24
19
15
18 | 8.9
8.3
11
18
11 | 190
63
33
23
47 | 9.9
10
9.4
9.6
10 | 40
39
52
81
53 | 18
16
17
20
18 | 12
12
22
17
12 | 2.0
1.7
1.6
1.4 | 12
13
9.9
7.9
6.8 | | 16
17
18
19
20 | 87
42
31
60
126 | 26
93
33
25
43 | e7.0
10
201
48
24 | 52
153
110
62
201 | 8.9
e7.7
7.0
6.4
6.0 | 43
46
63
65
32 | 12
21
25
18
15 | 51
55
75
68
40 | 17
15
14
20
44 | 13
19
13
10
8.3 | 1.2
1.2
4.6
4.8 | 6.1
9.2
34
44
29 | | 21
22
23
24
25 | 67
134
80
43
27 | 36
291
288
200
150 | 17
13
11
25
132 | 113
150
165
79
45 | 5.6
5.4
4.9
e4.4
4.4 | 18
14
12
11
133 | 15
23
135
109
56 | 39
52
34
26
22 | 42
30
22
44
38 | 7.2
6.4
6.1
5.7
5.0 | 266
84
231
108
109 | 71
145
104
75
67 | | 26
27
28
29
30
31 | 21
21
37
22
91
110 | 96
77
45
29
65 | 62
44
31
59
158
71 | 30
217
100
40
32
203 | 6.2
151
82
 | 71
54
44
30
73
66 | 108
117
70
208
108 | 20
24
21
21
27
146 | 23
18
17
15
13 | 4.5
4.1
3.8
3.6
3.2
2.9 | 103
187
52
35
37
229 | 70
95
147
414
268 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 1692.7
54.6
291
5.8
3360
9.25
10.67 | 2089
69.6
291
15
4140
11.8
13.17 | 2206.7
71.2
683
7.0
4380
12.1
13.91 | 3867
125
362
15
7670
21.1
24.38 | 1199.1
42.8
387
4.4
2380
7.26
7.56 | 1576
50.8
190
11
3130
8.62
9.94 | 1241.8
41.4
208
9.4
2460
7.02
7.83 | 1710
55.2
158
20
3390
9.35
10.78 | 793
26.4
69
13
1570
4.48
5.00 | 331.5
10.7
22
2.9
658
1.81
2.09 | 1578.6
50.9
266
1.2
3130
8.63
9.95 | 2807.9
93.6
414
6.1
5570
15.9
17.70 | e Estimated # 15085100 OLD TOM CREEK NEAR KASAAN--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2001, BY WATER YEAR (WY)# | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|------| | MEAN | 70.9 | 66.1 | 57.5 | 48.4 | 45.4 | 39.1 | 48.7 | 43.1 | 26.1 | 13.3 | 15.1 | 31.7 | | MAX | 163 | 166 | 136 | 128 | 117 | 86.3 | 122 | 99.1 | 56.1 | 31.0 | 50.9
2001 | 93.6 | | (WY)
MIN | 1978
28.4 | 2000
17.1 | 1992
8.29 | 1992
3.00 | 1998
5.00 | 1984
10.1 | 1980
19.1 | 1999
15.0 | 1950
5.45 | 1991
2.66 | 1.81 | 2001 | | (WY) | 1952 | 1966 | 1984 | 1950 | 1950 | 1956 | 19.1 | 1996 | 1958 | 1958 | 1993 | 1965 | | (WI) | 1002 | 1000 | 1704 | 1000 | 1000 | 1000 | 1007 | 1000 | 1000 | 1000 | 1000 | 1703 | | SUMMARY | STATISTI | ICS FOR | 2000 CALE | NDAR YEAR | } | FOR 2001 W | ATER YEA | R | WATER Y | EARS 1949 | - 2001# | | | ANNUAL | | | 18221.0 | | | 21093. | | | | | | | | ANNUAL | | | 49.8 | | | 57. | 8 | | 42. | | | | | | ' ANNUAL N | | | | | | | | 63. | | 2000 | | | | ANNUAL ME | | 683 | Dec 1 | | 683 | Dog | 1 | 25.
858 | | 1951
23 1990 | | | | DAILY ME | | 3.9 | | | a1. | | | | | 14 1965 | | | | | MINIMUM | 5.0 | | | 1. | | | | | 13 1965 | | | | PEAK FLO | | 5.0 | 1103 | | 951 | | | b1490 | | 16 1952 | | | MAXIMUM | PEAK STA | AGE | | | | | 60 Dec | | | | 16 1952 | | | INSTANT | ANEOUS LO | OW FLOW | | | | | 73 Aug | 18 | | | 15 1965 | | | ANNUAL | RUNOFF (A | AC-FT) | 36140 | | | 41840 | | | 30480 |) | | | | | RUNOFF (C | | 8.4 | | | 9. | | | | 13 | | | | | | INCHES) | | 8 | | 133. | 00 | | 96. | 88 | | | | | ENT EXCEE | | 120 | | | 150 | | | 93 | | | | | | ENT EXCE | | 27 | | | 30 | 2 | | 24
6. | _ | | | | 90 PERC | ENT EXCEE | פתז | 9.0 | | | 6. | 4 | | 6. | 5 | | | [#] See Period of Record; partial years used in monthly summary statistics a Aug. 16 and 17 $$\rm b$$ From rating curve extended above 330 ${\rm ft}^3/{\rm s}$ # 15085100 OLD TOM CREEK NEAR KASAAN--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1956, 1959, and 1965 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1964, April 1965 to February 1975, June 1975 to April 1978, and November 1978 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval since April 11,1996. REMARKS.--Records represent water-temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on August 28. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 18.5°C, July 3, 1998; minimum, 0.0°C, on many days during most winter periods. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum, 15.5°C, August 13; minimum, 0.0°C, on many days during the winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT
FM
L BANK)
(00009) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |----------------------------|------------------------------|------------------------------------|--|-------------------------------------|---|---|---| | AUG 2001
28
28
28 | 1108
1107
1106
1105 | 39.1
39.1
39.1 | 1.50
11.50
21.50
31.50 | 2.30
2.30
2.30
2.30 | 48.7
48.7
48.7
48.7 | 11.5
11.5
11.5
11.5 | 13.0
13.0
13.0 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|--|---------------------------------|--| | | | OCTOBER | | NO | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.5
7.0
8.0
8.5
9.0 | 7.0
6.0
7.0
7.5
8.0 | 8.0
6.5
7.5
8.0
8.5 | 6.5
7.0
7.5
6.5
6.5 | 6.0
6.5
6.5
5.5 | 6.0
6.5
7.0
6.0 | 5.0
5.5
5.0
4.5
5.5 | 4.5
5.0
4.5
4.0
4.5 | 5.0
5.0
4.5
4.5 | 3.5
4.0
4.0
3.5
4.0 | 3.0
3.0
3.5
3.0
3.5 | 3.0
3.5
4.0
3.5
4.0 | | 6
7
8
9
10 | 9.0
9.0
8.5
8.5 | 8.5
8.5
8.0
7.5
7.0 | 8.5
9.0
8.0
8.0
7.5 | 6.0
6.0
6.0
5.0
4.5 | 5.5
5.5
5.0
4.0
4.0 | 6.0
6.0
5.5
4.5 | 5.5
4.0
3.5
3.0
1.5 | 4.0
3.5
3.0
1.5 | 5.0
4.0
3.5
2.0
1.5 | 3.5
4.0
4.0
3.5
3.0 | 3.5
3.0
3.5
3.0
2.5 | 3.5
3.5
3.5
3.5
2.5 | | 11
12
13
14
15 | 8.5
9.5
9.0
8.5
9.0 | 8.0
8.5
8.0
7.5
8.0 | 8.0
9.0
8.5
8.0 | 5.0
5.5
5.0
5.0 | 4.0
5.0
5.0
4.5
4.5 | 4.5
5.0
5.0
4.5
5.0 | 1.5
1.0
1.0
.5 | 1.0
1.0
.5
.0 | 1.5
1.0
.5
.0 | 2.5
2.0
2.5
2.0
2.5 | 1.5
1.5
2.0
2.0 | 2.0
2.0
2.0
2.0
2.5 | | 16
17
18
19
20 | 8.5
8.5
8.5
7.5 | 7.5
8.0
7.5
7.0 | 8.0
8.0
8.0
7.0 | 5.5
5.5
5.0
5.5
6.0 | 5.0
4.5
4.5
5.0
5.0 | 5.0
5.0
4.5
5.0
5.5 | .0
.5
2.5
2.5
2.5 | .0
.0
.0
2.0
2.0 | .0
.5
1.5
2.5
2.0 | 3.0
3.5
3.5
3.0
3.5 | 2.5
2.5
3.0
3.0 | 2.5
3.0
3.5
3.0 | | 21
22
23
24
25 | 7.0
8.0
8.0
7.0
6.5 | 6.5
7.0
7.0
6.5
5.5 | 7.0
7.5
7.5
7.0
6.0 | 6.0
6.5
6.5
6.0
5.5 | 6.0
6.0
5.5
5.5 | 6.0
6.5
6.0
5.5 | 2.0
2.0
2.0
2.5
2.5 | 1.0
1.0
1.0
2.0
2.0 | 1.5
1.5
1.5
2.0
2.5 | 3.5
3.5
3.5
4.0
4.0 | 3.0
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
4.0 | | 26
27
28
29
30
31 | 6.5
6.5
6.5
6.5
6.0 | 5.5
6.0
6.0
5.0
5.0 | 6.0
6.5
6.5
5.5
5.5 | 5.0
5.0
4.0
4.0
4.5 | 4.5
4.0
3.5
3.5
4.0 | 5.0
4.5
4.0
4.0 | 2.5
2.5
2.5
3.0
3.5
3.0 | 2.5
2.5
2.5
2.5
3.0
3.0 | 2.5
2.5
2.5
3.0
3.0 | 4.0
4.0
4.0
3.0
2.5
3.5 | 3.5
3.5
2.5
2.0
2.0 | 3.5
3.5
3.0
2.5
2.5
3.0 | | MONTH | 9.5 | 5.0 | 7.4 | 7.5 | 3.5 | 5.2 | 5.5 | .0 | 2.4 | 4.0 | 1.5 | 3.1 | # SOUTHEAST ALASKA # 15085100 OLD TOM CREEK NEAR KASAAN--Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|---|--|--|--|--|--|---|--| | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 3.5
4.0
3.5
2.5 | 3.5
3.5
2.5
2.0
2.0 | 3.5
3.5
3.0
2.5
2.0 | 2.0
2.5
2.5
2.5
2.5 | 1.5
2.0
2.0
2.0
1.5 | 2.0
2.0
2.5
2.5
2.0 | 3.0
3.0
3.0
3.5
3.0 | 2.5
2.0
2.0
2.5
2.5 | 3.0
2.5
2.5
3.0
3.0 | 5.5
5.0
5.0
5.0 | 4.5
4.0
4.0
4.5
4.5 | 4.5
4.5
4.5
5.0 | | 6
7
8
9
10 | 2.5 | 2.0
2.0
2.0
1.0 | 2.0
2.0
2.0
2.0
1.5 | 3.0
3.0
3.0
3.0 | 2.0
2.0
2.0
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 3.5
3.5
3.5
3.5
3.5 | 2.5
2.5
2.5
3.0
3.0 | 3.0
3.0
3.0
3.5
3.0 | 5.0
5.5
5.5
5.5 | 4.5
4.0
5.0
5.0 | 4.5
4.5
5.0
5.0 | | 11
12
13
14
15 | .5
1.5
1.5
1.5 | .0
.5
1.0
1.0 | .5
1.0
1.5
1.0 | 3.0
3.5
3.0
3.0 | 2.5
3.0
2.5
2.0
2.5 | 2.5
3.0
3.0
2.5
3.0 | 3.5
4.0
3.5
4.5
4.0 | 3.0
3.5
3.0
3.5
3.0 | 3.5
3.5
3.5
4.0
3.5 | 5.5
5.5
5.0
5.5
5.0 | 5.0
5.0
4.5
5.0
5.0 | 5.0
5.0
5.0
5.0 | | 16
17
18
19
20 | .5
.5
1.0
2.0
1.0 | .0
.5
.5 | .0
.0
.5
1.0 | 3.0
3.5
3.5
3.5
3.0 | 2.5
2.5
2.5
2.5
1.5 | 3.0
3.0
3.0
3.0
2.5 | 4.0
4.5
4.5
5.5 | 3.5
3.5
3.5
3.5
3.5 | 3.5
4.0
3.5
4.0
4.0 | 5.0
5.5
5.0
5.5
5.5 | 4.5
4.5
5.0
5.0 | 5.0
5.0
5.0
5.0 | | 21
22
23
24
25 | 1.5
2.0
1.0
1.0
2.0 | .5
1.0
.0
.0 | 1.0
1.5
.5
.5 | 1.5
1.5
2.0
2.0 | 1.0
1.0
1.0
1.5 | 1.0
1.0
1.5
2.0
2.0 | 4.5
5.0
4.0
5.0
5.5 | 3.0
3.5
3.5
3.5
4.0 | 3.5
4.0
3.5
4.5 | 5.5
6.0
6.0
6.0 | 5.0
5.5
5.5
5.0
5.5 | 5.5
5.5
5.5
5.5
5.5 | | 26
27
28
29
30
31 | 2.0
2.0
2.0
 | 1.5
1.0
.0
 | 1.5
1.5
1.5
 | 3.0
3.0
3.5
3.5
3.0 | 2.0
2.5
2.0
2.5
2.0
2.0 | 2.5
2.5
2.5
2.5
2.5
3.0 | 5.0
4.5
5.0
5.5
5.0 | 4.5
4.0
3.5
4.0
4.5 | 4.5
4.5
4.5
4.5
4.5 | 6.0
6.5
6.5
6.5
7.0 | 5.5
5.5
6.0
6.0
6.5 | 6.0
6.0
6.5
6.5
6.5 | | MONTH | 4.0 | .0 | 1.4 | 3.5 | 1.0 | 2.4 | 5.5 | 2.0 | 3.6 | 7.0 | 4.0 | 5.2 | | | | | | | | | | | | | | | | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | MEAN
R | | DAY 1 2 3 4 5 | 6.5 | | MEAN 6.5 6.5 6.5 7.0 7.0 | MAX
10.5
10.5
10.5
10.5 | | MEAN 10.0 10.5 10.5 10.5 10.6 | 1 | | MEAN 11.5 11.5 11.0 11.0 | | | | | 1
2
3
4 | 6.5
6.5
7.0
7.0 | JUNE 6.5 6.0 6.5 6.5 | 6.5
6.5
7.0
7.0 | 10.5
10.5
10.5
10.5
10.5 | JULY 10.0 10.0 10.5 10.5 10.0 | 10.0
10.5
10.5
10.5 | 11.5
13.0
11.5
11.5
12.0 | 11.0
11.0
10.5
11.0 | 11.5
11.5
11.0
11.0 | 11.0
10.5
11.0
11.0
11.0
11.0 | 10.5
9.5
10.0
10.0 | 10.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9 | 6.5
6.5
7.0
7.0
7.5
7.5
7.5
7.5 | JUNE 6.5 6.0 6.5 6.5 7.0 7.0 7.5 7.5 | 6.5
6.5
7.0
7.0 | 10.5
10.5
10.5
10.5
10.5 | JULY 10.0 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 | 10.0
10.5
10.5
10.5
10.0
10.0
9.5
9.5 | 11.5
13.0
11.5
11.5
12.0
12.0
13.0
13.5
14.5 | 11.0
11.0
10.5
11.0
11.0
11.0
11.0
11.0 | 11.5
11.5
11.0
11.0
11.5
11.5
12.0
12.0
12.5 | 11.0
10.5
11.0
11.0
11.0
11.0
11.0
11.0 | 10.5
9.5
10.0
10.0
10.5
10.0
10.5 | 10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 6.5
6.5
7.0
7.0
7.5
7.5
7.5
7.5
7.5
7.5
8.0
8.0 | JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 8.0 8.0 | 6.5
6.5
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.0
8.0 |
10.5
10.5
10.5
10.5
10.5
10.0
10.0
9.5
9.5
9.5
9.5 | JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 | 10.0
10.5
10.5
10.5
10.0
10.0
9.5
9.5
9.5
9.5 | 11.5
13.0
11.5
11.5
12.0
12.0
13.0
13.5
14.5
14.5
14.5 | AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11. | 11.5
11.5
11.0
11.0
11.5
12.0
12.0
12.5
13.0
13.0
13.0
13.5 | 11.0
10.5
11.0
11.0
11.0
11.0
11.0
11.0 | 10.5
9.5
10.0
10.0
10.5
10.0
10.0
10.0
9.5
8.5
9.5
9.5
9.5 | 10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 6.5
6.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
8.0
8.0
8.5
8.5
9.0 | JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.0 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.5 9.0 | 6.5
6.5
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.0
8.0
8.0
8.5
8.5
9.0 | 10.5
10.5
10.5
10.5
10.5
10.0
10.0
9.5
9.5
9.5
10.5
11.0 | JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0 10.0 10.0 | 10.0
10.5
10.5
10.5
10.0
10.0
10.0
9.5
9.5
9.5
9.5
10.0
10.0 | 11.5
13.0
11.5
11.5
12.0
12.0
13.0
13.5
14.5
14.5
15.0
15.5
15.0
15.5
13.5
13.5
13.5 | AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11. | 11.5
11.5
11.0
11.0
11.5
11.5
12.0
12.0
12.5
13.0
13.0
13.0
13.5
13.5 | 11.0
10.5
11.0
11.0
11.0
11.0
11.0
11.0 | 10.5
9.5
10.0
10.0
10.5
10.0
10.0
10.0
9.5
8.5
9.5
9.5
10.0
9.5
10.0 | 10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 6.5
6.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
8.0
8.0
8.5
8.5
9.0
9.5
9.0
9.0 | JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 | 6.5
6.5
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.0
8.0
8.0
8.5
8.5
9.0
9.0
9.0 | 10.5
10.5
10.5
10.5
10.0
10.0
10.0
9.5
9.5
9.5
10.5
11.0
11.0
11.0
11.0
11.0
11.0
11 | JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0 10.5 11.0 11.5 12.0 12.5 11.0 | 10.0
10.5
10.5
10.5
10.0
10.0
10.0
9.5
9.5
9.5
9.5
10.0
10.0 | 11.5
13.0
11.5
11.5
12.0
12.0
13.0
13.5
14.5
14.5
15.0
15.5
15.0
15.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11. | 11.5
11.5
11.0
11.0
11.5
11.5
12.0
12.5
13.0
13.0
13.5
13.5
13.5
13.5
13.5
13.0
13.5
13.5 | 11.0
10.5
11.0
11.0
11.0
11.0
11.0
11.0 | 10.5
9.5
10.0
10.0
10.5
10.0
10.0
10.0
10.0
9.5
8.5
9.5
10.0
9.5
10.0
10.0
10.0
10.0
10.0 | 10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | # 15086960 SUNRISE LAKE OUTLET NEAR WRANGELL LOCATION.--Lat $56^{\circ}24'44''$, long $132^{\circ}29'30''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 17, T. 63 S., R. 83 E.(Petersburg B-2 quad), Hydrologic Unit 19010202, on Woronkofski Island, in the Tongass National Forest, on the right bank, 75 ft downstream from Sunrise Lake outlet and 6.5 mi southwest of Wrangell. DRAINAGE AREA.--1.17 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1977 to September 1980, October 1997 to current year. Prior to October 1997 at a site 350 ft upstream at different datum (discontinued). REVISED RECORDS. -- WDR-AK-99-1: 1977-80 and 1998. GAGE.--Water-stage recorder. Elevation of gage is 1950 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. DICCULARCE CURTO FEET DED CECOND MATER VEAR OCTORER 2000 TO CERTEMBER 2001 EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to August, $106~{\rm ft}^3/{\rm s}$, January 3, 2001, gage height 9.24 ft; minimum daily discharge during period October to August, $1.0~{\rm ft}^3/{\rm s}$, February 25, 2001. | | | DISCHA | RGE, CUBIO | C FEET P | | | YEAR OCTOB
VALUES | ER 2000 | TO SEPTEM | BER 2001 | | | |---|--|--|---|---|--|---|---|--|--|---|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e11
e7.0
e6.5
e5.5
e9.0 | 5.7
13
40
18
9.8 | 13
32
19
12
35 | 4.8
12
76
24
15 | 14
11
9.1
5.5
3.9 | 3.4
2.6
2.1
1.9 | 2.9
2.2
1.8
1.9
2.3 | 4.8
e5.0
e5.5
e5.7
e6.0 | 41
22
20
23
23 | 14
15
16
35
27 | e5.4
e5.7
e5.0
e4.4
e4.1 |

 | | 6
7
8
9
10 | e13
e14
e15
e11
e7.5 | 13
15
13
8.1
5.4 | 45
18
11
8.2
6.4 | 15
8.5
7.2
5.8
4.3 | 3.1
2.7
2.4
e2.3
2.1 | 1.9
2.0
1.7
2.0
2.8 | 2.0
1.6
1.4
1.4 | 5.6
4.6
4.4
3.8
3.4 | 22
22
21
23
25 | 43
47
31
35
23 | e3.8
e3.3
e3.0 |

 | | 11
12
13
14
15 | e12
e17
e28
e14
e18 | e5.2
e7.8
6.0
4.4
3.6 | 5.2
4.4
3.6
3.1
e2.8 | 3.3
e2.7
e3.3
e2.9
e2.3 | 1.9
1.7
2.3
3.6
2.9 | 4.9
5.6
4.1
2.9
2.5 | 1.2
1.3
1.3
1.1 | 4.8
6.1
7.4
7.1 | 17
17
e23
24
20 | 15
15
42
31
17 |

 |

 | | 16
17
18
19
20 | e13
e9.5
11
e12
e13 | 4.1
7.9
6.3
8.3 | e3.4
e3.6
e3.8
e4.6
e3.2 | e3.0
e6.7
e5.7
5.0
3.5 | 2.3
1.9
1.6
1.5 | 2.6
3.0
2.6
2.7
2.2 | 1.1
1.4
2.7
3.7
e3.8 | 11
10
8.6
6.7
6.6 | 17
16
17
23
e47 | 13
14
11
9.9 | |

 | | 21
22
23
24
25 | 15
30
22
13
7.9 | 18
51
41
25
18 | e2.5
e1.9
e1.7
e1.6
e2.4 | e3.1
e2.5
5.2
8.3
7.1 | 1.3
1.2
1.2
1.1
e1.0 | 1.8
1.5
1.4
1.2 | e3.6
e3.8
e5.7
e6.1
e5.4 | 11
e27
e23
13
9.9 | 36
24
21
19
16 | 11
9.8
7.8
6.4
5.5 |

 |

 | | 26
27
28
29
30
31 | 5.6
4.4
3.5
3.0
4.1
5.5 | 13
9.8
6.9
5.2
4.5 | e2.9
e2.7
e2.4
e2.7
e4.4
6.1 | 4.8
e5.8
e7.0
e5.5
e5.0
e6.2 | e1.3
3.8
7.3
 | e2.8
3.6
3.3
2.9
2.4
3.3 | 5.2
e12
11
7.2
5.9 | 10
12
15
20
21
47 | 14
17
24
19
14 | 4.8
4.4
4.0
3.7
3.3
e4.1 | |

 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 361.0
11.6
30
3.0
716
9.95
11.48 | 398.0
13.3
51
3.6
789
11.3
12.65 | 268.6
8.66
45
1.6
533
7.41
8.54 | 271.5
8.76
76
2.3
539
7.49
8.63 | 95.4
3.41
14
1.0
189
2.91
3.03 | 80.7
2.60
5.6
1.2
160
2.22
2.57 | 103.4
3.45
12
1.1
205
2.95
3.29 | 338.0
10.9
47
3.4
670
9.32
10.75 | 667
22.2
47
14
1320
19.0
21.21 | 529.7
17.1
47
3.3
1050
14.6
16.84 |

 |

 | | | | STATISTIC | CS OF MONT | HLY MEAN | DATA FOR | WATER | YEARS 1977 | - 2001, | BY WATER | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 17.7
24.8
2000
11.6
2001 | 8.97
13.3
2001
4.24
1999 | 8.52
15.0
2000
4.20
1999 | 5.97
9.55
1999
2.26
1979 | 3.48
6.86
1980
1.60
1979 | 3.79
6.59
1980
2.44
1978 | 6.66
9.81
1980
3.45
2001 | 17.4
19.9
1978
10.9
2001 | 20.9
31.6
1999
9.88
1998 | 14.9
26.7
2000
5.91
1998 | 10.1
15.2
2000
3.47
1979 | 11.6
17.5
1999
7.04
1977 | See period of record Estimated # 15086960 SUNRISE LAKE OUTLET NEAR WRANGELL--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | WATER YEARS 1977 - 2001# | |--------------------------|------------------------|--------------------------| | ANNUAL TOTAL | 4613.8 | | | ANNUAL MEAN | 12.6 | 11.1 | | HIGHEST ANNUAL MEAN | | 14.2 2000 | | LOWEST ANNUAL MEAN | | 8.66 1978 | | HIGHEST DAILY MEAN | 110 Aug 22 | 110 Aug 22 2000 | | LOWEST DAILY MEAN | al.2 Mar 9 | b.93 Feb 24 1979 | | ANNUAL SEVEN-DAY MINIMUM | 1.3 Mar 7 | .94 Feb 23 1979 | | MAXIMUM PEAK FLOW | | c205 Aug 21 2000 | | MAXIMUM PEAK STAGE | | 9.83 Aug 21 2000 | | INSTANTANEOUS LOW FLOW | | .93 Feb 23 1979 | | ANNUAL RUNOFF (AC-FT) | 9150 | 8010 | | ANNUAL RUNOFF (CFSM) | 10.8 | 9.45 | | ANNUAL RUNOFF (INCHES) | 146.70 | 128.43 | | 10 PERCENT EXCEEDS | 28 | 25 | | 50 PERCENT EXCEEDS | 8.0 | 7.3 | | 90 PERCENT EXCEEDS | 2.0 | 2.1 | [#] See Period of Record a Mar. 9 to Mar. 12 b Feb. 24 to Feb. 28 c From rating curve extended above 50 ft³/s ### 15086960 SUNRISE LAKE OUTLET NEAR WRANGELL--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1978, 1980, January 1998 to October
2000 (Discontinued). PERIOD OF DAILY RECORD.-WATER TEMPERATURE: June 1998 to October 2000 (discontinued) INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval, started on January 27, REMARKS.--No record after October 17. Records represent water temperature at the sensor within 0.5°C . EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 20.0°C, July 4-5, 1998: minimum, 0.0°C, on many days during winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded for October, 8.0°C, October 1-3; minimum recorded, 6.0°C, October 10-11,14-16. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|--------|------|------|------|------|------|-------|------|-----|--------|------| | | 00 | CTOBER | | NOVE | MBER | | DECE | EMBER | | J | ANUARY | | | 1 | 8.0 | 7.5 | 8.0 | | | | | | | | | | | 2 | 8.0 | 7.0 | 8.0 | | | | | | | | | | | 3 | 8.0 | 6.5 | 8.0 | | | | | | | | | | | 4 | 7.5 | 7.0 | 7.5 | | | | | | | | | | | 5 | 7.0 | 7.0 | 7.0 | | | | | | | | | | | 6 | 7.0 | 7.0 | 7.0 | | | | | | | | | | | 7 | 7.0 | 7.0 | 7.0 | | | | | | | | | | | 8 | 7.0 | 6.5 | 7.0 | | | | | | | | | | | 9 | 7.0 | 6.5 | 7.0 | | | | | | | | | | | 10 | 7.0 | 6.0 | 7.0 | | | | | | | | | | | 11 | 6.5 | 6.0 | 6.5 | | | | | | | | | | | 12 | 6.5 | | 6.5 | | | | | | | | | | | | | 6.5 | | | | | | | | | | | | 13 | 7.0 | 6.5 | 7.0 | | | | | | | | | | | 14 | 6.5 | 6.0 | 6.5 | | | | | | | | | | | 15 | 6.5 | 6.0 | 6.5 | | | | | | | | | | | 16 | 6.0 | 6.0 | 6.0 | | | | | | | | | | | 17 | 6.5 | 6.0 | 6.0 | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | ▲ 1 | Discharge s | site and map number | | | | |------------|----------------|--|------------|----------------|---| | Map
No. | Station
No. | Station Name | Map
No. | Station
No. | Station Name | | * 1 | 15087690 | Indian River near Sitka | 5 | 15087735 | Indian River Diversion Return | | 2 | 15087695 | Indian River above CBS pumphouse near Sitka | | | Flow from Sheldon Jackson
College at Sitka | | * 3 | 15087700 | Indian River at Sitka | 6 | 15087740 | Indian River Diversion Return | | 4 | 15087730 | Indian River Diversion to | | | Flow at Mouth at Sitka | | | | Sheldon Jackson College
at Sawmill Cr Rd at Sitka | 7 | 15087750 | Indian River at Mouth at Sitka | Locations of gaging stations in the Sitka area. # 15087690 INDIAN RIVER NEAR SITKA LOCATION.--Lat $57^{\circ}04'01''$, long $135^{\circ}17'42''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 30, T. 55 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 2 mi upstream from mouth, and 1 mi northeast of Sitka. DRAINAGE AREA.--10.1 mi² ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1980 to September 1993. October 1998 to current year. REVISED RECORD. -- WDR-82-1: 1980-81. GAGE.--Water-stage recorder. Elevation of gage is 125 ft above sea level, from topographic map. Prior to October 1998, at site 200 ft upstream and at different datum REMARKS .-- Records fair except for estimated daily discharges, which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of November 19, 1993, reached a stage of 14.04 ft, site and datum then in use, from recorder, discharge, 6.460 ft $^3/s$. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1200~{\rm ft}^3/{\rm s}$ and maximum(*): | Dat | te | Time | Dischar
(ft ³ /s | | Gage height | : | Date | Time | | ischarge
(ft ³ /s) | Gage l | neight
t) | |---|---|---|---|---|---|--|--|--|---|---|---|---| | Oct | 11 | 0200 | *3080 | | *12.78 | | Dec 5 | 0615 | 5 | 1670 | 11 | .71 | | | | DISCHAF | GE, CUBIC | FEET | | | YEAR OCTOBE | R 2000 | TO SEPTEM | IBER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 50
42
56
43
54 | 73
62
250
111
83 | 71
71
61
75
648 | 37
58
131
82
101 | e149
e97
e113
e77
e62 | e70
e56
e47
e44
e45 | e35
e29
e30
e72
e57 | 58
79
130
96
72 | 124
99
100
105
98 | 57
56
60
63
107 | 72
56
58
56
45 | 46
104
71
42
193 | | 6
7
8
9
10 | 134
136
121
206
184 | 74
92
76
62
55 | 170
108
92
80
72 | 89
70
73
67
56 | e56
e59
e52
e48
e40 | e47
e53
e59
e75
e412 | 39
35
51
54
42 | 65
77
132
97
83 | 92
94
103
102
110 | 86
159
100
85
85 | 36
32
31
32
32 | 125
106
90
79
74 | | 11
12
13
14
15 | 757
247
216
171
213 | 119
113
74
61
66 | 65
59
52
46
42 | 51
47
52
50
55 | e38
e36
e190
e120
e65 | e500
e221
e131
e100
e88 | 44
40
38
35
36 | 79
82
80
e80
e80 | 87
85
90
87
82 | 81
82
81
80
80 | 29
28
25
22
25 | 80
159
407
369
160 | | 16
17
18
19
20 | 139
106
91
85
84 | 62
104
68
68
72 | 39
38
45
42
35 | 67
56
e51
e48
e44 | e51
e48
e43
e40
e38 | e80
e77
e73
e66
e57 | 41
53
55
47
49 | 79
71
73
63
69 | 81
81
84
99 | 81
73
63
62
63 | 24
21
20
21
33 | 152
159
137
128
117 | | 21
22
23
24
25 | 84
101
113
93
77 | 155
194
178
138
115 | 32
29
28
28
32 | e54
e65
e76
e57
e47 | e37
e35
e33
e32
e31 | e52
e47
e43
e41
e43 | 53
58
58
71
57 | 79
100
109
84
79 | 80
72
76
74
66 | 64
60
69
108
89 | 17
15
12
12
14 | 110
92
79
76
61 | | 26
27
28
29
30
31 | 67
60
55
49
52
101 | 119
126
91
76
67 | 32
28
27
26
34
39 | e43
e122
e110
e62
e80
e160 | e80
e178
e138

 | e47
e41
e43
e39
e41
e48 | 61
65
62
61
52 | 85
97
101
98
102
153 | 68
77
71
61
59 | 81
70
64
69
75
70 | 19
72
36
29
27
39 | 55
56
52
72
328 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 3987
129
757
42
7910
12.7
14.68 | 3004
100
250
55
5960
9.91
11.06 | 2246
72.5
648
26
4450
7.17
8.27 | 2161
69.7
160
37
4290
6.90
7.96 | 1986
70.9
190
31
3940
7.02
7.31 | 2786
89.9
500
39
5530
8.90
10.26 | 1480
49.3
72
29
2940
4.88
5.45 | 2732
88.1
153
58
5420
8.73
10.06 | 2599
86.6
124
59
5160
8.58
9.57 | 2423
78.2
159
56
4810
7.74
8.92 | 990
31.9
72
12
1960
3.16
3.65 | 3779
126
407
42
7500
12.5
13.92 | | MEAN
MAX
(WY)
MIN
(WY) | 190
293
1988
104
1985 | 103
218
1990
37.0
1999 | 104
207
1990
21.7
1984 | 101
184
1984
46.3
1988 | 81.6
154
1993
24.8
1999 | 64.2
122
1986
19.9
1989 | YEARS 1980 - 69.4 111 1983 39.1 1981 | 108
167
1983
53.3
1981 | 90.7
166
1985
28.8
1993 | YEAR (WY) 64.1 111 1985 20.6 1993 | #
86.3
238
1983
30.0
1989 | 174
295
1991
52.8
1986 | See period of record; partial years used in monthly summary statistics and break in record Estimated # 15087690 INDIAN RIVER NEAR SITKA--Continued | SUMMARY STATISTICS | FOR 2000 CAL | ENDAR | YEAR | FOR 2001 | WATE | R YEAR | WATER YEARS | 1980 | - 2 | 2001# | |--------------------------|--------------|-------|------|----------|------|--------|-------------|-------|-----|-------| | ANNUAL TOTAL | 33073 | | | 30173 | | | | | | | | ANNUAL MEAN | 90.4 | | | 82.7 | | | 103 | | | | | HIGHEST ANNUAL MEAN | | | | | | | 123 | | | 1987 | | LOWEST ANNUAL MEAN | | | | | | | 82.7 | | | 2001 | | HIGHEST DAILY MEAN | 1150 | Sep | 4 | 757 | Oct | 11 | 2000 | Oct : | 12 | 1982 | | LOWEST DAILY MEAN | 20 | Mar | 9 | a12 | Aug | 23 | 8.6 | Jan | 18 | 1989 | | ANNUAL SEVEN-DAY MINIMUM | 21 | Mar | 7 | 17 | Aug | 20 | 10 | Jan | 13 | 1989 | | MAXIMUM PEAK FLOW | | | | b3080 | Oct | 11 | c5710 | Sep | 4 | 1990 | | MAXIMUM PEAK STAGE | | | | 12.78 | Oct | 11 | d13.51 | Sep | 4 | 1990 | | INSTANTANEOUS LOW FLOW | | | | 11 | Aug | 24 | 8.2 | Jan | 19 | 1989 | | ANNUAL RUNOFF (AC-FT) | 65600 | | | 59850 | | | 74860 | | | | | ANNUAL RUNOFF (CFSM) | 8.95 | | | 8.18 | | | 10.2 | | | | | ANNUAL RUNOFF (INCHES) | 121.81 | | | 111.13 | | | 139.00 | | | | | 10 PERCENT EXCEEDS | 157 | | | 133 | | | 190 | | | | | 50 PERCENT
EXCEEDS | 74 | | | 69 | | | 69 | | | | | 90 PERCENT EXCEEDS | 31 | | | 34 | | | 29 | | | | [#] See period of record; partial years used in monthly summary statistics and break in record a Aug. 23 and 24 b From rating curve extended above $300 \text{ ft}^3/\text{s}$ c From rating curve extended above $3,100 \text{ ft}^3/\text{s}$, at site and datum then in use d At site and datum then in use # 15087690 INDIAN RIVER NEAR SITKA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.-- Water years 1983, January 2001 to September 2001. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: July 2001 to September 2001 WATER TEMPERATURE: May 2001 to September 2001. INSTRUMENTATION.--Electronic water temperature recorder since May 16, 2001, recorder set to 1 hour recording interval. #### REMARKS. - EMPHANS.-SPECIFIC CONDUCTANCE: Probe installed May 16, no record May 16 to July 24, due to program error. Records represent specific conductance at sensor within 3 us/cm. No variation was found within the cross sections measured on April 4 and July 25. No variation was found between the mean stream specific conductance and specific conductance at the sensor. WATER TEMPERATURE: Probe installed on May 16. Records represent water temperature at sensor within 0.5°C. No variation was found within the cross sections measured on April 4 and July 25. No variation was found between the mean stream temperature and temperature at the sensor. SAMPLE EXTREMES OUTSIDE PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Minimum recorded, A specific conductance value of 21 us/cm was measured on October 12, 1982. WATER TEMPERATURE: Minimum recorded, A water temperature of 2.5°C was measured on April 4, 2001. ### EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, August 20, and 23-25; minimum recorded, 27 us/cm, September 5 WATER TEMPERATURE: Maximum recorded, 10.0°C, August 27, 2001, minimum recorded, 4.5°C several days in May and June. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 BARO- OXYGEN, | DATE | TIME | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | | WATER
(DEG C | (MM
OF
) HG) | OXYGEN
DIS-
SOLVE
(MG/I | CENT
D SATUR
D ATION | ED | | | | | |--------------------------------------|---|--|--|--|--|---|--|---|--|--|---|--|--| | APR 04 04 04 04 04 04 | 0945
0946
0947
0948
0949 | 15.0
20.0
25.0
30.0
35.0
40.0 | 40
40
40
40
40
40 | 7.2
7.2
7.2
7.2
7.2
7.2 | 2.5
2.5
2.5
2.5
2.5
2.5 | 750
750
750
750
750
750 | 14.1
14.1
14.1
14.1
14.1 | 105
105
105
105
105 | | | | | | | JUL 25 25 25 25 25 25 25 25 25 25 25 | 0902
0903
0904
0905
0906
0907
0908
0909 | 5.0
9.0
13.0
17.0
21.0
24.0
28.0
32.0 | 39
39
39
39
40
40
39 | 6.6
6.6
6.6
6.7
6.7
6.7 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 763
763
763
763
763
763
763 | 12.5
12.6
12.7
12.7
12.7
12.7
12.8
12.8 | 104
105
106
106
106
106
107 | | | | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | JAN
04 | 1020 | 9 | 9 | 8.24 | 86 | 10 | 3045 | 42 | 7.4 | | | 14 | 4.75 | | APR
04
MAY | 0930 | 9 | 9 | 8.15 | 65 | 10 | 3045 | 40 | 7.2 | 2.5 | 14.1 | 15 | 4.93 | | 16 | 0900 | 9 | 9 | 8.24 | 78 | 10 | 3045 | 42 | 7.7 | 5.0 | 12.4 | 17 | 5.80 | | 16
16 | 1130
1200 | 9
H | 9
9 | | | | 8010 | | | | | | | | JUL
25 | 0930 | 9 | 9 | 8.38 | 88 | 10 | 3045 | 40 | 6.6 | 7.5 | 12.7 | 15 | 5.07 | | DATE
JAN | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | TOT IT
FIELD | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI- | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | 04 | .505 | 1.8 | | <.24 | | | 1.4 | 3.6 | <.2 | 2.8 | 30 | | <.001 | | APR 04 | .540 | 2.1 | | <.09 | 14 | 11 | 1.6 | 3.9 | <.2 | 3.0 | 29 | | .002 | | MAY
16 | .571 | 2.0 | 15 | .12 | 18 | 14 | 1.4 | 3.8 | <.2 | 3.2 | 28 | 26 | <.001 | | 16
16 | | | | | | | | | | | | | | | JUL
25 | .513 | 1.7 | | .10 | 18 | 15 | 1.6 | 2.3 | <.2 | 3.1 | | 24 | <.001 | | | | | | | | | | | | | | | | # SOUTHEAST ALASKA # 15087690 INDIAN RIVER NEAR SITKA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | |--|--|--|---|--|---|---|---|---
---|--|---|--|---| | JAN
04 | .132 | <.002 | <.08 | <.10 | .009 | E.004 | <.007 | 10 | <3.2 | | | 1.4 | <.1 | | APR
04 | .076 | .003 | <.08 | <.10 | E.002 | <.006 | <.007 | 30 | E2.9 | | | 1.8 | <.1 | | MAY
16 | .102 | <.002 | <.08 | <.10 | <.004 | <.006 | <.007 | 10 | <3.0 | | | .50 | <.1 | | 16
16 | | | | | | | | | | -79.30
 | -11.09 | | | | JUL
25 | .055 | .002 | <.08 | <.10 | E.003 | E.003 | <.007 | 40 | E1.9 | | | 3.2 | <.1 | | DATE | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | BENZENE
HEXA-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49343) | PENTA-
CHLORO-
ANISOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49460) | ALUM-
INUM
BOT MAT
<63U WS
FIELD
PERCENT
(34790) | ANTI-
MONY
BOT MAT
<63U WS
FIELD
(UG/G)
(34795) | ARSENIC
BOT MAT
<63U WS
FIELD
(UG/G)
(34800) | BARIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34805) | BERYL-
LIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34810) | BISMUTH
BOT MAT
<180UWS
FIELD
(UG/G)
(34816) | | JAN
04 | <.1 | <.1 | <.022 | 2 | .46 | | | | | | | | | | APR
04 | <.1 | <.1 | <.022 | 1 | .18 | | | | | | | | | | MAY
16 | .1 | .1 | .024 | | | | | | | | | | | | 16
16
JUL | | | | | | <50 | <50 | 7.3 | 1.1 | 47 | 620 | 1.2 | <1 | | 25 | <.1 | <.1 | .030 | <1 | | | | | | | | | | | DATE
JAN | CADMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34825) | CHRO-
MIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34840) | COPPER
BOT MAT
<63U WS
FIELD
(UG/G)
(34850) | CALCIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34830) | COBALT
BOT MAT
<63U WS
FIELD
(UG/G)
(34845) | CERIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34835) | EURO-
PIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34855) | GOLD
BOT MAT
<63U WS
FIELD
(UG/G)
(34870) | GALLIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34860) | HOLMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34875) | IRON
BOT MAT
<63U WS
FIELD
PERCENT
(34880) | LANTHA-
NUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34885) | LEAD
BOT MAT
<63U WS
FIELD
(UG/G)
(34890) | | 04
APR | | | | | | | | | | | | | | | 04
MAY | | | | | | | | | | | | | | | 16
16 | | | | | | | | | | | | | | | 16
JUL | . 2 | 180 | 100 | 1.8 | 46 | 31 | 1 | <1 | 16 | 1 | 7.7 | 15 | 14 | | 25 | | | | | | | | | | | | | | | | LITHIUM | MACINE | | | | | | | | | | | | | DATE | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | | MANGA-
NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | MERCURY
BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | <63U WS
FIELD
(UG/G) | <63U WS
FIELD
(UG/G) | FIELD
(UG/G) | <63U WS
FIELD
(UG/G) | <63U WS
FIELD
PERCENT | <63U WS
FIELD
(UG/G) | SELE-
NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | <63U WS
FIELD
(UG/G) | SODIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34960) | | JAN
04 | BOT MAT
<63U WS
FIELD
(UG/G) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT | NESE
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G) | IUM
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT | DIUM
BOT MAT
<63U WS
FIELD
(UG/G) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
PERCENT | | JAN
04
APR
04 | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT | NESE
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G) | IUM
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT | DIUM
BOT MAT
<63U WS
FIELD
(UG/G) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
PERCENT | | JAN
04
APR
04
MAY
16 | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | IUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34920) | BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | BOT MAT
<63U WS
FIELD
PERCENT
(34960) | | JAN
04
APR
04
MAY
16
16 | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | IUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34920) | BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | BOT MAT
<63U WS
FIELD
PERCENT
(34960) | | JAN
04
APR
04
MAY
16 | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | IUM BOT MAT <63U WS FIELD (UG/G) (34920) | BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | BOT MAT
<63U WS
FIELD
PERCENT
(34960) | | JAN 04 APR 04 MAY 16 16 15 JUL 25 | BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | IUM BOT MAT <63U WS FIELD
(UG/G) (34920) 18 NITA- NIUM, | BOT MAT
<63U WS
FIELD
(UG/G)
(34925)

72

URANIUM | BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | BOT MAT
<63U WS
FIELD
PERCENT
(34960) | | JAN 04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04 | BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) | SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD | NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) | DENUM DENUM SOT MAT C63U WS FIELD (UG/G) (34915) 1.7 TIN BOT MAT C63U WS FIELD (UG/G) | IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT | BOT MAT <63U WS FIELD (UG/G) (34925) 72 URANIUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G) | PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G) | DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) | NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS, 663U DW, REC (PER- CENT) | BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS, <63U DW, REC (PER- CENT) | | JAN 04 APR 04 MAY 16 16 25 DATE JAN 04 APR 04 | BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965) | SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD | NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) (34980) | DENUM DENUM BOT MAT 630 WS FIELD (UG/G) (34915) 1.7 1.7 TIN BOT MAT <630 WS FIELD (UG/G) (34985) | IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274) | BOT MAT <63U WS FIELD (UG/G) (34925) 7 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000) | BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G) | PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G) | DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015) | NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266) | BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269) | | JAN 04 APR 04 MAY 16 16 JuL 25 DATE JAN 04 APR 04 MAY 16 | BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965) | SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD | NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) (34980) | DENUM BOT MAT <63U WS FIELD (UG/G) (34915) 1.7 TIN BOT MAT <63U WS FIELD (UG/G) (34985) | IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274) | BOT MAT <63U WS FIELD (UG/G) (34925) 72 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000) | BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G) | PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G) | DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015) | NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266) | BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269) | | JAN 04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04 APR 04 MAY | BOT MAT <63U WS FIELD (UG/G) (34895) 38 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965) | SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD PERCENT (34970) | NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975) | BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (34980) | DENUM BOT MAT <63U WS FIELD (UG/G) (34915) TIN BOT MAT <63U WS FIELD (UG/G) (34985) | IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274) | BOT MAT <63U WS FIELD (UG/G) (34925) 7 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000) | BOT MAT <63U WS FIELD (UG/G) (34930) 13 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005) | PHORUS BOT MAT <pre> </pre> | | | | | # 15087690 INDIAN RIVER NEAR SITKA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | CARBON,
ORG +
INORG,
SED, BM
WS,<63U
DW, REC
PERCENT
(49267) | CARBON,
ORG +
INORG
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49272) | CARBON,
INORG,
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49270) | CARBON,
ORGANIC
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49271) | BENZENE
124TRI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49438) | BENZENE
O-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49439) | NAPTHAL
ENE, 12
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49403) | BENZENE
M-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49441) | BENZENE
P-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49442) | NAPTHAL
ENE, 16
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49404) | 9H-FLU-
ORENE,
1METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49398) | PHENAN
THRENE
1METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49410) | PYRENE,
1-
METHYL,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49388) | |--|---|---|--|---|---|---|--|--|--|---
--|--|--| | JAN
04 | | | | | | | | | | | | | | | APR
04 | | | | | | | | | | | | | | | MAY
16 | | | | | | | | | | | | | | | 16
16 | 3.9 | 3.8 | <.2 | 3.7 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 |
<50 | | JUL
25 | | | | | | | | | | | | | | | DATE | QUINO-
LINE, | NAPTHAL
ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49405) | TOLUENE
2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | NAPTHAL
ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | TOLUENE
2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | NAPTHAL
ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407) | PHENOL,
2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | NAPTHAL
ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | ANTHRA-
CENE, 2-
METHYL-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49435) | 3,5-
XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | 4-BROMO
PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | M-CRE-
SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49422) | 4CHLORO
PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN
04
APR | | | | | | | | | | | | | | | 04
MAY | | | | | | | | | | | | | | | 16 | |
 | |
 | | | | | |
 | | | | | 16
JUL | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | 25 | | | | | | | | | | | | | | | DATE | 4HCYPEN
PHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49411) | ACENAPH
THENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49429) | ACENAPH
THYLENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49428) | ACRI-
DINE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49430) | ANTHRA-
CENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49434) | 9,10-
ANTHRA-
QUINONE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49437) | AZO-
BENZENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49443) | BENZ(A)
ANTHRA-
CENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49436) | BENZO (A) PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49389) | BENZOB
FLUOR-
ANTHENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49458) | BENZOCI
NNOLINE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49468) | BENZO(G
HI)PERY
LENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49408) | BENZO K
FLUOR-
ANTHENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49397) | | | | | | | | | | | | | | | | | JAN
04 | | | | | | | | | | | | | | | 04
APR
04 | | | | | | | | | | | | | | | 04
APR
04
MAY
16 | |

 |

22 |

::: |

 |

 |

 |

 |

-: |

 |

::: |

 |
 | | 04
APR
04
MAY
16
16 |

<50 | |

<50 | | 04
APR
04
MAY
16
16 | | | | | | | | | | | | | | | 04 APR 04 MAY 16 16 16 JUL | PHTHALA
TE,BIS2
ETHHEXL
SED, BM
WS,<2MM
DW, REC | <pre><50 PHTHALA TEBUTYL BENZYL- SED, BM</pre> |
<50

PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC |
<50

CARBA-
ZOLE
SED, BM
WS,<2MM
DW, REC | CHRY-
SENE
SED, BM
WS, C2MM
DW, REC
(UG/KG) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre> | <pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC</pre> | <50 DIBENZ (AH),AN THRACEN SED, BM WS,<2MM | <50
THIOPH
ENE,DI-
BENZO-
SED,BM
WS,<2MM
DW,REC | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | PHTHAL-
ATE,DI-
METHYL
SED, BM
WS,<2MM
DW, REC |
<50

FLUOR-
ANTHENE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG) | | | 04 APR 04 MAY 16 16 15 25 | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) | PHTHALA
TEBUTYL
BENZYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) |
<50

PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | CARBA-
ZOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG) | CHRY-
SENE
SED, BM
WS, C2MM
DW, REC
(UG/KG) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL
ATE, D
IOCTYL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | <pre>CODIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG)</pre> | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | PHTHAL- ATE,DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) |
<50

FLUOR-
ANTHENE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG) | 9H-FLU-
ORENE
SED, BM
WS, 2MM
DW, REC
(UG/KG) | | 04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04 APR 04 | PHTHALA
TE,BIS2
ETHHEXL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49426) | PHTHALA
TEBUTYL
BENZYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) |
<50

PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | CARBA-
ZOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG) | CHRY-
SENE
SED, BM
WS, C2MM
DW, REC
(UG/KG) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL
ATE, D
IOCTYL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | <pre>CODIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG)</pre> | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | PHTHAL- ATE,DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) |
<50

FLUOR-
ANTHENE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG) | 9H-FLU-
ORENE
SED, BM
WS, 2MM
DW, REC
(UG/KG) | | 04 APR 04 MAY 16 16 JUL 25 DATE JAN 04 APR 04 APR 16 | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) | PHTHALA TEBUTYLL BENZYL- SED, BM WS, <2MM DW, REC (UG/KG) (49427) | PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49424) | CARBA-ZOLE
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49449) |

CHRY-
SENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49450)

 | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)</pre> | <pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382)</pre> | <pre>DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461)</pre> | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre> | PHTHAL-
ATE, D
IETHYL
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49383) | PHTHAL-
ATE, DI-
METHYL
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49384) | FLUOR- FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) | 9H-FLU-
ORENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49399) | | 04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16 | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) | PHTHALA
TEBUTYLL
BENZYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49427) | PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49424) | CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) | CHRY-
SENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49450) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)</pre> | PHTHAL
ATE, D
IOCTYL
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49382) | <50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre> | <pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)</pre> | PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49384) | FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) | 9H-FLU-
ORENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49399) | | 04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) | PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427) | | CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) |

CHRY-
SENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49450)

 | PHTHAL-
ATE,
DIBUTYL,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49381) | PHTHAL
ATE, D
IOCTYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49382) | CIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG) (49461) | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre> | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49383) | PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384) | FLUOR- ANTHENE BED MAT WS < 2MM DRY WGT REC (UG/KG) (49466) | 9H-FLU-
ORENE
SED, BM
WS, < 2MM
DW, REC
(UG/KG)
(49399) | | 04 APR 04 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16 16 DATE | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) | PHTHALA TEBUTYLL SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE | PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <50 ISO- QUINO- LINE, SED, BM | CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) |

CHRY-
SENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49450)

<50

DIPHNYL | <50 PHTHAL- ATE, DIBUTYL, SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50 | <pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50</pre> | <50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <50 BENZENE PNTCHLR NITRO- SED, BM | <pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre> | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW,
REC
(UG/KG)
(49383) | PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384) | FLUOR- ANTHENE BED MAT WS < 2MM DRY WGT REC (UG/KG) (49466) | 9H-FLU-
ORENE
SED, BM
WS, < 2MM
DW, REC
(UG/KG)
(49399) | | 04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16 16 16 16 16 16 16 17 | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) | PHTHALA TEBUTYLL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) | <50 PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <-50 ISO- QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) | CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) <50 DPROPYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) | CHRY-SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) | <pre></pre> | <pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50 BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG)</pre> | <pre> CONTROL CONTRO</pre> | <pre> THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452) <50 PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)</pre> | <pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL- ATE, DI- METHYL SED, BM WS, <2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, <2MM DW, REC (UG/KG) | FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <-50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) | 9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) < < < < < < | | 04 APR 04 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 JUL 25 DATE | M PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390) | PHTHALA TEBUTYLL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) | PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <-50 UINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49394) | CARBAZOLE SED, BM WS, <2MM DW, REC (UG/KG) (49449) | CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) < < < < < < < < <-</pre> | <pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50 BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG)</pre> | <pre> CONTROL CONTRO</pre> | <pre> THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452) <50 PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)</pre> | <pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG)</pre> | PHTHAL- ATE, DI- METHYL SED, BM WS, <2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, <2MM DW, REC (UG/KG) | FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <-50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) | 9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) < < < < < < | | 04 APR 04 MAY 16 16 17 DATE DATE JAN 04 APR 04 MAY 16 16 JUL 25 DATE DATE | PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390) | <pre></pre> | | CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) | CHRY- SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433) | <50 PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50 NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402) | <pre></pre> | <50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <50 BENZENE PNTCHLR NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49446) | <50 THIOPH ENE, DI- BENZO- SED, BM WS, <2MM DW, REC (UG/KG) (49452) < < < < < < < < <- | <50 PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393) | | | 9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) <-50 QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392) | | 04 APR 04 MAY 16 16 16 JUL 25 DATE JAN 04 APR 04 MAY 16 16 JUL 25 | | PHTHALA TEBUTYLL SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) (49400) | | CARBAZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) | CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433) | <pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50 NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402)</pre> | PHTHAL ATE, D IOCTYL SED, BM WS, <2MM DW, REC (UG/KG) (49382) <-50 BENZENE NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49444) | <50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <-50 SED, BM WS, <2MM NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49446) | <50 THIOPH ENE, DI- BENZO- SED, BM WS, <2MM DW, REC (UG/KG) (49452) < < < < < ENERGY CONTROL PHENAN THRENE SED, BM WS, <2MM DW, REC (UG/KG) (49409) | PHTHAL- ATE, D IETHYL SED, BM WS, <2MM DW, REC (UG/KG) (49383) <-50 PHENAN- THRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49393) | PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, < 2MM DW, REC (UG/KG) (49413) | FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) (49387) | 9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) <50 QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392) | # SOUTHEAST ALASKA # 15087690 INDIAN RIVER NEAR SITKA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | METHANE | BIS2CHL | | |------|---------|---------|---------| | | 2CHLORO | ETHYL | P- | | | ETHOXY | ETHER | CRESOL | | | SED, BM | SED, BM | SED, BM | | | WS,<2MM | WS,<2MM | WS,<2MM | | DATE | DW, REC | DW, REC | DW, REC | | | (UG/KG) | (UG/KG) | (UG/KG) | | | (49401) | (49456) | (49451) | | JAN | | | | | 04 | | | | | APR | | | | | 04 | | | | | MAY | | | | | 16 | | | | | 16 | | | | | 16 | < 50 | < 50 | < 50 | | JUL | | | | | 25 | | | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|-----|------|------|-----|--------|------|-----|---------|------| | | | JUNE | | | JULY | | P | AUGUST | | S | EPTEMBE | R | | 1 | | | | | | | 46 | 46 | 46 | 51 | 42 | 50 | | 2 | | | | | | | 47 | 46 | 46 | 44 | 36 | 41 | | 3 | | | | | | | 47 | 47 | 47 | 45 | 39 | 42 | | 4 | | | | | | | 48 | 47 | 47 | 47 | 45 | 46 | | 5 | | | | | | | 48 | 47 | 48 | 47 | 27 | 39 | | 6 | | | | | | | 48 | 48 | 48 | 43 | 36 | 41 | | 7 | | | | | | | 49 | 48 | 48 | 44 | 41 | 43 | | 8 | | | | | | | 49 | 48 | 49 | 45 | 42 | 43 | | 9 | | | | | | | 49 | 49 | 49 | 47 | 45 | 46 | | 10 | | | | | | | 50 | 49 | 49 | 48 | 47 | 48 | | 11 | | | | | | | 50 | 49 | 50 | 49 | 48 | 48 | | 12 | | | | | | | 50 | 50 | 50 | 49 | 31 | 45 | | 13 | | | | | | | 51 | 50 | 50 | 37 | 30 | 34 | | 14 | | | | | | | 51 | 50 | 51 | 42 | 28 | 36 | | 15 | | | | | | | 51 | 50 | 51 | 43 | 37 | 41 | | 16 | | | | | | | 51 | 51 | 51 | 45 | 38 | 42 | | 17 | | | | | | | 52 | 51 | 51 | 45 | 39 | 43 | | 18 | | | | | | | 53 | 51 | 52 | 44 | 42 | 44 | | 19 | | | | | | | 53 | 51 | 52 | 44 | 39 | 42 | | 20 | | | | | | | 54 | 52 | 52 | 46 | 42 | 44 | | 21 | | | | | | | 53 | 52 | 53 | 47 | 43 | 46 | | 22 | | | | | | | 53 | 53 | 53 | 46 | 42 | 44 | | 23 | | | | | | | 54 | 53 | 53 | 47 | 46 | 46 | | 24 | | | | | | | 54 | 53 | 53 | 48 | 47 | 47 | | 25 | | | | 42 | 41 | 41 | 54 | 53 | 53 | 48 | 48 | 48 | | 26 | | | | 43 | 42 | 42 | 53 | 51 | 52 | 49 | 48 | 48 | | 27 | | | | 45 | 43 | 44 | 51 | 41 | 44 | 48 | 46 | 47 | | 28 | | | | 45 | 45 | 45 | 49 | 46 | 47 | 48 | 48 | 48 | | 29 | | | | 45 | 43 | 44 | 50 | 49 | 49 | 48 | 39 | 47 | | 30 | | | | 45 | 44 | 44 | 51 | 50 | 50 | 39 | 29 | 34 | | 31 | | | | 46 | 45 | 45 | 51 | 50 | 50 | | | | | MONTH | | | | | | | 54 | 41 | 50 | 51 | 27 | 44 | # 15087690 INDIAN RIVER NEAR SITKA--Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |--|---|--|--|--|--|---|---|--|--|---
--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2
3 | | | | | | | | | | | | | | 4
5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8
9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16
17 | | | | | | | | | | 5.5
5.0 | 4.5
4.5 | 4.0
4.5 | | 18 | | | | | | | | | | 5.0 | 4.5 | 5.0 | | 19
20 | | | | | | | | | | 6.0
5.0 | 4.5
4.5 | 5.0
5.0 | | | | | | | | | | | | | | | | 21
22 | | | | | | | | | | 5.5
5.0 | 4.5
4.5 | 5.0
4.5 | | 23 | | | | | | | | | | 5.0 | 4.5 | 4.5 | | 24
25 | | | | | | | | | | 5.5
6.0 | 4.5
4.5 | 4.5
5.0 | | | | | | | | | | | | | | | | 26
27 | | | | | | | | | | 6.0
6.0 | 4.5
5.0 | 5.0
5.5 | | 28 | | | | | | | | | | 6.0 | 5.0 | 5.5 | | 29
30 | | | | | | | | | | 5.5
5.5 | 4.5
4.5 | 5.0
5.0 | | 31 | | | | | | | | | | 5.5 | 4.5 | 5.0 | | MONTH | _ | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2 | 5.5
5.5 | 4.5 | 5.0
5.0 | 8.5
8.5 | 6.5 | 7.0
7.5 | 8.0 | 7.0 | 7.5
7.5 | 9.0 | 8.0 | 8.0 | | 2 | 5.5
5.5 | 4.5
5.0
5.0 | 5.0
5.0 | 8.5
8.0 | 6.5
7.0
7.0 | 7.5
7.5 | 8.0
8.0
7.5 | 7.0
7.0
7.0 | 7.5
7.0 | 9.0
9.0
8.5 | 8.0
8.0
8.0 | 8.0
8.5
8.0 | | 2 | 5.5 | 4.5
5.0 | 5.0 | 8.5 | 6.5
7.0 | 7.5 | 8.0
8.0 | 7.0
7.0 | 7.5 | 9.0
9.0 | 8.0 | 8.0
8.5 | | 2
3
4
5 | 5.5
5.5
6.0
5.5 | 4.5
5.0
5.0
5.0
5.0 | 5.0
5.0
5.5
5.5 | 8.5
8.0
7.5
7.5 | 6.5
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5 | 8.0
8.0
7.5
7.5
8.0 | 7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5 | 8.0
8.0
8.0
7.5
8.0 | 8.0
8.5
8.0
8.0 | | 2
3
4 | 5.5
5.5
6.0 | 4.5
5.0
5.0
5.0 | 5.0
5.0
5.5 | 8.5
8.0
7.5 | 6.5
7.0
7.0
7.0 | 7.5
7.5
7.5 | 8.0
8.0
7.5
7.5 | 7.0
7.0
7.0
7.0 | 7.5
7.0
7.5 | 9.0
9.0
8.5
8.5 | 8.0
8.0
8.0
7.5 | 8.0
8.5
8.0
8.0 | | 2
3
4
5
6
7
8 | 5.5
5.5
6.0
5.5
6.0
6.0
6.5 | 4.5
5.0
5.0
5.0
5.0
5.0 | 5.0
5.5
5.5
5.5
5.5
6.0 | 8.5
8.0
7.5
7.5
7.0
7.5
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.5
7.0
7.5
7.0 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
8.0 | 8.0
8.0
7.5
8.0
7.5
7.5 | 8.0
8.5
8.0
8.5
8.5
7.5 | | 2
3
4
5
6
7 | 5.5
5.5
6.0
5.5
6.0 | 4.5
5.0
5.0
5.0
5.0
5.0 | 5.0
5.0
5.5
5.5
5.5 | 8.5
8.0
7.5
7.5
7.0
7.5 | 6.5
7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
7.5
7.5
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5 | 8.0
8.0
7.5
8.0
7.5 | 8.0
8.5
8.0
8.0
8.5 | | 2
3
4
5
6
7
8
9 | 5.5
5.5
6.0
5.5
6.0
6.5
5.5 | 4.5
5.0
5.0
5.0
5.0
5.0
5.0 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5 | 7.5
7.5
7.5
7.5
7.0
7.5
7.0
7.0 | 8.0
7.5
7.5
8.0
8.0
7.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.0
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0 | 8.0
8.0
7.5
8.0
7.5
7.5
7.5
7.0
6.5 | 8.0
8.5
8.0
8.5
8.5
8.0
7.5
7.5
6.5 | | 2
3
4
5
6
7
8
9
10 | 5.5
5.5
6.0
5.5
6.0
6.5
5.5
5.5
6.0 | 4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.5
5.0 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
5.5 | 8.5
8.0
7.5
7.5
7.0
7.5
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
6.5 | 8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
7.0 | 8.0
8.0
7.5
8.0
7.5
7.0
6.5
6.0 | 8.0
8.0
8.0
8.5
8.0
7.5
6.5
6.5 | | 2
3
4
5
6
7
8
9
10 | 5.5
5.5
6.0
5.5
6.0
6.0
6.5
5.5
5.5 | 4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 5.0
5.5
5.5
5.5
6.0
5.5
5.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0 | 8.0
7.5
7.5
8.0
7.5
8.0
7.5
8.5
8.5
8.7 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0 | 8.0
8.0
7.5
8.0
7.5
7.5
7.0
6.5
6.0 | 8.0
8.5
8.0
8.5
8.5
8.0
7.5
7.5
6.5
6.5 | | 2
3
4
5
6
7
8
9
10
11
12
13 | 5.5
5.5
6.0
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5 | 4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.5
5.5 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
6.5
6.5 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0 | 8.0
8.0
7.5
8.0
7.5
7.5
7.5
6.0
6.5
6.0 | 8.0
8.0
8.0
8.5
7.5
7.5
6.5
6.5
8.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5 | 4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.5
5.5
5.5
5 |
5.0
5.0
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
6.5
6.5
7.0
7.0 | 8.0
7.5
7.5
8.0
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
8.5 | 8.0
8.0
7.5
8.0
7.5
7.5
7.0
6.5
6.0
6.5
6.5
7.5
7.5 | 8.0
8.5
8.0
8.5
8.5
7.5
6.5
6.5
7.0
8.5
8.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 5.5
5.5
6.0
6.0
6.5
5.5
5.5
6.5
6.5
6.5
6.5 | 4.5
5.0
5.0
5.0
5.0
5.0
5.5
5.5
5.5
5.5
5 | 5.0
5.0
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
6.5
6.5
7.0
7.0 | 8.0
7.5
7.5
8.0
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
8.5 | 8.0
8.0
7.5
8.0
7.5
7.5
6.5
6.5
8.0
6.5
8.0
7.5
7.5 | 8.0
8.0
8.0
8.5
8.0
7.5
6.5
6.5
6.5
8.0
8.5
8.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
7.0 | 4.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.0
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0
6.5
6.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
6.5
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
6.5
6.5
7.0
7.0
7.0
7.0 | 8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.5
8.0
7.0
7.0
6.5
9.0
9.0
8.5
8.5
8.5
8.6
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.0
8.0
7.5
8.0
7.5
7.5
7.5
6.5
6.5
6.5
6.5
7.5
7.5
7.5
7.5 | 8.5
8.0
8.5
8.5
8.5
6.5
6.5
7.5
8.0
8.5
7.5
8.0
8.0
7.5
8.0
8.0
7.5
8.0
8.0
7.5
8.0
8.0
7.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5
6.5 | 4.50
5.00
5.00
5.00
5.00
5.05
5.55
5.55 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0
6.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
6.5
6.5
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5 | 8.0
8.0
7.5
8.0
7.5
7.5
6.5
6.5
6.5
7.5
7.5
7.5
7.5 | 8.5
8.0
8.5
8.5
8.5
7.5
6.5
6.5
8.0
8.5
7.5
8.0
8.5
7.5
7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 5.5
5.5
6.0
6.5
5.5
5.5
6.5
6.5
6.5
6.5
7.0
6.5
6.5 | 4.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0
6.5
6.5
6.5
6.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.5
8.0
9.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
7.5
8.5
7.5
7.5 | 8.0
8.0
7.5
8.0
7.5
7.5
7.5
6.5
6.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
8.0
8.5
8.0
8.5
8.5
6.5
6.5
6.5
8.0
7.5
8.5
8.0
7.5
7.5
7.0
7.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5
7.0
6.5 | 4.50
5.00
5.00
5.00
5.00
5.00
5.05
5.55
5.55
5.55
6.00
6.00 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.5
6.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
8.5
8.5 | 6.5
7.0
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.5
8.0
9.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
8.5 | 8.0
8.0
7.5
8.0
7.5
7.0
6.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5 | 8.5
8.0
8.5
8.5
8.5
7.5
6.5
6.5
8.0
8.5
7.5
8.0
8.5
7.5
7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5
6.5
6.5 | 4.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.0
5.5
5.5
5.5
5.5
5.5
5.5
6.0
6.0
6.0
6.5
6.5
6.5
6.5
6.5
6.6
6.6
6.6
6.6
6.6 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5 | 8.0
8.0
7.5
7.5
8.0
8.5
8.5
8.5
8.0
9.0
8.5
8.0
9.0
8.5
8.0
8.0
9.0
8.5
8.0
8.0
9.0
8.0
8.0
9.0
8.0
9.0
8.0
9.0
8.0
8.0
9.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
7.5
8.5
7.5
7.5
7.5
7.5 | 8.0
8.0
7.5
8.0
7.5
7.5
7.0
6.5
6.0
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.0
6.5
6.5
6.0 | 8.5
8.0
8.5
8.0
8.5
6.5
6.5
6.5
7.5
8.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 5.5
5.5
6.0
6.5
5.5
5.5
6.5
6.5
6.5
7.0
6.5
6.5
7.0
7.0 | 4.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.5
6.5
6.5
6.5
6.5
6.5
6.6
6.5
6.6
6.5
6.6
6.6 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0
7.0
7.5
8.0
7.5
8.0
7.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
7.5
8.5
7.5
7.5
7.5
7.0
7.0 |
8.0
8.0
7.5
8.0
7.5
7.5
6.5
6.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.5
8.0
8.5
8.5
7.5
6.5
6.5
7.5
8.5
8.0
7.5
7.5
7.0
7.0
7.0
6.5
6.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
7.0
6.5
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 4.00000
5.00050
5.00050
5.00555
5.555
5.6666
6.00066
6.00066 | 5.0
5.0
5.5
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0
6.5
6.5
6.5
6.5
6.5
6.7 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.50
7.00
7.00
7.00
7.00
6.55
6.55
6.55
6.55
7.00
7.55
7.5
7.5 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5
8.0 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
9.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
7.5
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
7.5
7.0
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 8.5005
8.055
8.055
8.055
8.055
6.555
8.005
77.55
77.000
77.005
6.55
6.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55
77.55 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 5.5
5.5
6.0
6.5
5.5
6.5
6.5
6.5
7.0
6.5
7.0
8.0
8.0
8.0 | 4.50
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.5
6.5
6.5
6.0
6.5
6.5
7.0
7.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
8.5
8.5
9.0
9.0
8.5 | 6.5
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
7.0
7.0
7.5
8.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5
8.0
8.0
7.5 | 8.0
8.0
7.5
7.5
8.0
8.5
8.5
8.5
8.0
9.0
8.5
8.0
8.5
8.0
9.0
8.5
8.0
8.0
9.0
8.5
8.0
8.0
9.0
8.0
8.0
9.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
7.5
7.5
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
7.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 8.5
8.0
8.5
8.0
8.5
6.5
6.5
6.5
6.5
8.5
7.5
7.5
7.5
6.5
6.5
7.5
7.5
6.5
6.5
7.5
7.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 5.5
5.5
6.0
6.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5
7.0
6.5
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
6.5
7.0
7.0
6.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 45.0000
55.000
55.55
55.55
55.55
56.66
66.00
66.00
66.76
66.76 | 5.0
5.0
5.5
5.5
5.5
6.0
6.0
6.0
6.5
6.5
7.0
7.0 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
6.5
7.0
7.0
7.5
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5
8.0
8.0
7.5 | 8.0
8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.5
9.0
7.0
6.5
9.0
9.0
9.0
8.5
8.5
7.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
7.0
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 8.5
8.0
8.5
8.5
6.5
6.5
7.5
6.5
8.0
7.5
7.0
7.0
7.0
6.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 5.5
5.5
6.0
6.5
5.5
6.5
6.5
6.5
7.0
6.5
7.0
8.0
8.0
8.0 | 4.50
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 5.0
5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.5
6.5
6.5
6.0
6.5
6.5
7.0
7.5 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
8.5
8.5
9.0
9.0
8.5 | 6.5
7.0
7.0
7.0
7.0
6.5
6.5
6.5
6.5
7.0
7.0
7.5
8.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5
8.0
8.0
7.5 | 8.0
8.0
7.5
7.5
8.0
8.5
8.5
8.5
8.0
9.0
8.5
8.0
8.5
8.0
9.0
8.5
8.0
8.0
9.0
8.5
8.0
8.0
9.0
8.0
8.0
9.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.0
7.0
7.0
6.5
9.0
9.0
9.0
8.5
7.5
7.5
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
7.5
7.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 8.5
8.0
8.5
8.0
8.5
6.5
6.5
6.5
6.5
8.5
7.5
7.5
7.5
6.5
6.5
7.5
7.5
6.5
6.5
7.5
7.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | |
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 5.5
5.5
6.0
6.0
5.5
5.5
6.0
6.5
5.5
6.5
6.5
7.0
6.5
7.0
6.5
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 4.0000 0.0050 0.5555 5.0050 0.0000 0.5055 5.555 5.6666 6.6666 6.7655 | 5.0
5.5
5.5
5.5
5.5
6.0
5.5
5.5
6.0
6.0
6.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 8.5
8.0
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 6.50
7.00
7.00
7.00
7.00
6.55
6.55
6.55
7.00
7.55
7.00
7.00
7.00
7.00
7.00
7 | 7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
8.0
8.0
7.5
7.5 | 8.0
7.5
7.5
8.0
8.0
7.5
8.5
8.5
8.0
9.0
8.5
8.0
8.0
8.0
8.0
8.5
8.0
8.0
9.0
8.5
8.5
8.0
8.5
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.0
9.0
8.5
8.5
9.5
8.5
8.0
7.0
7.0
6.5
9.0
9.0
8.5
8.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 8.0
8.0
7.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5005
8.5005
8.5555
6.5555
6.5555
7.555
8.00055
7.7566
6.7755
7.77566
6.7755
7.77566
7.77566 | ### 15087700 INDIAN RIVER AT SITKA LOCATION.--Lat $57^{\circ}03'12''$, long $135^{\circ}18'52''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ SE $^{1}_{/4}$ sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, in Tongass National Forest, on Baranof Island, on right bank 500 ft upstream from Sawmill Creek Road, 600 ft downstream from Sheldon Jackson College Diversion, and 0.6 mi above mouth. DRAINAGE AREA.--12.0 mi² ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1998 to current year. GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. REMARKS. Records good. Flow is diverted 600 ft upstream to Sheldon Jackson College. | | | DISCHARG | E, CUBIC | FEET PE | | WATER
Y MEAN | | BER 2000 | TO SEPTEMBE | R 2001 | | | |---|---|---------------------------------|--|---|---|--|--|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 49
39
53
41
51 | 53
40
280
93
60 | 52
58
56
74
1110 | 39
56
159
85
107 | 175
93
118
76
64 | 69
54
48
44
44 | 33
29
28
75
53 | 51
66
156
111
69 | 118
91
91
91
93 | 49
49
49
50
102 | 31
29
27
27
25 | 20
84
53
30
241 | | 6
7
8
9
10 | 142
134
107
218
171 | 52
70
56
43
36 | 199
98
76
61
53 | 90
65
69
63
51 | 56
60
53
47
42 | 47
57
60
74
619 | 41
35
46
54
40 | 55
64
154
103
70 | 88
91
94
93
113 | 71
134
88
71
75 | 24
23
23
23
22 | 101
69
71
47
36 | | 11
12
13
14
15 | 1140
322
276
213
289 | 104
100
53
41
47 | 47
42
37
32
29 | 45
42
48
47
51 | 37
36
257
105
61 | 797
247
134
103
88 | 37
39
37
34
34 | 69
71
70
e70
70 | 78
72
77
76
66 | 68
65
50
40
40 | 21
21
20
20
19 | 30
118
566
502
130 | | 16
17
18
19
20 | 151
102
77
68
65 | 43
90
50
48
51 | 28
27
34
32
25 | 62
56
50
49
43 | 51
46
43
41
38 | 84
79
72
63
55 | 36
45
52
44
45 | 66
60
58
53
53 | 61
59
62
78
76 | 37
34
32
30
29 | 19
18
18
18
17 | 121
105
87
111
83 | | 21
22
23
24
25 | 65
86
100
76
59 | 151
221
201
134
100 | 23
25
30
30
34 | 52
68
78
57
46 | 37
36
33
31
29 | 50
47
43
41
44 | 46
48
49
63
52 | 63
95
118
83
63 | 55
51
62
61
58 | 29
30
33
56
63 | 17
16
16
15
15 | 58
73
53
44
39 | | 26
27
28
29
30
31 | 50
44
38
33
35
80 | 106
120
71
54
46 | 34
30
29
28
35
43 | 41
124
108
60
61
185 | 92
235
96

 | 47
41
43
39
39
50 | 49
57
51
48
47 | 59
71
87
93
90
149 | 56
59
63
56
51 | 48
35
32
37
41
33 | 17
57
27
20
18
18 | 33
38
32
35
420 | | TOTAL
MEAN
MAX
MIN
MED
AC-FT | 4374
141
1140
33
77
8680 | 87.1
280
36
58 | 2511
81.0
1110
23
34
4980 | 2157
69.6
185
39
57
4280 | 2088
74.6
257
29
52
4140 | 3322
107
797
39
54
6590 | 1347
44.9
75
28
46
2670 | 2510
81.0
156
51
70
4980 | 2240
74.7
118
51
74
4440 | 1600
51.6
134
29
48
3170 | 681
22.0
57
15
20
1350 | 3430
114
566
20
70
6800 | | | 5 | STATISTICS | OF MONTH | ILY MEAN | DATA FOR | WATER | YEARS 1999 | - 2001, | BY WATER YE | CAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 204
248
1999
141
2001 | 38.0 | 129
240
2000
66.8
1999 | 84.6
125
1999
59.4
2000 | 42.4
74.6
2001
23.6
1999 | 63.1
107
2001
28.2
1999 | 68.7
108
1999
44.9
2001 | 97.4
139
1999
72.3
2000 | 95.1
130
1999
74.7
2001 | 60.6
67.7
2000
51.6
2001 | 42.7
59.4
2000
22.0
2001 | 150
209
2000
114
2001 | | SUMMARY | STATISTIC | CS FOR | 2000 CA | LENDAR Y | EAR | FOR 2 | 001 WATER | YEAR | WATER Y | EARS 199 | 9 - 2001 | | | LOWEST A | | AN | 30341
82.9
1590 | Sep | | 114 | 9.1
10 Oct | 11 | 92.6
103
79.1
2390 | Oct | 2000
2001
19 1998 | | | ANNUAL S
MAXIMUM
MAXIMUM
INSTANTS | DAILY MEAI SEVEN-DAY PEAK FLOI PEAK STAG ANEOUS LOI | MINIMUM
W
GE
W FLOW | 17 17 | Mar
Mar | | b1 | 5 Aug
6 Aug
70 Oct
86.08 Oct
4 Aug | 24
20
11
11 | 14
16
a5740
26.8
c14
67090 | Mar
Mar
Oct | 8 1999
4 1999
19 1998
19 1998 | | | 10 PERCI
50 PERCI | RUNOFF (ACEE)
ENT EXCEE)
ENT EXCEE) | DS
DS | 60180
151
53
23 | | | | | | 167
55
23 | | | | e Estimated From rating curve extended above 1050 ft³/s Aug. 24 and 25 Mar. 9, 1999 and Aug. 24 and 25, 2001 ### 15087700 INDIAN RIVER AT SITKA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1967-68, January to September 2001. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July to September 2001. WATER TEMPERATURE: May to September 2001. INSTRUMENTATION. -- Electronic water temperature and specific conductance recorder set to 15-minute recording interval. SPECIFIC CONDUCTANCE: Probe installed May 16, no record May 16 to July 25 due to recorder problems. Record represents specific conductance at sensor within 3us/cm. No variation was found within the cross section measured on July 25. No variation was found between the mean stream specific conductance and specific conductance at the sensor. WATER TEMPERATURE: Probe installed on May 16. Record represents water temperature at sensor within 0.5°C. No variation was found within the cross section on July 25. Temperaure at the sensor was compared with stream average by cross sections on May 15 and July 25. No variation was found within the cross section. No variation was found between the mean stream temperature and temperature at the sensor. EXTREMES OUTSIDE PERIOD OF DAILY RECORD. -- SAMPLE WATER TEMPERATURE.--Minimum observed, a temperature of 3.0°C was measured on April 4. PH ### EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE.--Maximum recorded, 66 us/cm, August 25; minimum recorded, 30 us/cm September 5, 14, 30. WATER TEMPERATURE.--Maximum recorded, 10.0°C, several days in July and August; minimum recorded, 4.0°C May 25. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 BARO- OXYGEN, | | | SAMPLE
LOC-
ATION,
CROSS
SECTION | SPE-
CIFIC
CON-
DUCT- | PH
WATER
WHOLE
FIELD
(STAND- | TEMPER- | BARO-
METRIO
PRES-
SURE
(MM | C
OXYGEN
DIS- | | D | | | | | |-----------------------------|---|--|---|--|---|--|--|--|--
--|--|--|--| | DATE | TIME | (FT FM
L BANK)
(00009) | ANCE
(US/CM)
(00095) | ARD
UNITS) | WATER
(DEG C | OF
HG) | SOLVE
(MG/L | D SATUR
) ATION | _
) | | | | | | JUL 25 25 25 25 25 25 25 25 | 1201
1202
1203
1204
1205
1206
1207
1208 | 15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0 | 40
40
40
40
40
40
40
40 | 7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1 | 8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 760
760
760
760
760
760
760
760 | 11.7
11.8
12.0
12.3
12.0
12.1
12.3 | 100
101
103
105
103
104
105 | | | | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | JAN
04 | 1420 | 9 | 9 | 22.12 | 76 | 10 | 3045 | 42 | 7.4 | | | 14 | 4.73 | | APR 04 | 1215 | 9 | 9 | 22.12 | 78 | 10 | 3045 | 40 | 7.3 | 3.0 | 14.1 | 14 | 4.71 | | MAY | | | | | | | | | | | | | | | 15
15 | 1500
1530 | 9
9 | 9
9 | 22.08 | 75
 | 10
8010 | 3045
8010 | 42 | 7.6 | 5.5 | 12.0 | 17 | 6.00 | | 15 | 1600 | H | 9 | | | 8010 | 8010 | | | | | | | | JUL
25 | 1145 | 9 | 9 | 22.05 | 63 | 10 | 3045 | 40 | 7.1 | 8.5 | 12.0 | 15 | 5.22 | | == | | - | - | | | | | | | | | | *** | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | WATER
DIS IT
FIELD
MG/L AS
HCO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180 | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | JAN
04
APR | .534 | 2.0 | | <.24 | | | 1.5 | 3.9 | <.2 | 3.1 | 31 | | .001 | | 04 | .554 | 2.2 | | .21 | 13 | 11 | 1.7 | 4.0 | <.2 | 3.3 | 34 | 23 | .001 | | MAY
15 | .570 | 2.0 | 16 | .12 | 18 | 14 | 1.3 | 3.8 | <.2 | 3.0 | 30 | 26 | <.001 | | 15 | | | | | | | | | | | | | | | 15
JUL | | | | | | | | | | | | | | | 25 | .559 | 2.3 | | .82 | 16 | 14 | 1.6 | 2.5 | <.2 | 3.5 | | 25 | <.001 | # SOUTHEAST ALASKA # 15087700 INDIAN RIVER AT SITKA--Continued | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | |---|--|---|--|---|--|---|--|--|--|--|--|---|---| | JAN
04 | .124 | <.002 | <.08 | <.10 | <.004 | <.006 | <.007 | 30 | E2.0 | | | 1.9 | <.1 | | APR
04 | <.005 | .004 | E.06 | E.07 | E.002 | <.006 | .009 | 60 | 4.6 | | | 2.4 | <.1 | | MAY
15
15 | .112 | <.002 | <.08 | <.10 | <.004 | <.006 | <.007 | M
 | <3.0 |
-78.80 |
-11.07 | .70 | <.1 | | JUL | | | | | | | | | | | | | | | 25 | .088 | .004 | E.04 | E.06 | E.003 | E.003 | <.007 | 70 | E1.9 | | | 2.4 | <.1 | | DATE | | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | TICULTE | | SUS- | SED, BM | CHLORO-
ANISOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG) | ALUM-
INUM
BOT MAT | ANTI-
MONY
BOT MAT
<63U WS
FIELD
(UG/G)
(34795) | ARSENIC
BOT MAT
<63U WS
FIELD
(UG/G)
(34800) | BARIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34805) | BERYL-
LIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34810) | BISMUTH
BOT MAT
<180UWS
FIELD
(UG/G)
(34816) | | JAN
04 | <.1 | <.1 | <.022 | 1 | .21 | | | | | | | | | | APR
04 | . 4 | . 4 | .106 | 1 | .21 | | | | | | | | | | MAY
15 | <.1 | <.1 | <.022 | | | | | | | | | | | | 15
15 | | | | | | <50 | <50 | 7.6 | 1.0 | 33 | 630 | 1.1 | <1 | | JUL
25 | . 2 | . 2 | <.022 | 1 | .17 | JAN 04 APR 04 MAY 15 15 JUL 25 | CADMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34825) | CHRO-MIUM BOT MAT <63U WS FIELD (UG/G) (34840) | COPPER
BOT MAT
<63U WS
FIELD
(UG/G)
(34850) | CALCIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34830) | COBALT
BOT MAT
<63U WS
FIELD
(UG/G)
(34845) | CERIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34835) | EURO-
PIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34855) | GOLD
BOT MAT
<63U WS
FIELD
(UG/G)
(34870) | GALLIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34860) | HOLMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34875) | IRON BOT MAT <63U WS FIELD PERCENT (34880) 6.8 | LANTHA-
NUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34885) | LEAD BOT MAT <63U WS FIELD (UG/G) (34890) 13 | | JAN 04 APR 04 MAY 15 15 JUL 25 | BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT | MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT | BOT MAT
<63U WS
FIELD
(UG/G)
(34850) | BOT MAT
<63U WS
FIELD
PERCENT
(34830) | BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT
<63U WS
FIELD
(UG/G)
(34835) | PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34860) 16 PHOS-PHORUS | BOT MAT <63U WS FIELD (UG/G) (34875) 1 SCAN- DIUM | BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) | NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT | BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT | | JAN 04 APR 04 MAY 15 15 15 JUL 25 | BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G) | MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT | BOT MAT <63U WS FIELD (UG/G) (34850) 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD PERCENT (34830) 2.0 MERCURY BOT MAT
<63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) | PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT | BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) | NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 | BOT MAT <63U WS FIELD (UG/G) (34825) 2 -2 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895) | MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT | BOT MAT <63U WS FIELD (UG/G) (34850) 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD PERCENT (34830) 2.0 MERCURY BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) | PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT | BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) | NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04 | BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895) | MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900) | BOT MAT <63U WS FIELD (UG/G) (34850) 84 84 MANGA- NESE BOT MAT <63U WS 63EUD (UG/G) (34905) | BOT MAT <63U WS FIELD PERCENT (34830) 2.0 2.0 WERCURY BOT MAT <63U WS FIELD (UG/G) (34910) | BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915) | BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920) | PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G) | BOT MAT <63U WS FIELD (UG/G) (34870) <1 <1 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930) | BOT MAT <63U WS FIELD (UG/G) (34860) 16 PHOS- PHORUS BOT MAT <63U WS BOT MAT <63U WS C3U WS C3U WS C3U WS C4U C5U | BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS 63IU WS 63IU WS (34945) | BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950) | NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 16 SILVER BOT MAT <63U WS FIELD (UG/G) (34955) | BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS 63U WS FIELD PERCENT (34960) | | JAN 04 APR 04 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY 15 | BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895) | MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900) | BOT MAT <63U WS FIELD (UG/G) (34850) 84 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905) | BOT MAT <63U WS FIELD PERCENT (34830) 2.0 2.0 MERCURY BOT MAT <63U WS FIELD (UG/G) (34910) | BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915) | BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920) | PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 NICKEL BOT MAT <63U WS FIELD (UG/G) (34925) | BOT MAT <63U WS FIELD (UG/G) (34870) <1 <1 <1 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930) | BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935) | BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945) | BOT MAT <63U WS FIELD PERCENT (34880) 6.8 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950) | NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (34955) | BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT (34960) | # 15087700 INDIAN RIVER AT SITKA--Continued | DATE
JAN | STRON-
TIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34965) | SULFUR
BOT MAT
<63U WS
FIELD
PERCENT
(34970) | TANTA-
LUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34975) | THORIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34980) | TIN
BOT MAT
<63U WS
FIELD
(UG/G)
(34985) | TITA-
NIUM,
SED, BM
WS,<63U
DRY WGT
REC
PERCENT
(49274) | URANIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35000) | VANA-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35005) | YTTRIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35010) | YTTER-
BIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35015) | ZINC
BOT MAT
<63U WS
FIELD
(UG/G)
(35020) | CARBON,
ORGANIC
SED, BM
WS,<63U
DW, REC
(PER-
CENT)
(49266) | CARBON,
INORG,
SED, BM
WS,<63U
DW, REC
(PER-
CENT)
(49269) | |--|--|---|--|--|--|---|--|--|--|--|--|--|---| | 04
APR | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | MAY
15 | | | | | | | | | | | | | | | 15
15 | 260 | <.05 | 1 | 4 | 2 | .740 | 1.3 | 240 | 22 | 2 | 140 | 3.0 | .06 | | JUL
25 | | | _ | - | _ | | | | | _ | | | | | 25 | | | | | | | | | | | | | | | DATE | CARBON,
ORG +
INORG,
SED, BM
WS,<63U
DW, REC | CARBON,
ORG +
INORG
SED, BM
WS,<2MM
DW, REC | CARBON,
INORG,
SED, BM
WS,<2MM
DW, REC | CARBON,
ORGANIC
SED, BM
WS,<2MM
DW, REC | 124TRI-
CHLORO- | O-DI-
CHLORO- | NAPTHAL
ENE, 12
DIMETHL
SED, BM
WS,<2MM
DW, REC | SED, BM
WS,<2MM | BENZENE
P-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC | NAPTHAL
ENE, 16
DIMETHL
SED, BM
WS,<2MM
DW, REC | 9H-FLU-
ORENE,
1METHYL
SED, BM
WS,<2MM
DW, REC | THRENE | PYRENE,
1-
METHYL,
SED, BM
WS,<2MM
DW, REC | | | PERCENT
(49267) | (G/KG)
(49272) | (G/KG)
(49270) | (G/KG)
(49271) | (UG/KG)
(49438) | (UG/KG)
(49439) | (UG/KG)
(49403) | (UG/KG)
(49441) | | (UG/KG)
(49404) | (UG/KG)
(49398) | (UG/KG)
(49410) | (UG/KG)
(49388) | | JAN
04
APR | | | | | | | | | | | | | | | 04
MAY | | | | | | | | | | | | | | | 15
15 | | | | | | | | | | | | | | | 15 | 3.1 | 2.4 | <.2 | 2.3 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | JUL
25 | DATE | QUINO-
LINE,
SED, BM
WS,<2MM | ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC | 2,4-DI-
NITRO-
SED, BM
WS,<2MM | NAPTHAL
ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | TOLUENE
2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | NAPTHAL
ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407) | | NAPTHAL
ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | ANTHRA-
CENE,2-
METHYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49435) | 3,5-
XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | 4-BROMO
PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | | 4CHLORO
PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG) | ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG) | ENE,
2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG) | CENE, 2-
METHYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG) | SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG) | | JAN
04
APR | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49405) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG) | ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | CENE, 2-
METHYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49422) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN
04
APR
04
MAY | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49405) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | CENE, 2-
METHYL-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49435) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49422) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN
04
APR
04
MAY
15 | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS, 2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | CENE,2-
METHYL-
SED,BM
WS,<2MM
DW,REC
(UG/KG)
(49435) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49422) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN
04
APR
04
MAY
15 | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49405) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | CENE, 2-
METHYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49435) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49422) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN
04
APR
04
MAY
15
15 | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) | 2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS, 2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | CENE,2-
METHYL-
SED,BM
WS,<2MM
DW,REC
(UG/KG)
(49435) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49422) | PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | | JAN 04 APR 04 MAY 15 15 JUL | OUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) <50 4HCYPEN PHENAN THRENE | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < < < < < < | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) | ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | ENE, 2-
CHLORO-
SED, BM
WS, 2MM
DW, REC
(UG/KG)
(49407) | 2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) < < < < < < < < <- | CENE,2-
METHYL-
SED,BM
WS,<2MM
DW,REC
(UG/KG)
(49435) | XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | SOL, 4-
CHLORO-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49422) | PHNPHN LETHER SED, BM WS, < 2MM DW, REC (UG/KG) (49455) <50 BENZO K FLUOR- ANTHENE | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391)

<50

<50

4HCYPEN
PHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) | ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) | 2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) | ENE, 2-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49407) | 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG) | ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) | CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) <50 BENZO (A) PYRENE SED, BM WS, <2MM DW, REC (UG/KG) | XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421) <-50 BENZOB FLUOR- ANTHENE SED, BM WS, <2MM DW, REC (UG/KG) | PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) <50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) | SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422) | PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG) | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391)

<50

<50

<50

WHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49411) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) | ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396)

<50

<50

<50

SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49434) | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407)

<50

<50

MTHRA-
QUINONE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49437) | 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG) | ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) | CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <- | XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421) | PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454) <-50 BENZOCI NNOLINE BED MAT TWS <2MM DRY WGT REC (UG/KG) (49468) | SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422) | PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG) | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY | QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) < <-50 4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) | ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM WS, <2MM CUG/KG) (49430) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396)

<50

<50

<ene
SED,
BM
WS,<2MM
DW, REC
(UG/KG)
(49434)</ene
 | ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49407)

<50

<50

MTHRA-
QUINONE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49437) | 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG) | ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) | CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <- | XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421) | PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) <50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468) | SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422) | PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG) | | JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04 MAY 15 15 | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) <50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429) | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428) | ENE, 26 DIMETHL SED, BM WS, <2MM WS, <2MM COMMON (49406) < < < ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396)

<50

<50

(SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49434) | ENE, 2-
CHLORO-
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49407)

<50

<50

WS, <2MM
DW, REC
(UG/KG)
(49437) | 2CHLORO BED MAT WS < 2MM DRY WGT REC (UG/KG) (49467) < < < < < < < | ENE, 2- ETHYL- SED BM WS < 2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS, < 2MM DW, REC (UG/KG) (49436) | CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <- | XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421) | PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) < < < < UG/KG) (19454) BENZOCI NNOLINE BED MAT WS <2MM DRY WG REC (UG/KG) (49468) | SOL, 4-CHLORO-SED, BM WS, <2MM WS, <2MM DW, REC (UG/KG) (49422) | PHNPHN LETHER SED, BM WS, < 2MM DW, REC (UG/KG) (49455) < < < < < < UG/KG) (49455) BENZO K FLUOR- ANTHENE SED, BM WS, < 2MM DW, REC (UG/KG) (49397) | | JAN 04 APR 04 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY 15 | QUINO_
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391)

<50

<50

<50

<50

<50
(49411) | ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < <-50 < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429) | 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428) | ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430) | 2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396)

<50

<50

<50

<ene
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49434)</ene
 | ENE, 2-CHLORO-SED, BM WS,<2MM DW, REC (UG/KG) (49407) | 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 AZO- BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (49443) | ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) < <-50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49436) | CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <- | XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421) | PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454) <-50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468) | SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422) | PHNPHN LETHER SED, BM WS,<2MM WS,<2MM DW, REC (UG/KG) (49455) <50 S50 SED, BM WS,<2MM DW, REC (UG/KG) (49397) | # SOUTHEAST ALASKA # 15087700 INDIAN RIVER AT SITKA--Continued | DATE
JAN | TE,BIS2
ETHHEXL
SED, BM
WS,<2MM | PHTHALA
TEBUTYL
BENZYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49427) | C8-
ALKYL-
SED, BM
WS,<2MM | CARBA-
ZOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49449) | WS,<2MM | | WS,<2MM
DW, REC
(UG/KG) | (AH), AN
THRACEN
SED, BM
WS, < 2MM
DW, REC | THIOPH
ENE,DI-
BENZO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49452) | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49383) | PHTHAL-
ATE,DI-
METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49384) | FLUOR-
ANTHENE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49466) | | |-------------|--|--|--|---|--|-------------------|-------------------------------|---|--|--|---|---|-----| | 04 | | | | | | | | | | | | | | | APR
04 | | | | | | | | | | | | | | | MAY
15 | | | | | | | | | | | | | | | 15 |
M |
E20 |
<50 | | JUL | | | <50 | | | | | | | | | | <50 | | 25 | | | | | | | | | | | | | | | DATE | INDENO
123-CD
PYRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49390) | | ISO-
QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49394) | | DIPHNYL
AMINE,N
NITROSO
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49433) | ALENE,
SED, BM | NITRO- | BENZENE
PNTCHLR
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49446) | PHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49409) | PHENAN-
THRI-
DINE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49393) | PHENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49413) | PYRENE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49387) | | | JAN
04 | | | | | | | | | | | | | | | APR
04 | | | | | | | | | | | | | | | MAY
15 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 15
JUL | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | 25 | | | | | | | | | | | | | | | DATE | METHANE
2CHLORO
ETHOXY
SED, BM
WS, <2MM
DW, REC
(UG/KG)
(49401) | ETHYL
ETHER
SED, BM
WS,<2MM
DW, REC | P-
CRESOL
I SED, BM
I WS,<2MM
DW, REC
(UG/KG) | [
! | | | | | | | | | | | JAN
04 | | | | | | | | | | | | | | | APR
04 | | | | | | | | | | | | | | | MAY
15 | | | | | | | | | | | | | | | 15 |
<50 | | | | | | | | | | | | | | JUL | | <50 | <50 | | | | | | | | | | | | 25 | | | | | | | | | | | | | | # 15087700 INDIAN RIVER AT SITKA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|-----|------|------|----------|--------|------|-----|---------|------| | | | JUNE | | | JULY | | | AUGUST | ı | S | EPTEMBE | R | | 1 | | | | | | | 51 | 49 | 50 | 63 | 50 | 60 | | 2 | | | | | | | 52 | 50 | 50 | 50 | 41 | 46 | | 3 | | | | | | | 53 | 50 | 51 | 50 | 44 | 48 | | 4 | | | | | | | 52 | 51 | 51 | 54 | 50 | 52 | | 5 | | | | | | | 53 | 51 | 52 | 55 | 30 | 44 | | 6 | | | | | | | 53 | 52 | 52 | 48 | 38 | 44 | | 7 | | | | | | | 54 | 52 | 53 | 48 | 45 | 47 | | 8 | | | | | | | 56 | 53 | 54 | 49 | 45 | 47 | | 9 | | | | | | | 56 | 53 | 54 | 51 | 49 | 50 | | 10 | | | | | | | 59 | 54 | 54 | 54 | 50 | 52 | | 10 | | | | | | | 39 | 34 | 34 | 34 | 50 | 52 | | 11 | | | | | | | 57 | 54 | 55 | 54 | 51 | 53 | | 12 | | | | | | | 57
57 | 55 | 56 | 55 | 33 | 50 | | 13 | | | | | | | 58 | 56 | 57 | 40 | 32 | 36 | | 14 | | | | | | | 59 | 57 | 58 | 45 | 30 | 38 | | 15 | | | | | | | | 58 | | | 39 | 44 | | 15 | | | | | | | 60 | 58 | 59 | 50 | 39 | 44 | | 16 | | | | | | | 60 | 58 | 59 | 47 | 40 | 44 | | 17 | | | | | | | 61 | 59 | 60 | 48 | 41 | 46 | | 18 | | | | | | | 62 | 60 | 61 | 48 | 45 | 46 | | | | | | | | | | | | | | | | 19 | | | | | | | 62 | 60 | 61 | 48 | 42 | 44 | | 20 | | | | | | | 63 | 61 | 62 | 49 | 44 | 47 | | 21 | | | | | | | 63 | 62 | 62 | 50 | 48 | 49 | | 22 | | | | | | | 64 | 63 | 63 | 50 | 45 | 47 | | 23 | | | | | | | 65 | 63 | 64 | 51 | 49 | 50 | | 24 | | | | | | | 65 | 64 | 65 | 52 | 50 | 51 | | 25 | | | | | | | 66 | 64 | 65 | 52 | 50 | 51 | | 23 | | | | | | | 00 | 0 1 | 03 | 32 | 30 | 31 | | 26 | | | | 47 | 45 | 46 | 65 | 62 | 64 | 53 | 51 | 52 | | 27 | | | | 49 | 47 | 48 | 62 | 47 | 52 | 52 | 50 | 51 | | 28 | | | | 50 | 48 | 49 | 58 | 53 | 56 | 52 | 51 | 51 | | 29 | | | | 50 | 47 | 48 | 61 | 58 | 59 | 52 | 44 | 51 | | 30 | | | | 49 | 47 | 48 | 63 | 60 | 61 | 44 | 30 | 36 | | 31 | | | | 50 | 48 | 49 | 62 | 59 | 60 | | | | | ~- | | | | | | | | | | | | | | MONTH | | | | | | | 66 | 47 | 57 | 63 | 30 | 48 | # 15087700 INDIAN RIVER AT SITKA--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---
---|--|--|---|--|--|--|--|--|--|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6
7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14
15 | | | | | | | | | | | | | | 16 | | | | | | | | | | 6.0 | 4.5 | 5.0 | | 17 | | | | | | | | | | 5.5 | 4.5 | 5.0 | | 18
19 | | | | | | | | | | 5.5
6.5 | 4.5
4.5 | 5.0
5.5 | | 20 | | | | | | | | | | 5.5 | 4.5 | 5.0 | | 21 | | | | | | | | | | 6.0 | 5.0 | 5.0 | | 22
23 | | | | | | | | | | 5.5
5.0 | 4.5
4.5 | 5.0
4.5 | | 23 | | | | | | | | | | 6.0 | 4.5 | 5.0 | | 25 | | | | | | | | | | 7.0 | 4.0 | 5.0 | | 26 | | | | | | | | | | 7.0 | 4.5 | 5.5 | | 27 | | | | | | | | | | 6.5 | 5.0 | 5.5 | | 28
29 | | | | | | | | | | 7.0
5.5 | 5.0
5.0 | 6.0
5.5 | | 30 | | | | | | | | | | 5.5 | 4.5 | 5.0 | | 31 | | | | | | | | | | 5.5 | 5.0 | 5.5 | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBER | | | 1 | 6.0 | JUNE | 5.0 | 9.0 | JULY
7.0 | 7.5 | 8.5 | AUGUST | 8.0 | 9.0 | SEPTEMBER | 8.5 | | 1
2 | 6.0
6.0 | JUNE
4.5
5.0 | 5.0
5.5 | 9.0
9.5 | JULY
7.0
7.0 | 7.5
8.0 | 8.5
9.0 | AUGUST
7.5
7.5 | 8.0
8.0 | 9.0
9.5 | SEPTEMBER | 8.5
9.0 | | 1 | 6.0
6.0
6.0 | JUNE
4.5
5.0
5.0 | 5.0
5.5
5.5 | 9.0
9.5
9.0 | JULY
7.0
7.0
7.5 | 7.5
8.0
8.0 | 8.5
9.0
8.5 | 7.5
7.5
7.5
7.5 | 8.0
8.0
8.0 | 9.0
9.5
9.0 | 8.5
8.5
8.5
8.5 | 8.5
9.0
8.5 | | 1
2
3 | 6.0
6.0 | JUNE
4.5
5.0 | 5.0
5.5 | 9.0
9.5 | JULY
7.0
7.0 | 7.5
8.0 | 8.5
9.0 | AUGUST
7.5
7.5 | 8.0
8.0 | 9.0
9.5 | SEPTEMBER | 8.5
9.0 | | 1
2
3
4
5 | 6.0
6.0
6.0
6.5
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.0 | 5.0
5.5
5.5
5.5
5.5 | 9.0
9.5
9.0
8.0
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.5 | 7.5
8.0
8.0
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5 | 9.0
9.5
9.0
9.5
9.5 | 8.5
8.5
8.5
8.0
8.0 | 8.5
9.0
8.5
8.5
8.5 | | 1
2
3
4
5 | 6.0
6.0
6.0
6.5
6.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.0 5.0 | 5.0
5.5
5.5
5.5
5.5
5.5 | 9.0
9.5
9.0
8.0
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5 | 9.0
9.5
9.0
9.5
9.5
9.0 | SEPTEMBER
8.5
8.5
8.5
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
8.5 | | 1
2
3
4
5 | 6.0
6.0
6.0
6.5
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.0 | 5.0
5.5
5.5
5.5
5.5 | 9.0
9.5
9.0
8.0
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.5 | 7.5
8.0
8.0
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5 | 9.0
9.5
9.0
9.5
9.5 | 8.5
8.5
8.5
8.0
8.0 | 8.5
9.0
8.5
8.5
8.5 | | 1
2
3
4
5 | 6.0
6.0
6.0
6.5
6.0
7.0
7.5 | JUNE 4.5 5.0 5.0 5.0 5.0 5.0 5.5 | 5.0
5.5
5.5
5.5
5.5
5.5
6.0
6.0 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.0
8.5 | 9.0
9.5
9.0
9.5
9.5
9.0
8.0 |
8.5
8.5
8.5
8.0
8.0
8.0
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 | 5.0
5.5
5.5
5.5
5.5
5.5
6.0
6.0
5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.5
7.5 | 8.5
8.5
8.5
8.0
8.0
8.0
7.5
7.5
6.5
6.5 | 8.5
9.0
8.5
8.5
8.5
8.5
8.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 | 5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
6.0
6.0
5.5
5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
7.5 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.0
9.5
9.5
9.5
9.0
8.0
8.0
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5 | 5.55.5
5.55.5
5.00.005
5.50.006.0 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
7.5
7.5
7.7 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.0
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0 | JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 | 5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
6.0
6.0
5.5
5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
7.5 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.0
9.5
9.5
9.5
9.0
8.0
8.0
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5 | 8.5
9.0
8.5
8.5
8.5
8.5
8.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
7.0
7.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 | 5.555555555555555555555555555555555555 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
6.5
6.5
6.5
8.0
8.0 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.0
6.0
6.5
6.0
7.0
7.0
7.0
6.0
6.0
7.0
7.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 | 5.5.5.5
5.00005
5.0000
5.5.5.5
5.0000
6.000
6.5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.0 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
8.0
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.5
8.0 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
7.0
7.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 | 5.55.55
5.50.00
6.00
5.55.55
5.00
6.00
6 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
8.0
7.5
7.0 | 8.5
9.0
8.55
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.5
8.0
8.0
8.0
8.5
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 | 5.5.5.5
5.00005
5.0000
5.5.5.5
5.0000
6.000
6.5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.0 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
8.0
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.5
8.0 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 6.0
6.0
6.5
6.0
7.0
7.0
7.0
6.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5 | 5.0
5.5
5.5
5.5
5.5
5.5
5.5
6.0
6.0
6.0
6.0
6.0
6.0
7.0
7.0 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
8.0
8.5 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
10.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.5
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
9.0
9.0 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
8.0
7.5
7.0
8.0
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.0
8.0
8.0
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 6.0
6.0
6.5
6.0
7.0
7.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | JUNE 4.50 5.00 5.00 5.55 5.55 5.55 6.00 6.55 6.00 6.55 | 5.55.55
5.60.00
5.55.55
5.60.00
6.00
6.50
7.00
6.55 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
9.0
7.5
9.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.0
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
8.0 | 8.5
8.5
8.5
8.0
8.0
8.0
7.5
6.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.7
7.0
7.5
8.5
7.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
6.0
6.0
6.0
6.5
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0 | 5.5.5.5
5.00005
5.0000
5.5.5.5
5.00000
5.5.50000
6.5.5
6.6.000
6.5.5
6.6.000
6.5.5
6.6.000
6.5.5
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.0000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.6.000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.00000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.00000
6.0000
6.0000
6.0000
6.0000
6.0000
6.0000
6.00000
6.00000
6.00000
6.00000
6.00000
6.00000
6.00000
6.00000
6.00000
6.00000
6.0 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5
8.0
8.5
8.5
8.5 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
8.0
7.5
7.5
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
7.0
8.5
8.0
7.5
7.5
7.5
7.0 | 8.5
9.0
8.55
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0
8.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 6.0
6.0
6.5
6.0
7.0
7.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | JUNE 4.50 5.00 5.00 5.55 5.55 5.55 6.00 6.55 6.00 6.55 | 5.55.55
5.60.00
5.55.55
5.60.00
6.00
6.50
7.00
6.55 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
9.0
7.5
9.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.0
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
8.0 | 8.5
8.5
8.5
8.0
8.0
8.0
7.5
6.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.7
7.0
7.5
8.5
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 6.0
6.0
6.0
6.5
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5 6.0 6.5 | 5.55.55
5.60.005
5.55.55
5.60.006
6.000
6.55.50
77.00
6.55.50
77.00 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
8.5
8.5
8.5
8.6
8.5
8.6 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
9.0
8.55
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.7
7.0
7.5
8.7
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
7.0
7.0
7.0
7.0
7.5
7.0
7.5
7.0
8.5
7.0 | JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5 6.0 6.0 |
5.55.55
5.60.005
5.55.55
5.60.000
5.55.000
6.55.000
6.55.000
6.55.000
6.55.000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.00000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.00000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.000000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.000000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.000000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000
6.55.0000 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
8.5
8.5
8.5
8.0
8.5 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
8.0
8.0
7.5
7.5
7.5
7.5
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
8.0
7.5
7.0
8.0
7.5
7.0
7.5
7.5
7.5
7.5
7.5 | 8.5
9.05
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.0
7.0
7.5
8.5 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 6.0
6.0
6.0
6.5
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | JUNE 4.50
55.00
55.55
55.55
55.55
56.00
66.55
66.00
66.55
7.0 | 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | 9.0
9.5
9.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.0
8.5
8.5
8.5
8.5
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 9.0
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
7.5
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29 | 6.0
6.0
6.5
6.0
7.0
7.5
6.0
6.0
7.0
7.0
7.0
7.5
7.0
8.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | JUNE 4.50 5.00 5.05 5.55 5.55 5.55 6.00 6.55 6.50 6.55 6.70 7.0 | 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | 9.0
9.5
9.0
8.0
8.0
7.5
8.0
7.5
7.5
8.0
7.5
8.0
9.0
7.5
8.0
9.0
9.5
9.5
10.0
10.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
8.5
8.5
8.0
8.5
8.0
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
8.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
9.05
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
7.0
7.5
8.0
8.0
7.5
7.0
7.5
7.0
7.5
7.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 6.0
6.0
6.0
6.5
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | JUNE 4.50
55.00
55.55
55.55
55.55
56.00
66.55
66.00
66.55
7.0 | 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | 9.0
9.5
9.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
9.5
9.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.0
8.5
8.5
8.5
8.5
8.5
9.0
8.5
9.0
8.5
9.0
8.5
9.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 9.0
9.5
9.5
9.5
9.0
8.0
7.5
7.0
9.0
9.0
9.0
8.0
7.5
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
8.5
8.5
8.0
8.0
7.5
7.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
8.0
8.0
7.0
7.5
8.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
21
21
21
21
21
21
21
21
21
21
21
21
21 |
6.0
6.0
6.0
6.5
6.0
7.0
6.0
7.0
6.0
7.0
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | JUNE 4.50.00 5.00 5.55.55 5.55.55 6.00 6.55 6.50 6.55 7.00 7.00 | 5.5.5.5.5.5.5.66.00 5.5.00 5.5.5.5.5.5.5.5.5.66.00 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5. | 9.0
9.5
9.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
9.0
7.5
8.0
9.0
9.0
9.5
10.0
8.5
8.5
9.5
8.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.5
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
7.5
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
9.5
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
9.5
9.0
9.5
9.0
8.0
8.0
7.5
7.0
9.0
9.0
8.0
8.0
7.5
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
8.5
8.5
8.0
8.0
8.0
7.5
6.5
6.5
6.5
7.0
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.5
9.0
8.5
8.5
8.5
8.0
7.0
7.0
7.5
8.5
8.0
8.0
8.0
7.0
7.5
8.5
7.0
7.0
7.5
7.0
7.5
7.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | #### 15088000 SAWMILL CREEK NEAR SITKA LOCATION.--Lat $57^{\circ}03'05''$, long $135^{\circ}13'40''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 34, T. 55 S., R. 64 E. (Sitka A-4 quad.), Hydrologic Unit 19010401, on Baranof Island, in Tongass National Forest, on left bank 500 ft upstream from mouth, 1.6 mi downstream from Blue Lake, and 4.0 mi east of Sitka. DRAINAGE AREA. -- 39.0 mi². PERIOD OF RECORD.-- September 1920 to December 1923, February 1928 to September 1942, October 1945 to September 1957, 1994 (peak discharge only, published in WRD AK 95-1), and May to September 2001. Records prior to 1945 furnished by U.S. Forest Service. REVISED RECORDS. -- WSP 1372: 1921-22 and 1928-36. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is sea level, from topographic map. Prior to April 1947, staff gages or water-stage recorders at several sites within 1,700 ft of present site at various datums. April 1947 to September 1957 at site about 200 ft upstream at different datum. REMARKS.-- No estimated daily discharges.Records good. Minor regulation above station by Sitka Public Utilities hydroelectric plant during periods 1920-23 and 1937-42. In 1959, Blue Lake Dam, 1.6 mi upstream, was completed. The area of the lake is 1225 acres. The dam is concrete with a spillway elevation of 342.0 ft above sea level. In 1960, the Blue Lake Hydro plant, located 400 ft downstream from gage, was put into operation. Water is taken from Blue Lake and piped via a penstock to Blue Lake hydro, through 2-3,000 kw turbines and discharged back into Sawmill Creek just below high tide level. This penstock also provides water for the City of Sitka and for the filter plant for the Sitka Sawmill. In the years following, Campground Hydro, a smaller generation plant was constructed about 1,000 ft below Blue Lake Dam. It also has a penstock from Blue Lake and discharges directly into Sawmill Creek. A fish bypass valve has been installed at Campground Hydro that automatically releases 50 ft³/s to the tailrace anytime the hydro plant is shut down. Another small generator was installed just above the Sawmill Filter Plant diversion from Blue Lake Hydro penstock with the capability of bypassing the filter plant and discharging back into Sawmill Creek above the gage site. Water that went to the filter plant was piped to the sawmill and eventually discharged directly into Silver Bay. The sawmill has since closed and water is now supplied to Sawmill Cove Industrial Park. Flow is constantly regulated except when Blue Lake is spilling. EXTREMES FOR PERIOD OF RECORD.-- Maximum discharge, 10,700 ft³/s, November 19, 1993, by computation of peak flow on the basis of a slope-area computation below Campground Hydro and adding diversion values at the time of peak between Campground Hydro and gage; peak flow below Blue Lake Tailrace was computed to be 11,100 ft³/s; gage height unknown; minimum discharge 9.1 ft³/s, Mar. 4, 1951. EXTREMES OUTSIDE PERIOD OF RECORD.-- It was reported that in October 1972, a storm produced a peak elevation at Blue Lake of 353.0 ft or 11.0 ft of spill at the spillway. Extending the spillway rating, this flood was estimated to be 17,000 ft³/s. It was reported to have been the largest since 1921. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 EXTRMEMS FOR CURRENT YEAR.-- Maximum discharge during period May to September, 2920 ${\rm ft}^3/{\rm s}$, September 30, gage height 16.09 ft; minimum 59 ${\rm ft}^3/{\rm s}$ July 18-19. DAILY MEAN VALUES DAY NOV DEC FEB JUN JUL AUG SEP OCT JAN MAR APR MAY 90 ΩN 528 722 ___ ___ 1740 2 ---___ ---------___ 87 80 456 362 1150 88 80 ___ ___ ___ ___ 287 584 87 81 ---___ ---------___ ___ ___ 5 74 87 229 586 6 7 ___ ___ ___ ___ ___ ___ ___ 70 25 170 1020 ---------------___ ___ ---148 101 780 86 8 91 120 1000 86 ___ ±64 ___ ___ ___ ___ ___ ___ 87 87 110 609 290 10 91 85 107 11 ___ ___ ___ ___ ___ ___ ___ ___ 85 85 104 141 12 118 84 85 95 87 86 14 ___ ___ ___ ___ ___ ___ ___ ___ 84 87 96 1960 15 110 83 85 1190 967 16 ___ ___ ___ ___ ___ ___ ___ 83 86 111 17 79 ___ 82 81 98 649 ---------___ ---80 83 64 80 527 19 ---------------------80 84 71 508 78 20 81 100 415 83 21 83 82 78 551 243 ---------------------22 ___ ___ ___ 87 81 78 622 251 23 ------------___ ___ ---90 82 373 218 82 24 ---------------------86 82 263 251 186 ___ ___ ___ ___ 25 160 26 84 81 407 359 ------27 ---___ ___ ___ ___ ___ 87 81 326 1120 181 225 757 28 ---------------------88 81 282 988 29 ---------------337 509 87 81 30 ---___ ___ ___ ---86 80 568 310 2370 31 ------___ ------___ ---97 574 251 TOTAL 2503 5123 9015 20871 83.4 696 165 291 MEAN ___ ___ ___ ___ ___ 91 574 1120 2370 MAX MTN 74 64 67 118 [‡] Result of discharge measurement ### 15088200 SILVER BAY TRIBUTARY AT BEAR COVE NEAR SITKA LOCATION.--Lat $57^{\circ}01'09''$, long $135^{\circ}09'45''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 350 ft upstream from mouth, and 6.5 mi southwest of Sitka. DRAINAGE AREA.--0.38 mi². PERIOD OF RECORD. -- October 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage is 110 ft above sea level, from topographic map. REMARKS.-- Records poor. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER Y | | BER 2000 | TO SEPTEM | BER 2001 | | | |--|---|--|---|--|--|--|--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.4
.84
3.5
1.2
4.1 | 2.4
3.3
17
2.6
1.3 | e1.5
e1.7
e1.6
e1.9 | e1.3
e2.0
e5.2
e3.2
e4.7 | 5.1
3.6
3.2
2.3
2.0 | 2.7
2.4
2.2
1.9
2.2 | 2.1
2.1
1.9
2.6
1.1 | 2.6
5.1
9.2
4.6
2.1 | 6.4
6.3
6.3
7.7
6.5 | 1.6
1.7
1.5
2.6
3.5 | .97
.53
.33
.31 | 9.9
17
3.6
1.2 | | 6
7
8
9
10 | 8.7
15
9.0
16
9.7 | 1.8
4.8
e1.7
e1.4
e1.2 | e6.5
e5.5
e2.2
e2.7
e2.3 | e4.4
3.0
2.8
2.3
1.8 | 1.8
1.9
1.7
1.6 | 2.8
3.5
3.0
3.0
8.2 | 1.3
1.9
2.1
2.4
2.1 | 1.3
5.1
12
4.3
2.1 | 5.9
6.5
8.6
7.9
7.3 | 2.3
3.9
1.8
1.5 |
.18
.14
.14
.13 | 8.3
3.4
3.6
1.0 | | 11
12
13
14
15 | 15
10
6.0
12 | 2.5
2.7
2.0
e1.2
e1.3 | e2.0
e1.7
e1.5
e1.4
e1.3 | 1.6
1.5
1.6
1.8
3.0 | 1.5
1.5
7.5
3.1
2.3 | 7.4
3.8
2.7
2.3
2.2 | 2.0
1.5
1.3
1.7
2.1 | 2.8
4.0
4.6
5.1
4.8 | 3.3
3.7
5.9
4.7
3.1 | .79
1.1
1.2
2.1
1.3 | .11
.10
.11
.10 | .16
8.7
13
8.0
8.1 | | 16
17
18
19
20 | 4.9
2.2
1.9
2.2
2.2 | e1.2
e2.6
e1.8
e1.5
e1.8 | e1.2
e1.1
e1.9
e1.7
e1.0 | 3.1
3.0
2.7
2.8
2.2 | 2.0
1.8
1.9
2.0
1.8 | 2.1
2.3
2.2
1.8
1.6 | 2.7
4.3
3.8
3.7
4.9 | 3.7
2.7
3.1
3.6
3.4 | 2.7
3.1
5.0
7.4
4.9 | 1.3
1.0
e.96
e.90
e.86 | .09
.07
.06
.06 | 2.6
3.7
3.6
8.0
1.9 | | 21
22
23
24
25 | 1.6
4.9
5.4
3.6
1.8 | e3.2
e4.4
e3.7
e3.2
e2.9 | e1.1
e1.2
e1.1
e1.3 | 3.0
3.6
3.4
2.6
2.5 | 2.2
2.5
2.0
1.8
1.7 | 1.5
1.5
1.5
1.6
4.3 | 5.1
3.7
2.4
3.8
2.3 | 3.9
7.3
6.8
3.8
3.1 | 2.9
2.2
3.8
2.4
1.9 | e.81
e.80
e1.5
7.4
3.2 | .20
.10
.09
.09 | 1.0
2.0
1.4
1.9 | | 26
27
28
29
30
31 | 1.1
.83
.52
.39
3.4
6.3 | e3.1
e3.5
e2.2
e1.8
e1.4 | e1.2
e1.1
e1.1
e1.0
e1.3
e1.4 | 2.1
4.8
3.1
2.3
2.2
8.6 | 6.3
9.1
3.3
 | 3.2
2.5
2.3
2.5
2.5
2.4 | 4.0
4.1
2.4
2.4
2.1 | 3.9
7.2
8.1
5.7
6.2 | 2.3
3.5
2.8
1.6
2.0 | 2.3
1.4
1.7
3.9
2.5 | 2.5
5.6
.74
.24
.19 | 1.1
2.0
1.8
24
17 | | TOTAL
MEAN
MAX
MIN
MED
AC-FT
CFSM
IN. | 165.68
5.34
16
.39
3.6
329
14.1
16.22 | 85.5
2.85
17
1.2
2.3
170
7.50
8.37 | 78.6
2.54
25
1.0
1.4
156
6.67
7.69 | 92.2
2.97
8.6
1.3
2.8
183
7.83
9.03 | 79.0
2.82
9.1
1.5
2.0
157
7.42
7.73 | 86.1
2.78
8.2
1.5
2.4
171
7.31
8.43 | 79.9
2.66
5.1
1.1
2.3
158
7.01
7.82 | 159.2
5.14
17
1.3
4.3
316
13.5 | 138.6
4.62
8.6
1.6
4.2
275
12.2 | 59.82
1.93
7.4
.79
1.5
119
5.08
5.86 | 14.11
.46
5.6
.06
.14
28
1.20 | 174.82
5.83
24
.16
3.5
347
15.3
17.11 | | | | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | WATER Y | EARS 2000 | 0 - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 6.43
7.52
2000
5.34
2001 | 3.70
4.56
2000
2.85
2001 | 5.13
7.73
2000
2.54
2001 | 2.33
2.97
2001
1.68
2000 | 1.96
2.82
2001
1.12
2000 | 2.57
2.78
2001
2.36
2000 | 2.39
2.66
2001
2.12
2000 | 5.43
5.73
2000
5.14
2001 | 5.41
6.20
2000
4.62
2001 | 3.43
4.93
2000
1.93
2001 | 2.23
4.00
2000
.46
2001 | 6.09
6.36
2000
5.83
2001 | | SUMMAR | Y STATIST | ICS | FOR 2 | 000 CALEN | DAR YEAR | F | FOR 2001 T | WATER YEAR | 3 | WATER Y | EARS 2000 | - 2001 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
INSTAN
ANNUAL
ANNUAL
ANNUAL
10 PER
50 PER | MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS IN | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS | | | ep 4
an 17
an 16 | | 1213.53
3.32
25
b.06
.08
61
19.53
c.05
2410
8.75
118.80
7.3
2.3
.84 | Dec 5
Aug 18
Aug 14
Sep 1
Sep 1
Aug 17 | 28
1 | 3.93
4.54
3.32
41 Sep
b.06 Aug
.08 Aug
59 Aug
19.58 Aug
c.05 Aug
60
10.4
40.64
8.3
2.6
.66 | 2000
2001
4 2000
18 2001
14 2001
23 2000
23 2000
17 2001 | | Jan. 17-20, and 25-26 Aug. 18-19, 2001 Aug. 17-19. 2001 Estimated ### 15090000 GREEN LAKE NEAR SITKA LOCATION.--Lat $56^{\circ}59'14''$, long $135^{\circ}06'37''$, in $SW^1/_4$ NE $^1/_4$ sec. 29, T. 56 S., R. 65 E. (Port Alexander D-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 0.4 mi upstream from mouth at Silver Bay, and 9.4 mi southeast of Sitka. DRAINAGE AREA. -- 28.8 mi². PERIOD OF RECORD.--September 1915 to September 1925 (published as "Green Lake Outlet"); monthly discharges only published in WSP 1372. October 1983 to current year (month end reservoir contents and monthly discharges). REVISED RECORDS.--WSP 1372: 1916, 1917, 1922 (monthly discharge). WDR AK-84-1: Drainage area. WDR AK-86-1: 1984, 1985 (month-end reservoir contents, change in month-end and yearly contents, adjusted mean monthly discharges, and extremes). WRD AK-00-01: 1998-1999 (M m). GAGE.--Staff gage on upstream face of dam. Datum of gage is at mean low water, which is about 5 ft below sea level. Totalizing MWH meters are on the two turbines in Green Lake powerhouse. September 1915 to September 1925, recording gage at site of present day dam, elevation of gage was 220 ft above sea level, by barometer; prior to December 27, 1916 at datum 1 ft higher. Water years 1983-88, nonrecording remote lake-level indicator at Blue Lake powerhouse (6 mi northwest of gage). REMARKS.--Reservoir is formed by concrete arch dam located at the outlet of Green Lake, construction began in 1978 and was completed in 1982. Total and usable capacity below spillway crest elevation of 395 ft is 88,000 and 75,000 acre-ft, respectively. Reservoir is used for power. Discharge released through the turbines is computed from relation between discharge, head, and power generation; release flow empties directly into Silver Bay and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above the crest of the 100 ft wide spillway. Turbine and spillway ratings and reservoir capacity table furnished by City and Borough of Sitka in 1983. Corrected reservoir capacity table furnished in April 1987. COOPERATION.--Daily reservoir elevations and MWH power generation provided by City and Borough of Sitka. AVERAGE DISCHARGE.--27 years (water years, 1916-25, 1985-2001), 317 ft³/s, 149.5 in/yr, 229,700 acre-ft/yr. Mean discharge for water years 1985-99 adjusted for change in contents of Green Lake. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 93,780 acre-ft, September 22-23, 1994, elevation, 400.5 ft; minimum contents observed, 23,170 acre-ft, June 1, 1996, elevation, 307.6 ft; Maximum daily discharge, 5,020 ft³/s, September 22-23, 1994; no flow released, February 5-8, 1987 and November 27-29, 1988. EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 91,050 acre-ft, September 29, elevation 397.9 ft; minimum contents observed, 62,280 acre-ft, April 26, elevation 366.5 ft; Maximum daily discharge (not adjusted for storage) 1,870 ft³/s, September 29; minimum daily discharge, 111 ft³/s, July 2. MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | CHANGE IN | |--------|-----------|-------------|-----------| | DATE | ELEVATION | CONTENTS | CONTENTS | | SEP 30 | 395.9 | 88,950 | | | OCT 31 | 394.5 | 87,530 | -1420 | | NOV 30 | 395.2 | 88,210 | +680 | | DEC 31 | 388.2 | 81,540 | -6670 | | JAN 31 | 385.2 | 78,690 | -2850 | | FEB 28 | 380.3 | 74,270 | -4420 | | MAR 31 | 371.9 | 66,870 | -7400 | | APR 30 | 366.7 | 62,450 | -4420 | | MAY 31 | 371.9 | 66,870 | +4420 | | JUN 30 | 393.2 | 86,290 | +19420 | | JUL 31 | 396.0 | 89,050 | +2760 | | AUG 31 | 396.1 | 89,160 | +110 | | SEP 30 | 397.7 | 90,840 | +1680 | | | | CAL YR 2000 | -7300 | | | | WTR YR 2001 | -1890 | | | | | | DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES | MONTH | RELEASE | SPILL | TOTAL | ADJUSTED | |-------------|---------|-------|-------|----------| | OCT | 183 | 415 | 598 | 575 | | NOV | 208 | 83 | 290 | 302 | | DEC | 202 | 104 | 306 | 198 | | JAN | 205 | 0 | 205 | 159 | | FEB | 200 | 0 | 200 | 123 | | MAR | 221 | 0 | 221 | 101 | | APR | 171 | 0 | 171 | 97 | | MAY | 146 | 0 | 146 | 218 | | JUN | 136 | 0 | 136 | 462 | | JUL | 134 | 459 | 593 | 638 | | AUG | 123 | 474 | 597 | 599 | | SEP | 120 | 738 | 858 | 886 | | CAL YR 2000 | 202 | 143 | 345 | 335 | | WTR YR 2001 | 171 | 191 | 361 | 364 | # 15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU LOCATION.--Lat $58^{\circ}05'00''$, long $134^{\circ}37'54''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 44 S., R. 66 E. (Juneau A-2 quad), Hydrologic Unit 19010204, on Admiralty Island, in Admiralty Island National Monument, Tongass National Forest, on right bank, 100 ft upstream from mine portal, 0.3 mi downstream from Big Sore Creek, 7.0 mi upstream from mouth at Hawk Inlet, and 19 mi southwest of Juneau. DRAINAGE AREA. -- 8.62 mi². PERIOD OF RECORD. -- August 1989 to current year. REVISED RECORD.--WRD AK-99-1, 1990-1994(M), 1996-1998(M). GAGE.--Water-stage recorder. Datum of gage is 890.16 ft above sea level (levels by Greens Creek Mining Company). Prior to February 16, 1999, recording gage at site 30 ft upstream at datum 9.84 ft higher. REMARKS.--Records fair except for estimated daily discharges, which are poor. Greens Creek Mining Company pumps water from gage pool for use in mill. Diversion flow is recorded on totalizing meters in gage house. Pump records are available from Greens Creek Mining Company. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHA | RGE, CUBI | C FEET P | | LY MEAN | YEAR OCTOBI
VALUES | ER 2000 | TO SEPTEM | BER 2001 | | | |---|---|---|---
---|---|--|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33
31
30
28
61 | 22
25
70
34
28 | 27
25
21
20
96 | 16
29
86
32
29 | 31
32
24
20
e14 | 11
9.3
8.4
7.7
7.2 | 4.2
3.8
3.8
4.0
4.1 | 31
30
37
32
28 | 122
108
106
108
107 | 88
83
78
85
91 | 42
36
33
39
36 | 42
94
75
50
64 | | 6
7
8
9
10 | 87
97
88
84
71 | 26
25
22
21
21 | 50
30
25
23
21 | 25
24
26
21
20 | e9.7
e9.5
e8.5
e7.9
e7.5 | 7.3
9.1
7.7
8.5 | 4.0
4.7
4.5
4.7
5.7 | 24
35
35
30
27 | 105
107
104
104
112 | 111
105
96
99
92 | 32
29
28
28
26 | 62
71
77
52
36 | | 11
12
13
14
15 | 102
109
104
90
86 | 26
28
23
21
20 | 20
19
e18
e17
e16 | 18
17
16
15 | e7.3
e6.9
e6.7
e6.5
e6.4 | 25
18
13
11
9.9 | 8.0
7.3
6.3
6.1
7.6 | 34
38
54
48
60 | 104
101
105
100
98 | 86
82
90
87
84 | 24
24
23
22
21 | 30
38
106
85
70 | | 16
17
18
19
20 | 72
56
42
36
37 | 21
26
20
20
33 | e16
e15
e15
e14
e14 | 15
25
22
19
17 | e6.3
e6.2
e6.1
e6.0
e6.0 | 9.8
9.9
10
7.8
e7.0 | 11
16
20
23
22 | 62
62
52
44
47 | 96
96
99
106
132 | 80
68
63
68
74 | 20
20
19
20
23 | 97
84
78
66
72 | | 21
22
23
24
25 | 37
66
67
41
33 | 74
100
85
59
35 | e13
e13
e12
e12
e12 | 16
17
19
17
16 | e5.9
e5.9
e5.8
e5.8 | e6.0
e5.5
e5.0
4.6
5.7 | 25
28
30
30
26 | 57
96
91
73
63 | 118
100
101
97
90 | 74
85
72
73
72 | 24
21
21
21
22 | 63
78
77
73
76 | | 26
27
28
29
30
31 | 30
27
25
23
23
24 | 30
26
24
22
21 | e11
e10
11
13
23
19 | 16
21
20
16
15
22 | 7.7
32
17
 | 6.5
5.2
4.6
4.4
4.3 | 30
54
42
34
32 | 66
80
89
96
99 | 89
98
104
93
87 | 71
61
48
59
59
44 | 28
89
38
37
31
33 | 59
48
47
56
122 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 1740
56.1
109
23
3450
6.51
7.51 | 1008
33.6
100
20
2000
3.90
4.35 | 651
21.0
96
10
1290
2.44
2.81 | 682
22.0
86
15
1350
2.55
2.94 | 315.6
11.3
32
5.8
626
1.31
1.36 | 265.6
8.57
25
4.2
527
.99
1.15 | 501.8
16.7
54
3.8
995
1.94
2.17 | 1749
56.4
129
24
3470
6.55
7.55 | 3097
103
132
87
6140
12.0
13.37 | 2428
78.3
111
44
4820
9.09
10.48 | 910
29.4
89
19
1800
3.41
3.93 | 2048
68.3
122
30
4060
7.92
8.84 | | | | STATISTI | CS OF MON' | THLY MEAN | I DATA FOI | R WATER Y | EARS 1989 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 61.3
97.9
1999
34.7
1994 | 30.5
49.5
1994
14.6
1991 | 26.2
65.7
1990
8.27
1997 | 15.1
22.3
1991
5.50
1997 | 13.9
36.9
1992
3.42
1999 | 12.2
27.2
1992
5.43
1997 | 30.7
49.6
1994
16.7
2001 | 80.3
107
1992
56.4
2001 | 88.9
147
1992
59.5
1998 | 56.6
90.5
2000
31.5
1998 | 40.4
69.7
1991
18.7
1994 | 60.7
95.0
1991
33.3
1995 | See period of record Estimated # 15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1989 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 17348.2 | 15396.0 | | | ANNUAL MEAN | 47.4 | 42.2 | 43.3 | | HIGHEST ANNUAL MEAN | | | 60.1 1992 | | LOWEST ANNUAL MEAN | | | 31.8 1998 | | HIGHEST DAILY MEAN | 133 Sep 16 | 132 Jun 20 | 465 Oct 20 1998 | | LOWEST DAILY MEAN | 5.0 Mar 9 | a3.8 Apr 2 | b1.9 Mar 22 1991 | | ANNUAL SEVEN-DAY MINIMUM | 5.2 Mar 4 | 4.0 Mar 31 | 1.9 Mar 21 1991 | | MAXIMUM PEAK FLOW | | 161 Oct 12 | c710 Oct 20 1998 | | MAXIMUM PEAK STAGE | | 2.63 Oct 12 | d14.79 Oct 20 1998 | | ANNUAL RUNOFF (AC-FT) | 34410 | 30540 | 31350 | | ANNUAL RUNOFF (CFSM) | 5.50 | 4.89 | 5.02 | | ANNUAL RUNOFF (INCHES) | 74.87 | 66.44 | 68.22 | | 10 PERCENT EXCEEDS | 98 | 97 | 91 | | 50 PERCENT EXCEEDS | 33 | 28 | 32 | | 90 PERCENT EXCEEDS | 8.8 | 7.0 | 6.7 | [#] See Period of Record a Apr. 2 and 3 b Mar. 22 to Mar. 27, 1991 c From rating curve extended above 140 ft³/s on basis of slope area measurement of peak flow d Same site, different datum #### 15102200 FAVORITE CREEK NEAR ANGOON LOCATION.--Lat $57^{\circ}26'52''$, long $134^{\circ}27'35''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Unit 19010204, in Tongass National Forest, on Admiralty Island, on right bank 1.2 mi upstream from confluence with North Fork Favorite Creek, 2.2 miles from the mouth of Favorite Creek and about 5.7 mi south east of Angoon. DRAINAGE AREA. -- 2.52 mi² PERIOD OF RECORD. -- November 2000 to September 2001. GAGE.--Water-stage recorder. Elevation of gage is 370 ft above sea level, from topographic map. ${\tt REMARKS.--} \ {\tt Records} \ {\tt fair}, \ {\tt except} \ {\tt for} \ {\tt discharges} \ {\tt above} \ {\tt 53} \ {\tt ft}^3/{\tt s}, \ {\tt and} \ {\tt estimated} \ {\tt daily} \ {\tt discharges}, \ {\tt which} \ {\tt are} \ {\tt poor}.$ EXTREMES FOR CURRENT YEAR.--Maximum discharge during the period November through September, 244 $\rm ft^3/s$, gage height 11.16 ft, December 1; minimum daily about 2.2 $\rm ft^3/s$, March 23. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT MOM DEC JAN FEB MAR APR MAY .TITN JUL AUG SEP 69 16 23 5.5 e2.7 14 42 21 8.8 21 2 ------35 45 82 44 22 4.4 e2.4 e2.3 16 22 32 21 19 8.9 32 ---23 27 25 19 29 14 12 31 24 7.4 17 5 ------95 31 11 3.5 e3.1 9.6 36 23 6.9 17 17 6 32 9.6 12 2.8 8.1 34 30 6.5 15 2.6 2.5 2.7 ---8.5 7.6 6.1 5.9 ---2.2 35 2.0 32 36 3.0 12 33 6.9 26 8 18 29 35 11 ___ ___ 14 29 6.7 5.6 14 32 30 5.8 9.0 ---6.0 9.7 2.7 7.7 10 ---12 15 11 34 25 5.5 12 ___ 11 ___ 11 5.4 19 3.4 12 2.8 20 5.1 6.7 9.7 7.5 7.1 ---9.3 5.4 3.7 6.3 7.9 12 ---5.1 6.1 8.4 4.8 13 26 19 13 8.1 5.7 4.5 14 ___ ___ 6.7 5.3 4 7 3.4 15 29 21 4.3 7.5 9.7 15 ------6.2 9.1 4.6 4.5 3.4 2.7 2.0 4.3 18 5.7 3.6 16 ___ 8.8 4.1 4 6 26 26 19 4.2 12 4.2 17 ------5.6 43 3.8 4.6 4.5 25 26 16 12 ------13 3.6 19 6.7 19 26 3.4 e3 2 5 8 16 31 16 4 3 12 --e2.8 20 ---5.4 14 3.3 5.8 55 17 5.6 14 18 21 ___ 4 7 17 3 2 e2 5 6 4 19 43 16 5.9 13 22 ------29 e2.4 e2.2 10 25 5.7 5.3 4.3 3.1 32 15 15 | 2) | 11 | 0.0 | 11 | | C2.J | 2.0 | 23 | 2.0 | J. U | 12 | 20 | |-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 30 |
9.8 | 22 | 9.1 | | e2.8 | 26 | 24 | 21 | 9.0 | 11 | 36 | | 31 |
 | 11 | 29 | | e3.5 | | 43 | | 8.4 | 12 | | | TOTAL |
 | 497.9 | 696.8 | 300.9 | 166.6 | 254.1 | 592.7 | 910 | 559.0 | 229.8 | 478.8 | | MEAN |
 | 16.1 | 22.5 | 10.7 | 5.37 | 8.47 | 19.1 | 30.3 | 18.0 | 7.41 | 16.0 | | MAX |
 | 95 | 82 | 72 | 20 | 29 | 43 | 55 | 30 | 31 | 36 | | MIN |
 | 3.9 | 7.1 | 2.7 | 2.2 | 2.3 | 8.1 | 21 | 8.4 | 4.2 | 6.3 | | MED |
 | 9.3 | 17 | 5.7 | 3.7 | 4.1 | 18 | 28 | 19 | 5.8 | 14 | | AC-FT |
 | 988 | 1380 | 597 | 330 | 504 | 1180 | 1800 | 1110 | 456 | 950 | | CFSM |
 | 6.37 | 8.92 | 4.26 | 2.13 | 3.36 | 7.59 | 12.0 | 7.16 | 2.94 | 6.33 | | IN. |
 | 7.35 | 10.29 | 4.44 | 2.46 | 3.75 | 8.75 | 13.43 | 8.25 | 3.39 | 7.07 | | | | | | | | | | | | | | e2.4 e2.5 e3.2 e3.1 e3.0 e2.9 18 21 11 20 29 16 23 24 20 17 17 19 23 28 27 24 21 21 28 25 14 12 11 9.8 9.5 9.3 9.0 5.0 5.2 8.1 31 13 12 21 28 20 18 16 28 --- --- 23 24 25 26 28 29 --- 14 11 3.9 4.3 9.6 6.1 4.3 4.1 24 14 11 35 17 11 9.5 3.0 2.8 2.7 7.1 9.9 72 Estimated ### 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE LOCATION.--Lat $57^{\circ}39'46''$, long $135^{\circ}11'06''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 34, T. 48 S., R. 63 E. (Sitka C-4 quad), Greater Sitka Borough, Hydrologic Unit 19010203, on Chichagof Island, in Tongass National Forest, on right bank 0.6 mi upstream from Hook Creek, 3.5 mi upstream from mouth at Kadashan Bay, and 9 mi south of Tenakee. DRAINAGE AREA. -- 10.2 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1968 to September 1978, October 1980 to current year. GAGE.--Water-stage recorder. Elevation of gage is 100 ft above sea level, from topographic map. Prior to October 24, 1969, at site 90 ft downstream at different datum; October 24, 1969 to September 30, 1978, at site 75 ft downstream at datum 1.89 ft higher. REMARKS.--Records fair, except for estimated daily discharges, which are poor. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft3/s and maximum (*) | | Date | Time | | harge
³ /s) | Gage Height
(ft) | | Date | Time | Dischar
(ft ³ /s | | age Height
(ft) | | |------------------------------------|--
---|---|---|---|---|--|---|--|---|---|---| | | Oct. 11 | 0145 | 6 | 19 | 3.84 | | Jan. 3 | 1030 | 695 | | 3.99 | | | | Dec. 5 | 0730 | 7 | 32 | 4.06 | | Sept. 13 | 0045 | *1200 | | *4.82 | | | | | DISCHAR | GE, CUBI | C FEET | | | YEAR OCTOBER
VALUES | 2000 | TO SEPTEMBER | R 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
35
39
33
105 | 68
59
139
57
42 | 106
70
47
55
440 | 83
150
439
155
112 | 115
93
67
46
37 | 39
30
25
22
21 | 19
16
15
27
23 | 62
74
111
74
48 | 99
66
61
84
78 | 23
25
25
23
27 | 14
13
12
14
12 | 90
130
53
36
142 | | 6
7
8
9
10 | 226
181
89
138
112 | 43
77
50
38
33 | 120
66
51
41
36 | 119
78
76
75
46 | 31
29
27
24
22 | 43
75
49
77
187 | 20
17
21
26
20 | 38
64
162
108
55 | 65
66
62
66
80 | 81
87
55
59
45 | 12
12
11
10
9.8 | 112
66
50
34
28 | | 11
12
13
14
15 | 256
198
113
82
124 | 86
83
46
38
51 | 32
29
24
e19
e17 | 36
32
32
45
65 | 36
20
68
37
e19 | 243
116
58
43
40 | 22
40
25
24
22 | 62
70
70
63
72 | 54
50
67
58
47 | 32
35
65
36
29 | 9.5
9.3
9.1
8.8
8.6 | 24
184
723
190
104 | | 16
17
18
19
20 | 76
60
52
50
65 | 57
113
46
42
72 | e18
e18
44
37
25 | 51
98
78
57
43 | e17
e16
e15
e14
e14 | 42
40
34
24
e20 | 22
29
42
47
38 | 65
64
70
64
60 | 46
47
49
53
82 | 26
22
20
19
17 | 8.6
8.5
9.4
11
22 | 130
104
86
89
71 | | 21
22
23
24
25 | 77
151
168
74
52 | 144
198
152
123
88 | 21
24
18
18
32 | 53
83
76
43
34 | 16
16
15
e14
14 | e17
e16
e14
e16
17 | 40
39
52
83
52 | 87
102
84
61
49 | 51
40
39
37
33 | 16
16
15
15 | 34
20
16
13 | 55
74
64
53
56 | | 26
27
28
29
30
31 | 44
39
35
31
62
143 | 95
86
55
43
38 | 30
23
27
51
111
91 | 32
85
64
38
32
186 | 49
278
63

 | 25
23
22
21
20
28 | 52
79
58
72
69 | 49
60
67
77
67
149 | 31
32
33
28
24 | 14
13
13
13
13
12 | 31
129
39
38
46
39 | 43
41
42
103
240 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 2956
95.4
256
31
5860
9.35
10.78 | 2262
75.4
198
33
4490
7.39
8.25 | 1741
56.2
440
17
3450
5.51
6.35 | 2596
83.7
439
32
5150
8.21
9.47 | 1212
43.3
278
14
2400
4.24
4.42 | 1447
46.7
243
14
2870
4.58
5.28 | 1111
37.0
83
15
2200
3.63
4.05 | 2308
74.5
162
38
4580
7.30
8.42 | 1628
54.3
99
24
3230
5.32
5.94 | 905
29.2
87
12
1800
2.86
3.30 | 642.6
20.7
129
8.5
1270
2.03
2.34 | 3217
107
723
24
6380
10.5
11.73 | | | : | STATISTICS | OF MONT | THLY ME | AN DATA FOR | WATER | YEARS 1968 - | 2001, | BY WATER YE | AR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) | 118
234
1975
50.6
1970 | 77.3
152
1975
17.7
1974 | 64.3
147
2000
8.05
1978 | 50.0
147
1985
6.15
1969 | 48.6
118
1985
5.95
1969 | 44.9
129
1994
9.21
1974 | 67.9
118
1994
28.2
1972 | 102
182
1972
42.0
1981 | 66.9
151
1972
19.8
1998 | 31.0
60.2
1970
6.41
1989 | 32.6
79.0
1983
9.44
1977 | 75.4
141
1981
17.5
1986 | See Period of Record; partial years used in monthly summary statistics Estimated # 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued | SUMMARY STATISTICS | FOR 2000 CALEN | DAR YEAR | FOR 2001 WAT | ER YEAR | WATER YEAR | S 1968 - 2001# | |--------------------------|----------------|----------|--------------|---------|------------|----------------| | ANNUAL TOTAL | 22409 | | 22025.6 | | | | | ANNUAL MEAN | 61.2 | | 60.3 | | 64.8 | | | HIGHEST ANNUAL MEAN | | | | | 80.8 | 1992 | | LOWEST ANNUAL MEAN | | | | | 44.1 | 1978 | | HIGHEST DAILY MEAN | 511 | Sep 16 | 723 | Sep 13 | 1010 | Oct 19 1998 | | LOWEST DAILY MEAN | 14 | Jan 24 | 8.5 | Aug 17 | a3.2 | Jul 28 1989 | | ANNUAL SEVEN-DAY MINIMUM | 15 | Feb 12 | 8.9 | Aug 12 | 4.2 | Jan 13 1974 | | MAXIMUM PEAK FLOW | | | b1200 | Sep 13 | b1970 | Oct 8 1990 | | MAXIMUM PEAK STAGE | | | 4.82 | Sep 13 | 5.83 | Oct 8 1990 | | INSTANTANEOUS LOW FLOW | | | 7.7 | Aug 17 | 3.2 | Jul 28 1989 | | ANNUAL RUNOFF (AC-FT) | 44450 | | 43690 | | 46970 | | | ANNUAL RUNOFF (CFSM) | 6.00 | | 5.92 | | 6.36 | | | ANNUAL RUNOFF (INCHES) | 81.73 | | 80.33 | | 86.36 | | | 10 PERCENT EXCEEDS | 110 | | 114 | | 141 | | | 50 PERCENT EXCEEDS | 50 | | 46 | | 43 | | | 90 PERCENT EXCEEDS | 19 | | 15 | | 12 | | See Period of Record; partial years used in monthly summary statistics Jul. 28 to Jul. 29, 1989 From rating curve extended above 330 ft³/s on basis of area-velocity study at gage height 4.8 ft and shape of previous rating #### 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1967-72, 1974-77, 1981-1985, and 1987 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1967 to September 1978, December 1981 to December 1984, March 1987 to March 1988, and September 1988 to current year. INSTRUMENTATION.--Digital water-temperature recorder, November 1967 to December 1984, set for 1-hour punch interval. Electronic water-temperature recorder since March 13, 1987, set for 2-hour recording interval. Electronic watertemperature recorder with 15-minute recording interval since July 11, 1996. REMARKS.--Records represent water temperature at the sensor within $0.5\,^{\circ}\text{C}$. Temperature at the sensor was compared with the stream average by cross section on April 6. No variation was found in the temperature cross section. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 16.5°C, July 15, 1993; minimum, 0.0°C, on many days during most winters. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 13.0° C, August 14 and 15; minimum, 0.0° C, on many days during winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | SAMPLE | | DIS- | | | |------|------|---------|---------|---------|---------|---------|---------| | | | | LOC- | | CHARGE, | | | | | | | ATION, | | INST. | | | | | | | CROSS | | CUBIC | TEMPER- | TEMPER- | | | | STREAM | SECTION | GAGE | FEET | ATURE | ATURE | | DATE | TIME | WIDTH | (FT FM | HEIGHT | PER | WATER | AIR | | | | (FT) | L BANK) | (FEET) | SECOND | (DEG C) | (DEG C) | | | | (00004) | (00009) | (00065) | (00061) | (00010) | (00020) | | APR | | | | | | | | | 06 | 1457 | 25.8 | 24.1 | 1.50 | 19 | 2.0 | 4.5 | | 06 | 1458 | 25.8 | 20.1 | 1.50 | 19 | 2.0 | 4.5 | | 06 | 1459 | 25.8 | 16.1 | 1.50 | 19 | 2.0 | 4.5 | | 06 | 1500 | 25.8 | 12.1 | 1.50 | 19 | 2.0 | 4.5 | | 06 | 1501 | 25.8 | 8.10 | 1.50 | 19 | 2.0 | 4.5 | | 06 | 1502 | 25.8 | 4.10 | 1.50 | 19 | 2.0 | 4.5 | TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | OCTO | BER | | NOVEMB | ER | | DECEME | BER | | JANUARY | | | | 1
2
3
4
5 | 5.5
4.5
4.5
4.5
6.5 | 4.0
4.0
3.5
3.5
4.5 | 4.5
4.0
4.0
4.0
5.5 | 4.5
5.0
5.0
4.5
4.0 | 3.5
4.5
4.5
3.0
3.0 | 4.0
4.5
5.0
4.0
3.5 | 3.0
3.5
3.5
3.5
4.0 | 2.5
3.0
3.0
3.0
3.0 | 2.5
3.0
3.0
3.5
3.5 | 2.0
2.0
2.0
2.5
2.5 | 1.5
1.0
1.5
2.0
1.5 | 1.5
1.5
1.5
2.0
2.0 | | 6
7
8
9
10 | 7.5
7.5
6.5
6.5 | 6.5
6.5
6.0
6.5 | 7.0
7.0
6.0
6.5
6.0 | 4.0
4.5
4.5
4.0
3.5 | 4.0
4.0
4.0
3.0
3.0 | 4.0
4.0
4.0
3.5
3.5 | 4.0
3.0
3.0
2.0
2.0 | 3.0
3.0
2.0
1.5 | 3.5
3.0
2.5
1.5
2.0 | 2.5
3.0
3.0
2.5
2.0 | 2.0
2.5
2.5
2.0
1.5 | 2.0
3.0
2.5
2.0
1.5 | | 11
12
13
14
15 | 7.0
8.0
7.5
6.5 | 6.0
7.0
6.5
6.0 | 6.5
7.5
7.0
6.5
6.5 | 4.5
4.5
4.5
4.5
4.5 | 3.5
4.5
3.5
4.0
3.5 | 4.0
4.5
4.0
4.0 | 2.0
2.0
1.0
.0 | 2.0
1.0
.0
.0 | 2.0
2.0
.5
.0 | 2.0
1.5
2.0
2.0 | 1.5
1.0
1.5
1.5 |
2.0
1.5
1.5
2.0
2.0 | | 16
17
18
19
20 | 6.5
6.5
5.5
6.0 | 6.0
5.5
5.0
5.5 | 6.0
6.0
5.5
5.5 | 4.0
4.0
4.0
4.0
5.0 | 3.5
4.0
3.0
3.5
4.0 | 4.0
4.0
3.5
3.5
4.5 | .0
1.0
1.0
1.0 | .0
.0
.0
.5 | .0
.5
.5
1.0 | 2.5
2.5
3.0
3.0 | 2.0
2.0
2.5
2.5
2.5 | 2.0
2.5
2.5
2.5
2.5 | | 21
22
23
24
25 | 5.5
6.0
6.0
5.5
5.5 | 5.0
5.0
5.5
5.0 | 5.0
5.5
6.0
5.5
5.5 | 5.0
5.5
5.0
4.0
4.0 | 5.0
5.0
4.0
4.0
4.0 | 5.0
5.0
4.0
4.0 | 1.0
.5
1.0
1.5 | .0
.0
.5
1.0 | .5
.0
1.0
1.5 | 3.0
2.5
2.5
2.5
2.5 | 2.5
2.5
2.0
2.0
2.0 | 2.5
2.5
2.5
2.0
2.5 | | 26
27
28
29
30
31 | 5.5
5.0
4.5
4.0
3.5
4.0 | 4.5
4.5
4.0
2.5
2.5
3.5 | 5.0
4.5
4.5
3.0
3.0 | 4.0
4.0
3.0
2.5
3.0 | 3.5
3.0
2.5
2.5
2.5 | 4.0
3.5
3.0
2.5
2.5 | 1.5
1.5
1.5
1.5
1.5 | 1.0
1.5
1.5
.5
.5 | 1.0
1.5
1.5
1.0
1.0 | 3.0
3.0
2.5
2.0
2.0 | 2.5
2.5
1.5
1.5
1.5 | 2.5
2.5
2.0
2.0
2.0 | | MONTH | 8.0 | 2.5 | 5.4 | 5.5 | 2.5 | 3.9 | 4.0 | .0 | 1.5 | 3.0 | 1.0 | 2.1 | # 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | I EPIE | BIGHT ORE, | WAIER, DEG | CE CEED | LDIOD, V | MIEK IEAK | OCTOBER | 1000 | JEF I EMDER | 2000 | | |---|--|--|---|---|---|---|--|--|---|---|--|---| | DAY | MAX | MIN | MEAN | | | FEE | BRUARY | | MARCH | | | APRIL | | MAY | | | | | | | | | 1.5
2.0
1.5
1.5 | | | | | | 4.5
3.5
4.0
4.0
4.0 | 2.5
3.0
2.5
3.0
2.5 | 3.5
3.5
3.5
3.5
3.5 | | | | | | 1.5
1.5
2.0
1.5 | | | | | | 4.0
4.0
3.5
4.5 | | 3.5
3.5
3.5
3.5
4.0 | | 11
12
13
14
15 | .5
1.0
1.0
.5 | .0
.5
.0
.0 | .0
1.0
.5
.0 | 1.5
2.0
3.0
3.0
3.0 | 1.0
1.0
1.5
2.0
2.5 | 1.5
2.0
2.5
2.5
3.0 | 2.5
2.5
2.5
3.5
3.0 | 1.5
1.0
1.0
2.0
1.5 | 2.0
1.5
2.0
2.5
2.5 | 5.0
5.5
5.5
5.5 | 4.0
3.5
4.0
4.0
3.5 | 4.5
4.5
4.5
4.5 | | | | | | 3.0
2.5
2.0
1.0 | | | | | | 5.0
5.5
5.0
5.5
4.5 | 3.5
3.5
4.0
3.5
3.5 | 4.5
4.5
4.5
4.5 | | 21
22
23
24
25 | | | | .0
.5
.0
1.0 | | | | | | 5.5 | | 4.5 | | 26
27
28
29
30
31 | 1.0
.5
1.0
 | .0
.0
.5
 | .5
.0
1.0
 | 1.5
1.5
1.0
2.0
1.0 | 1.0
1.0
.5
.5 | 1.0
1.0
1.0
1.0
1.0 | 3.5
4.0
4.0
4.0
4.5 | 3.0
3.0
2.5
3.0
3.0 | 3.5
3.5
3.5
3.5
3.5 | 6.5
6.0
6.5
5.0
5.0 | 3.5
5.0
4.0
4.0
4.0 | 5.0
5.5
5.0
4.5
4.5
5.0 | | MONTH | | .0 | .8 | | | 1.2 | | .5 | | 6.5 | DAY | MAX | MIN 1 | MEAN | MAX MIN | MEAN | MAX | MIN ME | AN M | AX MIN | MEAN | | | | DAY | | MIN I | MEAN | MAX MIN | MEAN | MAX | MIN ME | | | | | | | | J | | | JULY | | | AUGUST | | SEPTEME | | 9.5
9.0
8.5
8.5
9.0 | 9.5
9.5
9.0
9.0
9.5 | | 1
2
3
4
5 | 6.0
5.5
6.0
6.0 | 4.0
4.5
4.5
4.5
4.5 | 5.0
5.0
5.0
5.0 | | 8.0
8.5
9.0
9.0 | 9.0
9.0
9.5
9.0
8.5 | AUGUST
10.5
11.5
11.5
11.5
12.0 | 10.0
10.0
10.5
10.5 | SEPTEME
10.0
10.5
11.0
11.0 | 10.0
9.5
9.5
9.5
10.0 | 9.0
8.5
8.5
9.0 | 9.5
9.0
9.0
9.5 | | 1
2
3
4
5
6
7
8
9 | 6.0
5.5
6.0
6.5
6.5
7.5
7.0 | 4.0
4.5
4.5
4.5
4.5
5.0
5.0
5.5 | 5.0
5.0
5.0
5.5
5.5
6.0
6.5
5.5 | JULY 9.5 10.0 10.5 9.5 9.0 | 8.0
8.5
9.0
9.0
8.5
8.0
8.0
8.0 | 9.0
9.0
9.5
9.0
8.5
8.5
8.5
8.5 | AUGUST 10.5 11.5 11.5 11.5 12.0 11.5 12.0 12.0 12.0 12.0 | 10.0
10.0
10.5
10.5
10.5
10.0
9.5
9.5 | SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0 | 10.0
9.5
9.5
9.5
10.0
9.5
9.5
9.5
9.0
8.5 | 9.0
8.5
9.0
9.5
8.5
7.5
6.5 | 9.5
9.0
9.5
9.0
9.5
9.0
8.5
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 6.0
5.5
6.0
6.5
6.5
7.5
7.0
6.0
6.5
6.5
7.5 | 4.0
4.5
4.5
4.5
5.0
5.0
5.5
5.5
5.5 | 5.0
5.0
5.0
5.5
5.5
5.5
5.5
5.0
6.5
5.5 | JULY 9.5 10.0 10.5 9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 | 8.0
8.5
9.0
8.5
8.0
8.0
8.0
8.0
8.0 | 9.0
9.5
9.0
9.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 10.5
11.5
11.5
11.5
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.5
12.5 | 10.0
10.0
10.5
10.5
10.5
10.0
10.5
10.0
9.5
9.5 | SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0 | 9.5
9.5
9.5
10.0
9.5
9.5
8.0
9.0
8.0
9.0
9.5
9.5 | 9.0
8.5
9.0
9.0
8.5
7.0
8.0
9.0
9.0 | 9.5
9.0
9.5
9.0
8.5
7.5
8.5
9.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 6.0
5.5
6.0
6.5
6.5
7.0
6.0
6.5
7.5
7.0
7.5
7.5
7.5 | 4.0
4.5
4.5
4.5
5.0
5.0
5.5
5.5
5.5
6.5
7.0 | 5.0
5.0
5.0
5.5
5.5
5.5
6.0
6.5
5.5
5.0
6.0
7.0
7.0 | JULY 9.5 10.0 10.5 9.5 9.0 9.0 9.0 8.5 9.0 9.0 9.0 8.5 10.0 | 8.0
8.5
9.0
8.5
8.0
8.0
8.0
8.0
8.5
9.5
9.5
9.5 | 9.0
9.5
9.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.5
9.0
10.5 | 10.5
11.5
11.5
11.5
12.0
11.5
12.0
12.0
12.0
12.0
12.0
12.5
12.5
12.5
12.5
13.0
13.0 | 10.0
10.0
10.5
10.5
10.5
10.0
10.5
9.5
10.0
10.5
11.0 | SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11. | BER 10.0 9.5 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 | 9.0
8.5
9.0
9.0
8.5
7.5
6.5
7.0
9.0
8.5
9.0
9.0
8.5 | 9.5
9.0
9.5
9.0
9.5
8.5
7.5
7.5
9.0
9.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 6.0
5.5
6.0
6.5
6.5
7.0
6.0
6.5
7.5
7.0
7.5
8.5
7.5
8.5
7.5
9.0 | 4.0
4.5
4.5
4.5
5.0
5.0
5.5
5.5
5.5
6.5
6.5
6.5
76.5 | 5.0
5.0
5.0
5.5
5.5
5.5
6.0
6.5
5.5
5.6
6.0
7.0
7.0
7.0
7.0
7.0
7.0 | JULY 9.5 10.0 10.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 10.0 9.5 10.5 10.5 12.0 12.5 12.0 11.0 10.5 | 8.0
8.5
9.0
9.0
8.5
8.0
8.0
8.0
8.0
8.5
9.0
8.5
9.5
10.0
10.0
11.0
10.0 | 9.0
9.5
9.0
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.5
10.5
11.5
11.5
10.0 | 10.5
11.5
11.5
11.5
12.0
11.5
12.0
12.0
12.0
12.0
12.0
12.5
12.5
12.5
12.5
11.5 | 10.0
10.0
10.5
10.5
10.5
10.0
9.5
9.5
10.0
10.0
10.5
11.0
11.0
11.0
11.0
11 | SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11. | BER 10.0 9.5 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 8.0 | 9.0
8.5
9.0
9.0
8.5
7.5
6.5
7.0
9.0
9.0
8.5
9.0
9.0
8.5
9.0
9.0
8.5
9.0 | 9.5
9.0
9.5
9.0
9.5
8.5
7.5
7.5
9.0
9.0
9.5
9.0
8.5
9.0
8.5 | ### 15106970 MIDDLE BASIN CREEK NEAR TENAKEE LOCATION.--Lat $57^{\circ}41'33''$, long $135^{\circ}12'06''$, in NE^{1}_{4} NE^{1}_{4} Sec. 21, T. 48 S., R. 63 E. (Sitka C-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Chichagof Island, on left bank 0.3 mi upstream from confluence with Kadashan River, and about 7 mi south of Tenakee. DRAINAGE AREA.--0.12 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1981 to July 1987(unpublished fragmentary records provided by the U.S. Forest Service). July 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage is 190 ft above sea level, from topographic map. REMARKS. -- No estimated daily discharges. Records fair. | | |
DISCHA | RGE, CUBI | C FEET PI | | WATER Y | | R 2000 | TO SEPTEMBE | R 2001 | | | |--|---|--|---|---|---|---|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .60
.56
.55
.52 | .75
.75
.80
.71 | .98
.84
.74
.77
2.5 | .58
.78
2.2
1.8
2.1 | .92
.90
.83
.77 | .61
.54
.48
.44 | .30
.27
.28
.31 | .33
.36
.45
.45 | .93
1.0
1.0
.99 | .47
.47
.47
.44 | . 25
. 24
. 24
. 25
. 23 | .27
.39
.29
.24
.36 | | 6
7
8
9
10 | .92
1.0
1.1
1.3 | .72
.71
.64
.60 | 1.9
1.8
1.3
1.1 | 1.7
1.2
1.0
.98
.79 | .65
.61
.57
.53 | .47
.52
.45
.45 | .30
.28
.28
.29 | .39
.43
.58
.59 | .98
.96
.98
1.0 | .46
.45
.41
.40 | .21
.20
.20
.19 | .34
.31
.29
.28 | | 11
12
13
14
15 | 2.1
2.6
2.4
2.1
1.9 | .66
.64
.57
.56 | .86
.80
.74
.65 | .70
.65
.63
.65 | .44
.44
.62
.45 | 1.2
.99
.71
.63
.62 | .28
.30
.25
.24 | .49
.49
.48
.48 | 1.1
1.0
.97
.93 | .36
.36
.39
.36 | .20
.19
.19
.19 | .28
.51
2.1
2.3
1.9 | | 16
17
18
19
20 | 1.5
1.2
1.1
.97
.97 | .57
.69
.57
.57 | .59
.56
.72
.59 | .59
.69
.64
.59 | .39
.38
.38
.37 | .61
.58
.53
.44 | . 24
. 25
. 26
. 25
. 24 | .48
.48
.50
.48 | .85
.81
.79
.78 | .35
.34
.33
.32 | .18
.18
.17
.17 | 1.6
1.2
1.0
.92
.85 | | 21
22
23
24
25 | .92
1.0
1.4
1.2 | .71
1.0
1.7
1.6
1.5 | .50
.46
.44
.44 | .56
.60
.62
.56 | .36
.35
.33
.33 | .35
.34
.33
.36 | .24
.25
.27
.30 | .51
.52
.53
.54 | .84
.82
.75
.67 | .32
.30
.28
.27 | .24
.19
.18
.17 | .81
.76
.69
.67 | | 26
27
28
29
30
31 | 1.0
.93
.85
.75
.81 | 1.3
1.2
1.0
.94
.86 | .45
.41
.44
.49
.59 | .51
.65
.60
.54
.51 | .44
1.9
.75
 | .37
.37
.36
.33
.34 | .27
.29
.29
.36
.35 | .56
.58
.59
.60
.64 | .59
.57
.54
.49
.49 | . 27
. 26
. 25
. 25
. 24
. 25 | .21
.35
.21
.20
.21 | .58
.54
.53
.58
.72 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 36.03
1.16
2.6
.52
1.0
71
9.69
11.17 | 24.79
.83
1.7
.56
.71
49
6.89
7.68 | 24.79
.80
2.5
.41
.59
49
6.66
7.68 | 26.18
.84
2.2
.51
.65
52
7.04
8.12 | 15.99
.57
1.9
.32
.44
32
4.76
4.96 | 15.72
.51
1.2
.33
.45
31
4.23
4.87 | 8.32
.28
.36
.23
.28
.17
2.31
2.58 | 15.70
.51
.77
.33
.49
31
4.22
4.87 | 25.11
.84
1.1
.49
.87
50
6.98
7.78 | 10.80
.35
.47
.24
.35
.21
2.90
3.35 | 6.42
.21
.35
.17
.20
13
1.73 | 22.22
.74
2.3
.24
.58
44
6.17
6.89 | | MEAN | 2.07 | STATISTIC | S OF MONT
2.28 | HLY MEAN | DATA FOR | WATER YE | EARS 1999 - | - 2001,
.56 | BY WATER YE | AR (WY): | .30 | 1.03 | | MAX
(WY)
MIN
(WY) | 2.98
2000
1.16
2001 | 2.65
2000
.83
2001 | 3.75
2000
.80
2001 | .84
2001
.47
2000 | .57
2001
.30
2000 | .51
2001
.40
2000 | .43
2000
.28
2001 | .61
2000
.51
2001 | .79
.84
2001
.74
2000 | .65
1999
.35
2001 | .38
1999
.21
2001 | 1.34
2000
.74
2001 | | | Y STATIST | ICS F | OR 2000 C | | YEAR | | 01 WATER Y | EAR | WATER YE | ARS 1999 | 9 - 2001# | | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN
INSTANT
ANNUAL
ANNUAL
10 PERC
50 PERC | MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME SEVEN-DA M PEAK FL M PEAK ST FANEOUS L RUNOFF (| EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS | 7. | 8 Sep 23 Mar 25 Mar 38 26 0 51 | 17
12
8 | 2
4
4
b
460
5
71
1 | .64 .6 Oct 1 .17 Aug 1 .18 Aug 1 .1 Feb 2 .29 Feb 2 .15 Aug 1 | 8
3
7
7 | .9
1.2
.6
31
.1
a66
5.1
b.1
665
7.6
103.9
1.2 | 0 4 Dec 7 Aug 8 Aug Dec 6 Dec 5 Aug 5 3 2 | 2000
2001
27 1999
g 18 2001
27 1999
27 1999
27 1999
g 16 2001 | | See Period of Record; partial years used in monthly statistics From rating curve extended above 3.0 $\mathrm{ft^3/s}$ Aug. 16 and 25, 2001 ### 15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1981 to July 1987 (unpublished fragmentary records provided by the U.S. Forest Service), July 2000 to September 2001. PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: July 2000 to September 2001 INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval since July 9, 2000. REMARKS.--Records represent water temperature at the sensor within 0.5 $^{\circ}\text{C}$. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 9.0°C, August 4 and 5, 2000 and August 13-16, 20 and 27, 2001; minimum, 0.5°C, on several days during winter. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum recorded, 9.0°C, August 13-16, 20 and 27; minimum, 0.5°C, on several days during winter. TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|------|-----|------|--------|-----|------|---------|-----|------| | | Ċ | JUNE | | JULY | | | AUGUST | | SEI | PTEMBER | | | | 1 | | | | | | | 8.0 | 8.0 | 8.0 | 8.0 | 7.5 | 7.5 | | 2 | | | | | | | 8.5 | 7.5 | 8.0 | 7.5 | 6.5 | 7.5 | | 3 | | | | | | | 8.5 | 8.0 | 8.0 | 7.5 | 6.5 | 7.0 | | 4 | | | | | | | 9.0 | 8.0 | 8.5 | 8.0 | 7.5 | 8.0 | | 5 | | | | | | | 9.0 | 8.5 | 8.5 | 8.0 | 8.0 | 8.0 | | 6 | | | | | | | 8.5 | 8.0 | 8.0 | 8.5 | 8.0 | 8.0 | | 7 | | | | | | | 8.5 | 8.0 | 8.5 | 8.0 | 7.5 | 8.0 | | 8 | | | | | | | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.5 | | 9 | | | | | | | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.5 | | 10 | | | | 7.5 | 7.5 | 7.5 | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.0 | | 11 | | | | 7.5 | 7.0 | 7.5 | 8.5 | 7.5 | 8.0 | 7.5 | 7.0 | 7.5 | | 12 | | | | 7.5 | 7.0 | 7.5 | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.5 | | 13 | | | | 7.5 | 7.0 | 7.5 | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.0 | | 14 | | | | 7.5 | 7.0 | 7.5 | 8.5 | 8.0 | 8.0 | 7.5 | 7.0 | 7.0 | | 15 | | | | 8.0 | 7.5 | 7.5 | 8.5 | 8.5 | 8.5 | 7.0 | 7.0 | 7.0 | | 16 | | | | 8.0 | 7.5 | 7.5 | 8.5 | 8.0 | 8.5 | 7.0 | 7.0 | 7.0 | | 17 | | | | 7.5 | 7.5 | 7.5 | 8.5 | 8.0 | 8.5 | 7.0 | 6.5 | 6.5 | | 18 | | | | 7.5 | 7.5 | 7.5 | 8.5 | 7.5 | 8.0 | 6.5 | 6.0 | 6.5 | | 19 | | | | 8.0 | 7.5 | 7.5 | 8.0 | 8.0 | 8.0 | 6.0 | 6.0 | 6.0 | | 20 | | | | 8.0 | 7.5 | 7.5 | 8.5 | 8.0 | 8.5 | 6.0 | 5.5 | 6.0 | | 21 | | | | 8.0 | 7.5 | 7.5 | 8.5 | 8.0 | 8.5 | 6.0 | 5.5 | 5.5 | | 22 | | | | 8.0 | 7.5 | 8.0 | 8.5 | 8.5 | 8.5 | 6.5 | 6.0 | 6.5 | | 23 | | | | 8.0 | 7.5 | 8.0 | 8.5 | 8.0 | 8.0 | 7.0 | 6.5 | 6.5 | | 24 | | | | 8.0 | 7.5 | 8.0 | 8.0 | 8.0 | 8.0 | 7.0 | 6.5 | 7.0 | | 25 | | | | 8.0 | 7.5 | 8.0 | 8.5 | 8.0 | 8.0 | 7.0 | 6.5 | 7.0 | | 26 | | | | 8.0 | 7.5 | 8.0 | 8.0 | 8.0 | 8.0 | 7.0 | 6.5 | 7.0 | | 27 | | | | 8.0 | 7.5 | 8.0 | 8.0 | 7.5 | 8.0 | 7.0 | 6.5 | 7.0 | | 28 | | | | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 7.0 | 7.0 | 7.0 | | 29 | | | | 8.0 | 8.0 | 8.0 | 8.0 | 7.5 | 8.0 | 7.0 | 6.0 | 6.5 | | 30 | | | | 8.0 | 8.0 | 8.0 | 8.0 | 7.5 | 8.0 | 6.0 | 5.5 | 6.0 | | 31 | | | | 8.5 | 8.0 | 8.0 | 8.0 | 7.5 | 7.5 | | | | | MONTH | | | | | | | 9.0 | 7.5 | 8.1 | 8.5 | 5.5 | 7.0 | # 15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued SOUTHEAST ALASKA TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|---|--|--|--|--|---|--|--
--|---|--|--| | | OCT | FOBER | | NOVEMBER | | | DECEMBER | | JA | NUARY | | | | 1
2
3
4
5 | 5.5
5.5
5.0
5.0 | 5.0
5.0
4.5
4.5
5.0 | 5.0
5.0
5.0
5.0 | 4.5
5.0
5.0
5.0
4.5 | 4.5
4.5
5.0
4.0
4.0 | 4.5
5.0
5.0
4.5
4.5 | 4.0
4.0
4.0
4.0 | 3.5
4.0
4.0
3.5
3.5 | 4.0
4.0
4.0
4.0 | 3.0
3.5
3.5
3.5
3.5 | 3.0
3.0
3.5
3.0 | 3.0
3.5
3.5
3.5 | | 6
7
8
9
10 | 6.5
6.5
6.0
6.0 | 6.0
6.0
5.5
6.0
5.5 | 6.0
6.5
6.0
6.0 | 4.5
4.5
4.5
4.5
4.0 | 4.5
4.5
4.5
4.0
4.0 | 4.5
4.5
4.5
4.0 | 4.5
4.0
3.5
3.0
3.0 | 4.0
3.5
3.0
2.5
2.5 | 4.0
4.0
3.5
2.5
3.0 | 3.5
4.0
4.0
3.5
3.0 | 3.0
3.5
3.5
3.0
2.5 | 3.5
3.5
3.5
3.0 | | 11
12
13
14
15 | 6.0
6.5
6.0
5.5 | 6.0
6.0
5.5
5.5 | 6.0
6.0
6.0
5.5 | 4.5
5.0
4.5
4.5 | 4.0
4.5
4.0
4.5
4.0 | 4.5
4.5
4.5
4.5 | 3.0
3.0
2.0
1.5 | 2.5
2.0
1.5
1.0 | 3.0
2.5
2.0
1.0 | 3.0
2.5
2.5
3.0
3.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
3.0 | | 16
17
18
19
20 | 5.5
5.5
5.5
5.5 | 5.5
5.0
5.0
5.0 | 5.5
5.5
5.0
5.5 | 4.5
4.5
4.5
5.0 | 4.0
4.5
4.0
4.0
4.5 | 4.5
4.5
4.0
4.5
4.5 | 1.5
2.0
2.5
2.5
2.5 | .5
1.5
1.5
2.0
2.0 | 1.5
2.0
2.0
2.5
2.5 | 3.5
3.5
3.5
3.5
3.5 | 3.0
3.0
3.5
3.5 | 3.0
3.5
3.5
3.5
3.5 | | 21
22
23
24
25 | 5.0
5.5
5.5
5.5 | 5.0
5.0
5.5
5.0 | 5.0
5.5
5.5
5.5
5.0 | 5.0
5.5
5.0
4.5
4.5 | 5.0
5.0
4.5
4.5
4.5 | 5.0
5.0
4.5
4.5 | 2.5
2.0
2.0
2.5
2.5 | 1.5
1.5
2.0
2.0
2.5 | 2.0
1.5
2.0
2.5
2.5 | 3.5
3.5
3.5
3.0
3.5 | 3.5
3.5
3.0
3.0 | 3.5
3.5
3.5
3.0 | | 26
27
28
29
30
31 | 5.0
5.0
4.5
4.0
4.5
4.5 | 4.5
4.5
4.0
3.5
4.0
4.5 | 5.0
4.5
4.5
4.0
4.0 | 4.5
4.5
4.0
3.5
3.5 | 4.0
4.0
3.5
3.5
3.5 | 4.5
4.0
4.0
3.5
3.5 | 2.5
2.5
2.5
3.0
3.0 | 2.5
2.5
2.5
2.5
3.0
3.0 | 2.5
2.5
2.5
3.0
3.0 | 3.5
3.5
3.5
3.0
3.0 | 3.0
3.5
3.0
3.0
2.5
2.5 | 3.0
3.5
3.0
3.0
3.0 | | MONTH | 6.5 | 3.5 | 5.3 | 5.5 | 3.5 | 4.4 | 4.5 | .5 | 2.7 | 4.0 | 2.5 | 3.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
BRUARY | MEAN | MAX
MARCH | MIN | | MAX
APRIL | MIN | MEAN
MAY | MAX | MIN | MEAN | | | | BRUARY | | MARCH | | | | | MAY | | | | | 1
2
3
4
5 | FEI | 3.0
3.0
3.0
2.5
2.5 | 3.0
3.5
3.0
3.0
2.5 | MARCH 2.5 2.5 2.5 2.0 2.0 | 2.0
2.0
2.0
1.5
2.0 | 2.0
2.0
2.0
2.0
2.0 | APRIL | 1.5
1.5
1.5
2.0 | MAY 1.5 1.5 2.0 2.0 2.0 | 4.0
3.5
4.0
4.0
3.5 | 3.0
3.5
3.5
3.5
3.0 | 3.5
3.5
3.5
3.5
3.5 | | 1
2
3
4
5
6
7
8
9 | FEE
3.5
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.5 | 3.0
3.0
3.0
2.5
2.5
2.5
2.5
2.5
1.0 | 3.0
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
1.5 | MARCH 2.5 2.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 | 2.0
2.0
2.0
1.5
2.0
2.0
2.0
2.0
2.5
2.5 | 2.0
2.0
2.0
2.0
2.0
2.5
2.5
2.5
2.5 | APRIL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | 1.5
1.5
1.5
2.0
1.5
1.5
2.0 | MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | 4.0
3.5
4.0
4.0
3.5
3.5
4.0
4.0
4.0 | 3.0
3.5
3.5
3.5
3.0
3.0
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | FEE
3.5
3.5
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
2.0 | 3.0
3.0
3.0
2.5
2.5
2.5
2.5
2.5
1.0 | 3.0
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
1.5 | MARCH 2.5 2.5 2.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 | 2.0
2.0
2.0
1.5
2.0
2.0
2.0
2.5
2.5
2.5
2.5 | 2.0
2.0
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5 | APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 | 1.5
1.5
1.5
1.5
2.0
1.5
2.0
1.5
2.0
2.0
2.0
2.5 | MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 | 4.0
3.5
4.0
4.0
3.5
3.5
4.0
4.0
4.0
4.0
4.5
4.5 | 3.0
3.5
3.5
3.5
3.0
3.5
3.5
3.5
3.5
3.5
4.0
4.0 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 3.5
3.5
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
1.5
2.0
2.0
1.5 | 3.0
3.0
3.0
2.5
2.5
2.5
2.5
2.5
1.0
1.5
1.5
1.5
1.5 | 3.0
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
1.5
1.5
1.0 | MARCH 2.5 2.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | 2.0
2.0
2.0
1.5
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5
3.0
2.5
2.5 | 2.0
2.0
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5
3.0
3.0 | APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.5 3.5 | 1.5
1.5
1.5
1.5
2.0
1.5
1.5
2.0
2.0
2.0
2.0
2.5
2.0 | MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 | 4.0
3.5
4.0
4.0
3.5
3.5
4.0
4.0
4.0
4.5
4.5
5.0
4.5
5.0 | 3.0
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
4.0
4.0
4.0 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
4.5
4.5
4.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 3.5
3.5
3.5
3.0
3.0
2.5
2.5
2.5
2.5
2.0
1.5
2.0
2.0
2.0
1.5
1.5
1.5 | 3.0
3.0
3.0
2.5
2.5
2.5
2.5
2.5
1.0
1.5
1.5
1.5
1.5
1.0
1.5
1.5 | 3.0
3.5
3.0
3.0
2.5
2.5
2.5
2.0
1.5
1.0
1.0
1.0
1.0
1.5
1.5
1.5 | MARCH 2.5 2.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 | 2.0
2.0
2.0
1.5
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5
2.5
3.0
2.5
2.5
3.0
5.5
2.5
3.0
5.5
3.0
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5 | 2.0
2.0
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.5 3.5 3.5 3.5 3.5 | 1.5
1.5
1.5
1.5
2.0
1.5
1.5
2.0
2.0
2.0
2.0
2.5
2.0
2.5
2.0
2.5
3.0
2.5 | MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | 4.0
3.5
4.0
4.0
3.5
4.0
4.0
4.0
4.5
5.0
4.5
5.0
5.0
5.0
4.5 | 3.0
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
4.0
4.0
4.0
4.5
4.5
4.5 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5 | # SOUTHEAST ALASKA # 15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | JŢ | JNE | | JULY | | I | AUGUST | | SEPTEMB | ER | | | | 1
2
3
4
5 | 5.5
5.5
5.5
5.5 | 5.0
5.0
5.0
5.0 | 5.5
5.0
5.5
5.5 | 7.5
7.5
7.5
7.0
7.0 | 6.5
7.0
7.0
7.0
7.0 | 7.0
7.0
7.0
7.0
7.0 | 8.0
8.5
8.0
8.5
8.5 | 7.5
7.5
8.0
8.0 | 8.0
8.0
8.0
8.0 | 8.5
8.5
8.0
8.5 | 8.0
8.0
8.0
8.0 | 8.5
8.5
8.0
8.0 | | 6
7
8
9
10 | 6.0
6.0
6.5
6.5 | 5.5
5.5
5.5
5.5 | 5.5
5.5
6.0
6.0 | 7.0
7.0
7.0
7.0
7.0 | 7.0
7.0
6.5
6.5 | 7.0
7.0
7.0
7.0
7.0 | 8.5
8.5
8.5
8.5
8.5 | 7.5
8.0
8.0
7.5
7.5 | 8.0
8.0
8.0
8.0 | 8.5
8.5
8.0
8.0 | 8.0
8.0
8.0
7.5
7.0 | 8.0
8.0
8.0
7.5
7.5 | | 11
12
13
14 | 5.5
6.0
6.0
6.0 | 5.5
5.5
5.5
5.5 | 5.5
5.5
5.6
6.0 | 7.0
7.0
7.0
7.0
7.5 | 6.5
6.5
7.0
7.0 | 7.0
7.0
7.0
7.0
7.0 | 8.5
8.5
9.0
9.0 | 8.0
8.0
8.0
8.5 | 8.0
8.5
8.5
8.5 | 7.5
8.5
8.5
8.0
7.0 | 7.0
7.5
8.0
7.0
7.0 | 7.5
8.0
8.5
7.5 | | 16
17
18
19
20 | 6.5
6.5
6.5
6.5 | 5.5
6.0
6.0
6.5 | 6.0
6.5
6.5 | 7.5
7.5
7.5
8.0
8.5 | 7.0
7.0
7.0
7.0
7.5 |
7.0
7.5
7.5
7.5
8.0 | 9.0
8.5
8.5
8.5
9.0 | 8.0
8.5
8.5
8.5
8.5 | 8.5
8.5
8.5
8.5 | 7.5
7.5
7.0
7.0 | 7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.0
7.0 | | 21
22
23
24
25 | 6.5
6.5
6.5
6.5 | 6.0
6.0
6.0
6.0 | 6.5
6.0
6.5
6.5 | 8.5
8.5
8.0
8.0 | 7.5
8.0
7.5
7.5
7.5 | 8.0
8.0
7.5
8.0 | 8.5
8.5
8.5
8.5
8.5 | 8.5
8.0
8.0
8.0 | 8.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0 | 7.0
7.0
6.5
7.0
6.5 | 7.0
7.0
7.0
7.0 | | 26
27
28
29
30
31 | 7.0
7.5
7.0
7.0
7.5 | 6.0
6.5
7.0
6.5
6.5 | 6.5
7.0
7.0
7.0
7.0 | 8.0
8.0
8.0
8.0
8.0 | 7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.0
8.0
8.0
8.0 | 8.5
9.0
8.5
8.5
8.5
8.5 | 8.5
8.5
8.5
8.5
8.5 | 8.5
8.5
8.5
8.5
8.5 | 7.0
7.0
7.0
7.0
7.0 | 6.5
6.5
6.5
6.5 | 6.5
6.5
6.5
7.0 | | MONTH | 7.5 | 5.0 | 6.1 | 8.5 | 6.5 | 7.4 | 9.0 | 7.5 | 8.3 | 8.5 | 6.5 | 7.4 | ### 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY LOCATION.(REVISED)--Lat $58^{\circ}17'00''$, long $134^{\circ}39'54''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW), Hydrologic Unit 19010301, City and Borough of Juneau, on Douglas Island, in Tongass National Forest, on left bank 100 ft downstream from North Fork Peterson Creek, 1.25 mi upstream from mouth, 7.2 mi south of Auke Bay, and 9.6 mi west of Douglas. DRAINAGE AREA.--4.33 mi², revised. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- November 1998 to current year. REVISED RECORDS.--WDR AK-00-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | 2 | , | 112020 | | | | | | |---|---|---|--|---|---|---|---|---|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.1
6.2
6.9
7.0 | 4.5
4.6
14
9.7
7.3 | 6.5
10
8.4
7.4
119 | 4.7
6.1
35
20
20 | e10
e9.5
e8.7
e8.0
e7.6 | 13
8.4
6.3
5.1
4.5 | 3.2
3.1
3.0
3.6
3.5 | 5.9
5.5
9.2
15 | 26
22
23
22
18 | 6.4
6.3
6.0
5.9
6.6 | 3.9
3.5
3.2
3.2
3.3 | e6.8
16
12
e10
e11 | | 6
7
8
9
10 | 20
19
24
16
13 | 6.1
7.3
6.5
5.5
4.9 | 35
19
14
10
7.9 | 19
13
11
9.0
6.8 | 5.9
4.9
4.4
4.0
3.9 | 5.8
9.1
7.2
9.0
22 | 3.3
3.2
3.2
3.4
3.2 | 9.6
7.9
7.6
11
9.1 | 16
17
15
15 | 9.0
11
14
12 | e3.4
e3.2
e3.3
e2.9
e2.8 | e14
e13
e13
e11
e9.0 | | 11
12
13
14
15 | 47
38
51
23
22 | 13
24
14
10
8.1 | 6.6
5.7
5.0
e4.0
e4.3 | 5.4
4.7
4.5
4.5 | e3.8
e3.5
e3.4
e3.4 | 34
21
13
8.8
6.8 | 3.2
3.2
3.2
3.1
3.0 | 7.8
7.8
8.6
8.6 | 13
12
13
12
11 | 8.7
8.0
12
12 | e2.7
e2.6
e2.5
e2.5
e2.9 | e6.6
e5.8
23
e21
e15 | | 16
17
18
19
20 | 17
13
10
9.9 | 6.6
14
11
8.2
7.7 | e4.0
3.9
4.2
4.0
3.9 | 4.6
6.2
6.9
5.9 | e3.4
e3.4
e3.4
e3.4 | 9.2
7.7
6.6
e5.8
e5.0 | 3.0
3.0
3.1
3.4
3.8 | 9.3
9.7
9.3
8.6
8.4 | 11
11
10
11 | 9.0
e5.9
e5.5
e4.7
4.4 | e2.8
e2.4
e2.5
e2.5
e2.5 | 36
35
43
20
25 | | 21
22
23
24
25 | 14
18
22
19
e13 | 13
25
42
25
16 | 3.7
3.6
3.5
3.4
3.4 | 4.7
4.5
6.2
7.7
5.7 | 3.3
3.5
e3.2
e3.1
3.2 | e4.2
e3.8
e3.6
e3.5
e3.2 | 4.4
5.1
5.6
5.5 | 8.9
15
17
15 | 13
10
9.8
9.2
8.3 | 4.2
9.9
19
12
14 | e2.3
e2.4
2.2
2.3
2.3 | 17
e14
e11
e9.0
e8.0 | | 26
27
28
29
30
31 | e9.7
7.1
5.5
4.6
4.6
4.7 | 9.3
7.6
6.5
5.8 | 3.4
3.4
3.4
4.0
4.8 | 5.1
9.4
12
7.9
5.8
e7.3 | 6.4
52
22
 | e3.2
3.3
3.4
3.5
3.4
3.3 | 4.8
7.5
10
8.5
7.1 | 9.9
11
14
18
22
26 | 7.7
8.0
8.4
7.8
6.9 | 12
9.2
6.6
5.3
4.6
4.2 | 2.6
20
9.2
6.8
6.2
7.6 | e7.0
e6.4
e5.5
e6.6
e11 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 494.3
15.9
51
4.6
980
3.86
4.45 | 349.2
11.6
42
4.5
693
2.82
3.15 | 322.8
10.4
119
3.4
640
2.52
2.91 | 273.3
8.82
35
4.5
542
2.13
2.46 | 198.1
7.08
52
3.1
393
1.71
1.78 | 246.7
7.96
34
3.2
489
1.93
2.22 | 128.2
4.27
10
3.0
254
1.03
1.15 | 347.6
11.2
26
5.5
689
2.71
3.13 | 396.1
13.2
26
6.9
786
3.20
3.57 | 269.4
8.69
19
4.2
534
2.10
2.43 | 122.5
3.95
20
2.2
243
.96
1.10 | 441.7
14.7
43
5.5
876
3.56
3.98 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER Y | EARS 1999 | - 2001, | BY WATER | YEAR (WY): | # | | | MEAN
MAX
(WY)
MIN
(WY) | 18.3
20.6
2000
15.9
2001 | 12.1
19.6
2000
4.99
1999 | 20.7
43.2
2000
8.37
1999 | 8.91
12.4
1999
5.57
2000 | 4.05
7.07
2001
2.00
1999 | 7.04
7.96
2001
5.70
2000 | 10.8
19.2
1999
4.27
2001 | 14.0
18.1
1999
11.2
2001 | 14.0
14.9
1999
13.2
2001 | 10.6
15.9
2000
7.29
1999 | 8.54
13.4
2000
3.95
2001 | 16.8
22.5
2000
13.2
1999 | See Period of Record Estimated # 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1999 - 2001 # | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 4270.4 | 3589.9 | | | ANNUAL MEAN | 11.7 | 9.84 | 12.7 | | HIGHEST ANNUAL MEAN | | | 15.5 2000 | | LOWEST ANNUAL MEAN | | | 9.84 2001 | | HIGHEST DAILY MEAN | 150 Sep 16 | 119 Dec 5 | 364 Dec 27 1999 | | LOWEST DAILY MEAN | 1.8 Mar 12 | 2.2 Aug 23 | al.5 Mar 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | 2.0 Mar 8 | 2.4 Aug 19 | 1.6 Mar 3 1999 | | MAXIMUM PEAK FLOW | | 242 Dec 5 | 616 Dec 28 1999 | | MAXIMUM PEAK STAGE | | 9.51 Dec 5 | 10.80 Dec 28 1999 | | INSTANTANEOUS LOW FLOW | | b1.9 Aug 17 | C | | ANNUAL RUNOFF (AC-FT) | 8470 | 7120 | 9180 | | ANNUAL RUNOFF (CFSM) | 2.83 | 2.38 | 3.07 | | ANNUAL RUNOFF (INCHES) | 38.46 | 32.34 | 41.68 | | 10 PERCENT EXCEEDS | 21 | 19 | 22 | | 50 PERCENT EXCEEDS | 8.1 | 7.4 | 7.8 | | 90 PERCENT EXCEEDS | 3.1 | 3.2 | 3.0 | | | | | | See Period of Record Mar. 7 and 9, 1999 Aug. 17-18; lowest recorded but may have been lower due to burried orifice Not determined, see lowest daily mean # 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 2000 to current year. | DATE JUN 12 12 12 12 | TIM
133
133
134
134 | L T C SE (F) E (F) | AMPLE OCA- TON, ROSS (CTION) F FM L (ANK) 0009) 3.00 7.00 10.0 13.0 15.0 | SPECIFIC
CONDUC-
TANCE
(US/CM)
(00095)
44
41
44
44
43 | PH WATE WHOLE FIELD (STAN- DARD UNITS) (00400 7.3 7.4 7.4 7.3 7.4 | TEMPE
TUF
WAT
(DEG | RE RIC
ER SU:
C) O:
10) (C | ROMET -
C PRES -
RE (MM
F HG)
00025)
763
763
763
763
763 | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
11.5
11.5
11.5 | OXYGEN
DIS-
SOLVED
(PERCEN
SATURA-
TION)
(00301 | т
- | | | |----------------------|---|---|---|--|---|--|--|---|--|---|--|--|--| | | | | | | | | | | | | | | | | DATE
APR | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) |
PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM
COBALT
UNITS)
(00080) | TUR-
BIDITY
(NTU)
(00076) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | | 09
JUN | 1340 | 9 | 9 | 6.00 | 6.25 | 3.2 | 70 | | 7.1 | 2.5 | 50 | .6 | 762 | | 12
AUG | 1320 | 9 | 9 | 21.0 | 6.79 | 11 | 20 | 43 | 7.3 | 6.0 | 8 | | 763 | | 21 | 1100 | 9 | 9 | 6.00 | 6.22 | 2.5 | 10 | 60 | 7.3 | 10.5 | 12 | | 744 | | DATE
APR | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CAL-
CIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFL-
TRD FET
FIELD
MG/L AS
CACO3
(00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | BRO-
MIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | | 09
JUN | 12.9 | | 21 | 6.35 | 1.23 | 2.2 | 18 | 22 | 18 | 1.8 | 1.9 | <.2 | <.01 | | 12
AUG | 11.5 | 92 | 20 | 6.46 | .972 | 1.2 | 20 | 24 | 20 | 2.0 | 1.4 | M | <.01 | | 21 | 9.6 | 88 | 26 | 8.00 | 1.34 | 1.8 | 27 | 31 | 25 | 2.6 | 1.2 | .1 | <.01 | | DATE
APR | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM,
DIS-SOLVED
(UG/L
AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | 09 | 6.0 | 50 | <.006 | E.037 | <.041 | .14 | <.060 | <.018 | 5.9 | <1.00 | <8.00 | <10.0 | <13.0 | | JUN
12 | 4.2 | 29 | <.006 | <.050 | E.023 | E.06 | <.060 | <.020 | 4.9 | <1.00 | <8.00 | <10.0 | <13.0 | | AUG
21 | 5.6 | 41 | E.003 | .080 | .116 | .23 | <.060 | <.020 | 6.4 | <1.00 | <8.00 | <10.0 | <13.0 | # SOUTHEAST ALASKA # 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued | | | | | LITH- | MANGA- | MOLYB- | | | STRON- | VANA- | | |------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | COPPER, | IRON, | LEAD, | IUM, | NESE, | DENIUM, | NICKEL, | SILVER, | TIUM, | DIUM, | ZINC, | | | DIS- | | SOLVED | | (UG/L AS | | CU) | FE) | PB) | LI) | MN) | MO) | NI) | AG) | SR) | V) | ZN) | | DATE | (01040) | (01046) | (01049) | (01130) | (01056) | (01060) | (01065) | (01075) | (01080) | (01085) | (01090) | | APR | | | | | | | | | | | | | 09 | <4.7 | 310 | < .08 | 3.9 | 13.9 | <45.0 | <53.0 | <4.6 | 38.3 | <8.0 | <20 | | JUN | | | | | | | | | | | | | 12 | E3.3 | 80 | E.06 | <4.0 | 6.2 | <50.0 | <50.0 | E3.3 | 36.0 | <8.0 | E11 | | AUG | | | | | | | | | | | | | 21 | <5.0 | 190 | E.05 | <4.0 | 18.6 | <50.0 | <50.0 | <5.0 | 46.5 | <8.0 | <20 | ### 15129000 ALSEK RIVER NEAR YAKUTAT (International gaging station) LOCATION.--Lat $59^{\circ}23'42$ ", long $138^{\circ}04'55$ ", in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 29 S., R. 44 E. (Yakutat B-1 quad), Hydrologic Unit 19010401, in Glacier Bay National Park, on right bank across from terminus of Walker Glacier, 33 mi upstream from Dry Bay, and 55 mi southeast of Yakutat. DRAINAGE AREA. -- 10,820 mi². PERIOD OF RECORD. -- July 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISC | HARGE, CUB | IC FEET | PER SECOND
DAI | , WATER
LY MEAN | | BER 2000 | TO SEPTE | MBER 2001 | | | |--|---|---|---|---|--|---|--|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 51000
43800
39300
35700
36500 | 18100
17100
16900
16100
15000 | 10100
9840
9150
9480
11500 | 11100
9740
11800
13700
10800 | 7710
6960
6640
6380
5980 | 6800
6250
5890
5600
5390 | 4000
3940
3980
4080
4000 | 10700
10800
11200
11600
11400 | 33000
35800
41600
44300
45600 | 87300
91100
95900
101000
98600 | 80500
82400
89100
90100
81400 | 61400
57400
50900
46000
50000 | | 6
7
8
9
10 | 54900
57300
56200
49400
44700 | 14200
13800
13300
12500
12500 | 13000
11700
10600
9750
9670 | 10700
12300
12000
10200
8950 | 5420
e5300
e5200
e5100
e5000 | 5490
6190
5770
5890
6460 | 4060
4080
4130
4090
4120 | 10900
11200
11700
12200
12300 | 46200
48900
50400
52500
59100 | 93600
86800
79900
76300
72400 | 77500
79000
80400
77800
75900 | 53500
56000
56200
45400
38800 | | 11
12
13
14
15 | 43200
46000
48400
42900
40700 | 14100
15400
14500
14100
14300 | 9670
8630
8130
7600
7040 | 8120
8070
8530
8600
10100 | 4960
5140
e4400
e4300
e4200 | 7840
8960
7120
6500
6100 | 4250
4430
4490
4480
4550 | 12700
13300
14400
15400
16200 | 65700
69400
70700
70800
70900 | 70500
70100
68200
68200
72000 | 75100
72600
76200
82300
89900 | 34400
32300
58500
74200
63500 | | 16
17
18
19
20 | 36000
31400
27400
25400
24000 | 13800
13800
13200
12800
12600 | e6750
e6500
8060
8460
7470 | 9680
9120
10000
9790
8910 | e4200
e4200
e4200
e4100
e4600 | 5870
5600
5270
4610
4360 | 4800
5070
5430
6140
6640 | 16900
17900
18000
18200
18500 | 72200
73900
77400
81800
87100 | 75000
78000
85000
89400
95400 | 87800
84300
81100
75500
71900 | 57200
56200
57300
52400
47700 | | 21
22
23
24
25 | 23000
22900
24300
23500
22300 | 15300
16900
16200
15000
14100 | 7100
e6500
e6200
e6000
e6500 | 8290
7930
7920
7350
6990 | 4940
5120
5020
4870
4850 | 4410
4310
4050
4110
4340 | 6970
7280
7530
8180
8120 | 18400
18500
18600
18800
19300 | 95000
95300
91000
95000
93100 | 106000
115000
116000
110000
104000 | 74100
75800
72000
68600
66300 | 42900
41600
40100
38300
36800 | | 26
27
28
29
30
31 | 21300
20300
19300
18000
17400
18200 | 13300
12600
11900
10500
10000 | e7200
e7500
e8000
e9000
e12000
e11000 | 6940
7740
7270
6920
6460
6640 | 5260
9750
8350
 | 4660
4540
4380
4230
4170
4200 | 8380
9330
9720
9920
10200 | 19900
20700
22900
26900
29600
30700 | 87000
85400
90400
90400
86100 | 100000
98900
97100
94400
91100
86700 | 62700
60900
58800
60500
63600
65900 | 34000
31000
29100
27500
26400 | | MEAN
MAX
MIN | 1064700
34350
57300
17400
2112000
3.17
3.66 | 423900
14130
18100
10000
840800
1.31
1.46 | 270100
8713
13000
6000
535700
.81
.93 | 282660
9118
13700
6460
560700
.84
.97 | 152150
5434
9750
4100
301800
.50
.52 | 169360
5463
8960
4050
335900
.50 | 176390
5880
10200
3940
349900
.54
.61 | 519800
16770
30700
10700
1031000
1.55
1.79 | 2106000
70200
95300
33000
4177000
6.49
7.24 | 2773900
89480
116000
68200
5502000
8.27
9.54 | 2340000
75480
90100
58800
4641000
6.98
8.05 | 1397000
46570
74200
26400
2771000
4.30
4.80 | | | | STATIST | ICS OF MON | NTHLY MEA | N DATA FO | R WATER | YEARS 199 | 1 - 2001, | BY WATER | YEAR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) |
24210
40300
1995
12040
1997 | 9084
14130
2001
5828
1997 | 6731
12470
2000
3229
1997 | 5184
9118
2001
3045
1995 | 4321
6625
1993
2707
1995 | 4224
6619
1992
3033
1995 | 6615
10870
1992
5099
1993 | 25950
40100
1993
16770
2001 | 68190
83970
1993
53490
1996 | 86480
98590
1993
73510
1996 | 75860
99370
1994
59750
1996 | 50570
76330
1995
29040
1992 | | SUMMAI | RY STATIS | rics | FOR 2000 | CALENDAR | YEAR | FOR 2 | 2001 WATER | YEAR | WATER | YEARS 199 | 1 - 2001 | # | | ANNUAL TOTAL 11859500 ANNUAL MEAN 32400 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 124000 Aug 6 LOWEST DAILY MEAN 3100 Mar 14 ANNUAL SEVEN-DAY MINIMUM 3240 Mar 11 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 23520000 ANNUAL RUNOFF (CFSM) 2.99 ANNUAL RUNOFF (INCHES) 40.77 10 PERCENT EXCEEDS 82600 | | | | | | 358
2316000 | 00 Jul
10 Apr
20 Apr
00 Jul
35.00 Jul
30 Mar
00 2.96 | 23
23 | 17500
8
2220000 | 0
0
0
0
0
0
M
0
0
M
0
A
9.30
A | 199
199
ug 14 199
ar 13 199
ar 8 199
ug 14 199
ug 14 199 | 6
7
9
9 | | 50 PE | RCENT EXCI
RCENT EXCI
RCENT EXCI | EEDS | 82600
15700
4380 |) | | 8460
1440
474 | 00 | | 8350
1320
350 | 0 | | | See Period of Record; partial years used in monthly summary statistics Estimated ### SOUTHEAST ALASKA ### 15129500 SITUK RIVER NEAR YAKUTAT LOCATION.--Lat 59°35'00", long 139°29'31", in SE¹/₄ SW¹/₄ sec. 9, T. 27 S., R. 35 E. (Yakutat C-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, on left bank 20 ft downstream from Alsek Road bridge, 3.5 mi downstream from Situk Lake, 8.8 mi northeast of Yakutat, and 10 mi upstream from mouth. DRAINAGE AREA.--36 mi², approximately. #### WATER-DISCHARGE RECORDS Date Jan 15 Time 0130 Discharge Gage Height (ft) 68.50 (ft^3/s) 1110 PERIOD OF RECORD. -- May 1988 to current year. Time 1100 Oct 6 GAGE.--Water-stage recorder. Datum of gage is sea level, by U.S. Forest Service. Discharge Gage Height REMARKS.--Records good, except for estimated daily discharges, which are poor. (ft^3/s) 1300 EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum(*): (ft) 69.03 | | | | | | | | | | | - | | | |--------|--------|--------|-----------|---------------|--------|--------------------|------------------------|------------|-------------|--------|-------|-------| | | Oct 12 | 1645 | 18 | 390 | 70.11 | | Jan 18 | 0515 | 103 | 0 | 68.32 | | | | Oct 15 | 0130 | *2 | 040 | *70.37 | | Feb 27 | 1000 | 138 | 0 | 69.10 | | | | Nov 22 | 1600 | 11 | L70 | 68.64 | DISCHA | RGE, CUBI | IC FEET | | , WATER
LY MEAN | YEAR OCTOBER
VALUES | 2000 1 | TO SEPTEMBI | R 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 641 | 687 | 383 | 494 | 674 | 669 | 162 | 228 | 195 | 165 | 172 | 178 | | 2 | 488 | 595 | 367 | 468 | 550 | 515 | 154 | 280 | 192 | 161 | 164 | 164 | | 3 | 389 | 819 | 333 | 666 | 474 | 411 | e150 | 372 | 193 | 157 | 157 | 151 | | 4 | 324 | 654 | 364 | 717 | e425 | 343 | 205 | 397 | 190 | 164 | 151 | 142 | | 4
5 | 556 | 540 | 607 | 589 | e370 | 303 | 211 | 380 | 185 | 183 | 144 | 296 | | 6 | 1120 | 461 | 596 | 624 | 336 | 335 | 200 | 374 | 183 | 267 | 137 | 348 | | 7 | 1020 | 450 | 516 | 859 | 319 | 447 | 187 | 346 | 184 | 296 | 131 | 627 | | 8 | 942 | 403 | 444 | 901 | 292 | 421 | 183 | 337 | 181 | 305 | 125 | 695 | | 9 | 985 | 358 | 388 | 781 | 270 | 600 | 178 | 306 | 177 | 267 | 120 | 586 | | 10 | 754 | 345 | 350 | 629 | 250 | 794 | 169 | 290 | 177 | 245 | 114 | 468 | | 11 | 1070 | 650 | 337 | 504 | 236 | 858 | 190 | 264 | 177 | 228 | 110 | 385 | | 12 | 1430 | 845 | 308 | 436 | 248 | 837 | 230 | 245 | 173 | 214 | 106 | 424 | | 13 | 1400 | 648 | 282 | 483 | 349 | 693 | 237 | 227 | 169 | 204 | 103 | 772 | | 14 | 1340 | 649 | 262 | 647 | 309 | 555 | 250 | 215 | 163 | 214 | 101 | 633 | | 15 | 1670 | 678 | 247 | 948 | 277 | 483 | 241 | 207 | 162 | 198 | 99 | 519 | | 13 | 1070 | 070 | 24/ | 940 | 211 | 403 | 241 | 207 | 102 | 130 | 99 | 319 | | 16 | 1470 | 584 | 234 | 753 | 255 | 453 | 225 | 201 | 160 | 184 | 96 | 444 | | 17 | 1230 | 640 | 228 | 691 | 237 | 386 | 210 | 197 | 162 | 173 | 94 | 409 | | 18 | 919 | 543 | 310 | 880 | 222 | 331 | 203 | 191 | 162 | 165 | 94 | 369 | | 19 | 714 | 471 | 293 | 777 | 210 | 285 | 200 | 181 | 161 | 158 | 94 | 326 | | 20 | 583 | 431 | 263 | 662 | 200 | 251 | 196 | 174 | 162 | 153 | 94 | 293 | | 0.1 | F10 | 700 | 0.4.2 | F01 | 100 | 007 | 100 | 010 | 1.65 | 1.50 | 0.0 | 0.66 | | 21 | 510 | 722 | 243 | 581 | 192 | 227 | 190 | 210
220 | 167 | 158 | 92 | 266 | | 22 | 658 | 952 | 226 | 551 | 184 | 210 | 182 | 220 | 170 | 175 | 92 | 296 | | 23 | 857 | 819 | 214 | 505 | 176 | e193 | 185 | 270 | 169 | 239 | 93 | 334 | | 24 | 718 | 704 | 204 | 432 | 170 | 183 | 186 | 342 | 166 | 271 | 93 | 546 | | 25 | 607 | 627 | 234 | 380 | 170 | 180 | 221 | 320 | 164 | 270 | 93 | 683 | | 26 | 527 | 619 | 352 | 372 | 381 | 205 | 221 | 274 | 161 | 255 | 104 | 561 | | 27 | 461 | 622 | 325 | 665 | 1170 | 209 | 262 | 245 | 158 | 236 | 104 | 485 | | 28 | 404 | 528 | 309 | 615 | 866 | 197 | 279 | 225 | 159 | 217 | 111 | 427 | | 29 | 361 | 449 | 335 | 515 | | 183 | 254 | 212 | 164 | 201 | 175 | 367 | | 30 | 409 | 393 | 493 | 439 | | 174 | 231 | 206 | 168 | 189 | 197 | 321 | | 31 | 744 | | 566 | 655 | | 171 | | 200 | | 179 | 198 | | | TOTAL | 25301 | 17886 | 10613 | 19219 | 9812 | 12102 | 6192 | 8136 | 5154 | 6491 | 3758 | 12515 | | MEAN | 816 | 596 | 342 | 620 | 350 | 390 | 206 | 262 | 172 | 209 | 121 | 417 | | MAX | 1670 | 952 | 607 | 948 | 1170 | 858 | 279 | 397 | 195 | 305 | 198 | 772 | | | 324 | 345 | 204 | 372 | 170 | 171 | 150 | 174 | 158 | 153 | 92 | 142 | | MIN | 50180 | 35480 | 21050 | 3/2 | 19460 | 24000 | 12280 | 16140 | 10220 | | | 24820 | | AC-FT | | | 9.51 | 38120
17.2 | 9.73 | 24000 | 1228U . | 10140 | 4.77 | 12870 | 7450 | | | CFSM | 22.7 | 16.6 | | | | 10.8 | 5.73 | 7.29 | | 5.82 | 3.37 | 11.6 | | IN. | 26.14 | 18.48 | 10.97 | 19.86 | 10.14 | 12.51 | 6.40 | 8.41 | 5.33 | 6.71 | 3.88 | 12.93 | | | | | | | | | | | | | | | e Estimated # 15129500 SITUK RIVER NEAR YAKUTAT--Continued | | | STATISTI | CS OF MON | THLY MEA | N DATA FOR | WATER YEAR | RS 1989 | 9 - 2001, | BY WATER | YEAR (WY)# | | | |-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | MEAN
MAX | 553
878 | 346
598 | 401
739 | 278
620 | 245
471 | 247
516 | 250
370 | 282
418 | 232
345 | 192
292 | 255
532 | 520
838 | | (WY) | 2000 | 1993 | 2000 | 2001 | 1997 | 1992 | 1998 | 1991 | 1991 | 1991 | 1991 | 1991 | | MIN | 283 | 173 | 142 | 131 | 81.2 | 54.2 | 143 | 160 | 127 | 77.7 | 105 | 339 | | (WY) | 1998 | 1999 | 1991 | 1996 | 1999 | 1989 | 1989 | 1996 | 1993 | 1993 | 1994 | 1997 | | (111) | 1000 | 1000 | 1001 | 1000 | 1000 | 1707 | 1000 | 1000 | 1000 | 1000 | 1001 | 100, | | SUMMARY | STATIST | CICS | FOR 2000 | CALENDAR | YEAR | FOR 2001 | WATER | YEAR | WATER | YEARS 1989 | - 2001# | | | ANNUAL | TOTAL | | 125192 | | | 137179 | | | | | | | | ANNUAL | MEAN | | 342 | | | 376 | | | 317 | 7 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | 382 | 2 | 1992 | | | LOWEST | ANNUAL M | IEAN | | | | | | | 230 |) | 1996 | | | HIGHEST | DAILY M | IEAN | 2150 | Sep | 28 | 1670 | Oct | 15 | 2850 |) Dec | 27 1999 | | | LOWEST | DAILY ME | AN | 100 | Mar | 14 | a92 | Aug | 21 | 47 | 7 Mar | 5 1989 | | | ANNUAL | SEVEN-DA | MUMINIM YA | 106 | Mar | 9 | 93 | Aug | 19 | 48 | 8 Mar | 3 1989 | | | MAXIMUM | PEAK FI | JOW | | | | 2040 | Oct | 15 | 3840 | | 18 1999 | | | MAXIMUM | PEAK ST | AGE | | | | 70.3 | 7 Oct | 15 | 72 | | 18 1999 | | | INSTANT | 'ANEOUS I | LOW FLOW | | | | b91 | Aug | 17 | | | 5 1989 | | | ANNUAL | RUNOFF (| AC-FT) | 248300 | | | 272100 | | | 229800 | | | | | ANNUAL | RUNOFF (| CFSM) | 9 | .50 | | 10.4 | | | 8 | 3.81 | | | | ANNUAL | RUNOFF (| INCHES) | | | | 141.7 | 5 | | | 9.70 | | | | 10 PERC | ENT EXCE | EEDS | 649 | | | 708 | | | 603 | | | | | | ENT EXCE | | 234 | | | 280 | | | 237 | | | | | 90 PERC | ENT EXCE | EEDS | 150 | | | 160 | | | 118 | 3 | | | [#] See Period of Record a Aug. 21 and 22 b Aug. 17-22 and Aug. 24-26 c Mar. 5-7, 1989 ### 15129500 SITUK RIVER NEAR YAKUTAT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1971 to 1973 and 1988 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1970 to September 1973 (fragmentary) and May 1988 to current year. INSTRUMENTATION.--Water-temperature recorder October 1970 to September 1973, at a site 500 ft downstream. Electronic water-temperature recorder since May 1988, set for 2-hour recording interval. Recording interval changed to 15minutes on March 6, 1996. REMARKS.--Records represent water temperature at sensor within 0.5°C. April 25 to September 30 record considered fair, due to 4 hour recording interval. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 20.0° C, July 4, 1997; minimum, 0.0° C, on many days during winters. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum, 17.5°C , June 27; minimum, 0.0°C on many days during winter. TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--
--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.5
8.5
8.0
8.0 | 8.0
7.5
7.0
6.5
7.5 | 8.0
8.0
7.5
7.0
8.0 | 4.5
5.0
5.0
4.5
4.5 | 4.0
4.0
4.5
4.0
4.0 | 4.5
4.5
5.0
4.0 | 3.5
3.5
3.5
3.5
4.0 | 3.5
3.0
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
4.0 | 3.0
3.0
3.5
3.0 | 2.5
2.5
3.0
2.5
2.5 | 2.5
3.0
3.0
3.0
2.5 | | 6
7
8
9
10 | 9.0
8.5
8.0
8.0
7.5 | 8.5
8.0
7.5
7.0 | 8.5
8.5
7.5
7.5 | 4.5
4.5
4.5
5.0 | 3.5
4.0
3.5
4.0
4.0 | 4.0
4.5
4.0
4.5
4.5 | 4.0
3.5
3.0
3.0
3.5 | 3.0
3.0
2.5
2.5
3.0 | 3.5
3.5
2.5
2.5
3.0 | 3.0
3.0
3.0
2.5
2.0 | 2.5
3.0
2.0
2.0
1.5 | 3.0
3.0
2.5
2.0 | | 11
12
13
14
15 | 8.0
7.5
7.5
7.0
7.0 | 7.0
7.5
7.0
6.5 | 7.5
7.5
7.5
7.0
7.0 | 5.0
5.0
4.5
5.0
4.5 | 4.5
4.5
4.5
4.5
3.5 | 4.5
4.5
4.5
4.5
4.0 | 3.5
3.0
2.0
2.0
2.5 | 3.0
2.0
1.5
1.0
2.0 | 3.5
2.5
2.0
1.5
2.5 | 2.0
2.0
2.5
2.5
2.5 | 1.5
1.5
1.5
1.5 | 1.5
1.5
2.0
2.0 | | 16
17
18
19
20 | 7.0
7.0
6.5
6.5 | 6.5
6.0
6.0
5.5 | 7.0
6.5
6.0
6.0 | 4.0
4.5
4.0
4.5
4.5 | 3.5
4.0
3.5
3.5
4.0 | 4.0
4.0
4.0
4.0 | 2.5
3.0
3.0
2.5
3.0 | 2.0
2.0
2.5
2.0
2.0 | 2.5
2.5
2.5
2.5
2.0 | 2.5
3.0
3.0
3.0
2.5 | 2.0
2.5
3.0
2.5
2.0 | 2.5
3.0
3.0
3.0
2.5 | | 21
22
23
24
25 | 6.0
6.0
6.5
6.0 | 5.5
5.5
5.6
6.0 | 5.5
6.0
6.0
6.0 | 5.0
4.5
4.0
4.0 | 4.5
4.0
3.5
4.0
4.0 | 4.5
4.5
4.0
4.0 | 3.0
2.0
3.0
3.0
3.5 | 2.0
1.5
1.5
2.5
2.5 | 2.5
1.5
2.5
3.0
3.0 | 2.5
3.0
3.0
2.5
3.0 | 2.5
2.5
2.5
2.0
2.5 | 2.5
2.5
3.0
2.0
2.5 | | 26
27
28
29
30
31 | 6.5
5.5
4.5
5.0
5.0 | 5.5
4.5
4.0
3.5
4.5 | 6.0
5.0
4.5
4.0
4.5 | 4.0
4.0
3.5
3.0
3.5 | 4.0
3.5
3.0
2.5
2.5 | 4.0
3.5
3.5
3.0
3.0 | 2.5
2.5
3.0
3.0
3.0 | 2.0
2.0
2.0
2.5
2.5
2.5 | 2.5
2.5
2.5
3.0
2.5
2.5 | 3.0
3.0
2.5
2.5
2.5
2.5 | 3.0
2.5
2.0
2.0
2.0
2.0 | 3.0
2.5
2.5
2.5
2.0
2.0 | | MONTH | 9.0 | 3.5 | 6.6 | 5.0 | 2.5 | 4.1 | 4.0 | 1.0 | 2.7 | 3.5 | 1.5 | 2.5 | # 15129500 SITUK RIVER NEAR YAKUTAT--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|--|--------------------------|--|--|---------------------------------|--|--|---------------------------------|--|--|----------| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.5
2.5
2.5
2.0 | 2.0
2.0
1.5
1.5 | 2.5
2.0
2.0
2.0 | 1.5
2.0
2.5
2.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.5
1.5
1.5 | 3.5
4.5
3.0
2.5
4.0 | .0 | 1.5
2.5
1.0
1.0
2.0 | 5.5
4.0
4.5
4.0
3.5 | 2.5
2.5 |

 | | 6
7
8
9
10 | 2.0
2.0
1.5
1.5 | .5
.5
.5
.0 | 1.0
1.5
1.0
1.0 | 2.0
2.0
2.5
1.5 | .5
1.0
1.0
.0 | 1.5
1.5
1.5
.5 | 4.0
4.5
2.5
5.0
4.5 | 1.5
.5 | 2.0
3.0
1.5
2.5
3.0 | 6.5
4.5
7.5
5.5
8.0 | 4.0
3.0
4.5 |

 | | 11
12
13
14
15 | 1.5
2.0
1.5
1.0 | .0
1.5
.5
.0 | 1.0
1.5
1.0
.5 | 1.5
1.5
2.0
2.5
2.5 | 1.0
1.0
1.0
1.0 | 1.5
1.0
1.5
1.5 | 3.5
3.5
4.0
4.0
5.5 | 1.0
2.0 | 2.5
2.5
2.5
3.0
3.5 | 6.5
9.5
8.0
9.0
7.5 | 4.0
5.0
5.0 |

 | | 16
17
18
19
20 | 1.0
1.0
1.0
2.0 | .0
.0
.0
.0 | .5
.5
.5
1.0 | 2.5
3.0
2.0
1.5 | 1.0
1.0
.0
.0 | 1.5
1.5
1.0
.5 | 5.5
6.0
5.0
6.5 | 1 5 | 3.0
3.5
4.0
4.0 | 9.0
7.5
9.0
9.0
8.0 | 5.5
5.5 |

 | | 21
22
23
24
25 | 2.5
1.5
2.0
1.5 | 1.5
.5
.0
.5 | 2.0
1.0
1.0
1.0 | 2.0
2.0
2.5
3.0
4.0 | .0
.0
.0
1.0
2.0 | .5
1.0
.5
2.0
3.0 | 6.5
5.5

4.5 | 2.0
2.0
3.0

3.0 | 4.0
4.0
 | 7.0
7.5
6.5
6.5 | 5.5
5.5
5.5 |

 | | 26
27
28
29
30
31 | .5
.5
1.5
 | .0
.0
.5
 | .0
.5
1.0
 | 3.0
3.0
3.5
2.5
2.5 | .0
.0
1.0
1.5 | 2.0
1.0
1.5
2.0
2.0 | 6.0
5.0
5.0
5.5
5.5 | |

 | 11.0
8.5
11.0
9.5
11.0 | 6.5
7.0
8.0 | | | MONTH | | .0 | | 4.0 | .0 | 1.3 | | | | 11.5 | 2.5 | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | | | MEAN | MAX
14.0
15.5
14.5
13.5
12.5 | | MEAN | | AUGUST
12.0
11.5 | MEAN | 13.5
12.5
12.5
11.5 | SEPTEMBE
11.0
11.0 | | | 1
2
3
4 | 10.5
9.5
9.0
11.0 | JUNE
8.5
8.5
8.0
7.5 |

 | 14.0
15.5
14.5
13.5 | JULY
12.0
12.0
12.5
12.5 | | 15.0
16.5
15.0
14.0 | AUGUST 12.0 11.5 13.5 12.5 12.5 12.5 |

 | 13.5
12.5
12.5
11.5 | SEPTEMBE
11.0
11.0
9.5
9.5
10.0 | ER | | 1
2
3
4
5
6
7
8
9
10 | 10.5
9.5
9.0
11.0
10.0
11.5
11.5
14.0
15.0 | JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 | | 14.0
15.5
14.5
13.5
12.5
11.5
12.0
13.0 | JULY 12.0 12.0 12.5 11.5 11.0 11.0 10.5 10.5 11.0 | | 15.0
16.5
15.0
14.0
14.5
15.5
14.0
14.0 | AUGUST 12.0 11.5 13.5 12.5 12.5 12.5 11.5 12.0 12.5 11.0 | ==== | 13.5
12.5
12.5
11.5
11.5
12.0
11.0
12.0
12.0
12.5 | 11.0
11.0
9.5
9.5
10.0
10.5
10.0
10.5
10.0
10.0
9.5 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.5
9.5
9.0
11.0
10.0
11.5
11.5
11.5
11.0
12.5 | JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 | | 14.0
15.5
14.5
13.5
12.5
11.5
12.0
13.0
14.0
12.5
12.5
12.5 | JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.0 11.5 11.0 11.0 1 | | 15.0
16.5
15.0
14.0
14.5
15.5
14.0
15.0
14.0
15.0
14.5 | AUGUST 12.0 11.5 13.5 12.5 12.5 12.5 11.5 12.0 12.5 11.0 12.0 11.0 12.0 11.0 | | 13.5
12.5
11.5
11.5
11.0
11.0
12.0
12.0
12.5
11.5
11.5 | 11.0
11.0
9.5
9.5
10.0
10.5
10.0
10.5
10.0
10.0
9.5
9.5 | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.5
9.5
9.0
11.0
10.0
11.5
11.5
11.5
11.0
12.5
11.0
12.5
11.0
12.5
14.5
13.0
12.5 | JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 10.0 10.0 10.5 11.0 10.5 10.5 | | 14.0
15.5
14.5
13.5
12.5
11.5
12.0
13.0
14.0
12.5
12.5
13.5
13.5
13.5 | JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.0 11.5 11.0 11.5 11.0 11.5 11.0 11.5 11.5 | | 15.0
16.5
15.0
14.0
14.5
15.5
14.0
15.0
14.0
15.5
16.0
14.5
16.5
14.5 | AUGUST 12.0 11.5 13.5 12.5 12.5 11.5 12.0 12.0 12.0 11.0 11.0 12.0 11.0 12.0 11.0 12.0 12 | | 13.5
12.5
12.5
11.5
11.5
12.0
11.0
12.0
12.5
11.5
11.5
11.5
11.5
11.5 | SEPTEMBE 11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.5 11.0 11.0 | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.5
9.5
9.0
11.0
10.0
11.5
11.5
11.5
11.0
12.5
11.0
12.5
11.0
12.5
13.0
12.5
14.5
13.0
16.0 | JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 10.0 10.5 11.0 10.5 12.0 12.0 12.0 11.0 | | 14.0
15.5
14.5
13.5
12.5
11.5
12.0
13.0
14.0
12.5
12.5
13.5
13.5
13.0
14.0
15.0
17.0 | JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.5 11.0 11.5 11.0 11.5 11.5 | | 15.0
16.5
15.0
14.0
14.5
15.5
14.0
15.0
14.0
14.5
15.5
14.5
14.5
14.5
14.5
14.0
14.5
14.0 | AUGUST 12.0 11.5 13.5 12.5 12.5 11.5 12.0 12.0 11.0 12.0 11.0 12.0 11.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.0 11.5 12.0 11.5 | |
13.5
12.5
12.5
11.5
11.5
11.0
11.0
12.0
12.0
12.5
11.5
11.0
11.5
11.5
11.5
11.5
11.5
11 | SEPTEMBE 11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.0 | CR | ### 15129600 OPHIR CREEK NEAR YAKUTAT LOCATION.--Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^1/_4$ $NW^1/_4$ $NE^1/_4$ sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), Hydrologic Unit 19010401, in Tongass National Forest, on right bank 0.8 mi upstream from Summit Lake and 2 mi south of Yakutat. DRAINAGE AREA.-- 2.5 mi^2 , approximately. PERIOD OF RECORD. -- October 1991 to current year. GAGE.--Water-stage recorder. Datum of gage is 9.05 ft above sea level, determined by levels survey. REMARKS.--Records fair except for estimated daily discharges which are poor. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR | | 2000 TO | SEPTEMBER | 2001 | | | |---|---|--|---|---|--|---|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 38
33
29
26
34 | 38
37
50
43
37 | 34
32
30
34
43 | e37
e36
e44
e47
e42 | e45
e40
38
37
35 | 44
39
36
33
32 | 15
14
e16
17
16 | 16
18
21
21
20 | 7.0
6.3
5.8
5.4
5.0 | 1.6
1.5
1.4
1.5
2.3 | 3.4
3.3
3.2
2.9
2.7 | 3.9
3.4
2.8
2.5
8.5 | | 6
7
8
9
10 | 51
50
60
55 | 34
33
31
28
28 | 40
37
34
32
31 | e43
e53
e55
e52
e44 | 33
32
30
29
27 | 34
40
38
45
57 | 15
13
13
13
12 | 20
21
22
20
18 | 4.4
4.0
3.8
3.6
3.5 | 5.7
6.3
8.4
6.6
5.5 | 2.6
2.4
2.3
2.2
2.1 | 8.1
12
9.8
7.8
6.6 | | 11
12
13
14
15 | 70
70
73
74
79 | 40
52
45
45 | 31
29
28
26
25 | e38
e34
e36
e44
e56 | 26
27
32
29
27 | 57
54
49
43
41 | 14
17
17
19 | 17
16
14
13
12 | 3.2
3.2
3.0
2.7
2.8 | 4.8
4.2
4.2
4.3
3.9 | 2.0
1.9
1.8
1.7 | 5.8
7.5
13
10
8.1 | | 16
17
18
19
20 | 78
77
66
58
51 | 41
43
38
34
33 | 25
24
28
27
25 | e50
e46
e54
e50
e45 | 26
24
23
22
22 | 40
37
33
30
27 | 18
16
16
16
15 | 11
11
10
9.0
8.3 | 2.5
2.5
2.4
2.4
2.3 | 3.7
3.6
3.4
3.3
3.0 | 1.6
1.5
1.5
1.5 | 8.3
10
10
9.4
8.2 | | 21
22
23
24
25 | 47
54
58
52
47 | 40
51
49
45
45 | 23
23
22
21
23 | e41
e40
e38
e34
e31 | 20
19
18
17
17 | 25
23
22
21
20 | 15
14
13
13 | 10
9.7
13
15
14 | 2.2
2.2
2.1
2.0
1.9 | 3.3
3.7
7.3
7.4
6.3 | 1.3
1.2
1.2
1.2 | 7.6
8.0
10
36
47 | | 26
27
28
29
30
31 | 44
40
37
34
35
40 | 46
47
43
39
36 | 25
24
23
25
e31
e38 | e30
e44
e43
e38
e35
e44 | 33
60
50
 | 20
20
18
17
16
16 | 18
19
19
19
17 | 12
11
10
9.1
8.2
7.7 | 1.9
1.8
1.7
1.6
1.7 | 5.6
5.1
4.2
4.0
3.7
3.6 | 1.5
1.4
1.7
4.8
5.0
4.9 | 38
31
27
23
20 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1611
52.0
79
26
3200
20.8
23.97 | 1215
40.5
52
28
2410
16.2
18.08 | 893
28.8
43
21
1770
11.5 | 1324
42.7
56
30
2630
17.1
19.70 | 838
29.9
60
17
1660
12.0
12.47 | 1027
33.1
57
16
2040
13.3
15.28 | 474
15.8
19
12
940
6.32
7.05 | 438.0
14.1
22
7.7
869
5.65
6.52 | 94.9
3.16
7.0
1.6
188
1.27
1.41 | 133.4
4.30
8.4
1.4
265
1.72
1.98 | 69.3
2.24
5.0
1.2
137
.89
1.03 | 403.3
13.4
47
2.5
800
5.38
6.00 | | | | STATISTIC | CS OF MONT | HLY MEAN | DATA FOR | WATER YEAR | RS 1992 - | 2001, B | Y WATER YE. | AR (WY) | | | | MEAN
MAX
(WY)
MIN
(WY) | 32.9
60.7
2000
20.5
1998 | 25.8
43.8
2000
12.6
1996 | 24.3
49.1
2000
8.96
1996 | 19.0
42.7
2001
5.13
1993 | 16.2
35.9
1997
3.31
1999 | 17.0
38.3
1992
4.13
1999 | 16.5
28.3
1998
7.85
1993 | 14.5
34.4
1999
6.17
1996 | 7.11
19.7
1999
2.01
1993 | 4.55
9.67
1998
.66
1993 | 8.35
19.4
1998
1.32
1993 | 19.1
30.8
1998
5.90
1993 | | SUMMAF | RY STATIST | rics | FOR 2000 | CALENDAR | YEAR | FOR 20 | 01 WATER | YEAR | WATER Y | EARS 1992 | 2 - 2001 | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL | | EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) CFSM) INCHES) | 7540.3
20.6
79
1.9
2.1
14960
8.24
112.20 | | | 8520.9
23.3
79
a1.2
1.3
84
11.93
c1.0
16900
9.34
126.79 | Aug 21
Oct 15
Oct 15 | | 17.1
23.3
10.9
e118
.27
.39
b159
b12.55
d.21
12400
6.85
93.06 | Dec 2
Jul 3
Jul 2
Oct 1
Oct 1
Jul 2 | 2001
1993
27 1999
1993
28 1993
18 1999
18 1999
28 1993 | | | | CENT EXCER | | 15
3.2 | | | 20
2.3 | | | 13
3.4 | | | | Aug. 22 to 25 May have been exceeded during period of gage malfunction from Dec. 25 to 28, 1999 Aug. 22 to 26 Minimum recorded, Jul. 28, Aug. 2, Aug. 7 to Aug. 10, 1993, but may have been less during period water was below intake Jul. 28, Aug. 2, and Aug. 8 to Aug. 10, 1993 Estimated c d ### 15200280 GULKANA RIVER AT SOURDOUGH DRAINAGE AREA.--1,770 mi². PERIOD OF RECORD.--October 1972 to September 1978, May to September 1982, October 1988 to September 1993, May 1997 to current year. REVISED RECORDS.--WRD AK-75-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,845.96 ft above sea level (levels of Alyeska Engineering). REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHA | RGE, CUE | BIC FEET PE | | | YEAR OCTO | OBER 2000 | TO SEPTEM | IBER 2001 | - | | |---|--|---|---|--------------------------------------|---|--|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2450
2190
1950
1890
1860 | e1000
e1000
e1000
e950
e950 | e700
e700
e700
e700
e700 | e500
e500
e500
e500
e500 | e400
e400
e400
e400
e400 | e320
e320
e320
e320
e320 | e340
e360
e360
e360
e380 | e1100
e1100
e1200
e1200
e1300 | 3460
3350
3260
3050
2850 | 1140
1140
1130
1090
1130 | 2580
2560
2230
2020
1930 | 917
1000
1370
1790
1860 | | 6
7
8
9
10 | 1880
1960
2000
1860
1710 | e900
e900
e900
e900 | e650
e650
e650
e650
e650 | e500
e500
e500
e500
e500 | e380
e380
e380
e380 | e320
e320
e320
e320
e320 | e400
e420
e420
e440
e440 | e1400
e1500
e1600
e1700
e1800 | 2620
2530
2520
2500
2340 | 1410
1830
1920
2120
2140 | 1790
1640
1520
1420
1330 | 2260
2470
2290
2080
1890 | | 11
12
13
14
15 | 1700
1700
1690
1660
1660 | e850
e850
e850
e850
e850 | e600
e600
e600
e600 | e480
e480
e480
e480
e480 | e360
e360
e360
e360
e360 | e320
e320
e300
e300
e300 | e460
e480
e500
e500
e550 | e1900
e1900
1970
2230
2730 | 2220
2130
2080
2100
2050 | 1960
1830
1690
1560
1510 | 1270
1220
1170
1110
1080 | 1740
1620
1570
1550
1520 | | 16
17
18
19
20 | 1540
1430
1370
e1300
e1300 | e800
e800
e800
e800 | e600
e600
e600
e600 | e460
e460
e460
e460 | e340
e340
e340
e340
e340 | e300
e300
e300
e300
e300 | e550
e600
e600
e650
e650 | 3410
3710
3930
4080
4150 | 1960
1850
1740
1670
1650 |
1520
1440
1350
1270
1200 | | 1460
1400
1350
1310
1290 | | 21
22
23
24
25 | e1200
e1200
e1100
e1100
e1100 | e750
e750
e750
e750
e750 | e550
e550
e550
e550
e550 | e440
e440
e440
e440
e440 | e320
e320
e320
e320
e320 | e300
e300
e300
e300
e300 | e700
e700
e750
e750
e800 | 4010
3740
3620
4150
4930 | 1690
1620
1540
1460
1360 | 1220 | 925
947
1010 | 1310
1310
1320
1290
1270 | | 26
27
28
29
30
31 | e1100
e1100
e1100
e1000
e1000
e1000 | e700
e700
e700
e700
e700 | e550
e550
e550
e550
e550
e550 | e420
e420
e400 | | e300
e300
e320
e320
e340
e340 | e850
e850
e900
e950
e1000 | 4780
4280
4000
3960
3800
3570 | 1290
1220
1190
1130
1110 | 1310
1470
1790
2080
2260
2360 | 1010
1010
978
977
962
954 | 1240
1200
1170
1140
1100 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 47100
1519
2450
1000
93420
.86
.99 | 24900
830
1000
700 | 18800
606
700
550
37290
.34
.40 | 14400
465
500 | 9960
356
400
320
19760
.20 | 9660
312
340
300
19160
.18
.20 | 17710
590
1000
340
35130
.33
.37 | 88750
2863
4930
1100
176000
1.62
1.87 | 61540
2051
3460
1110
122100
1.16
1.29 | 47490
1532
2360
1090
94200 | 40861
1318
2580
925
81050
.74
.86 | 45087
1503
2470
917
89430
.85 | | | | | | | | WATER | YEARS 197 | 3 - 2001, | BY WATER | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 997
1877
1991
437
1975 | 552
1020
1989
287
1976 | 407
777
1989
208
1974 | 344
629
1989
200
1974 | 304
478
1989
200
1974 | 299
420
1992
200
1974 | 1344
1993
227 | 1989
875 | 2779
4969
1977
1150
1998 | 1516
2696
1992
637
1976 | 1289
2821
1992
714
1989 | 1413
4253
1990
505
1974 | | SUMMARY | Y STATIST | ics | FOR | 2000 CALEN | DAR YEAR | | FOR 2001 | WATER YEA | R | WATER YE | ARS 1973 | - 2001# | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUN MAXIMUN MAXIMUN | TOTAL MEAN F ANNUAL ANNUAL M F DAILY ME SEVEN-DA M PEAK FL M PEAK ST M PEAK ST | MEAN
IEAN
IEAN
IEAN
IEAN
IEAN
IEAN
IEAN
I | | 4700
a220
220 | Jun 8
Apr 16
Apr 16 | | 426258
1168
4930
b300
300
5090
8. | May 2
Mar 1
Mar 1
May 2
.43 May 2 | 5
3
3
5
5 | 1139
1564
658
12100
c200
200
d12700
11.26
f16.03 | Sep
Dec
Dec
Sep
Sep
May | 1992
1998
12 1990
6 1973
6 1973
12 1990
12 1990
7 1976 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | .64
8.67
2600
775
230 | | | 845500
8.
2230
977
320 | . 66
. 96 | | .64
8.74
2850
672
250 | | | See period of record, partial years used in monthly statistics Apr. 16-26 Mar. 13-27 Dec. 6, 1973 to Apr. 12, 1974 From rating curve extended above 4,600 $\rm ft^3/s$ Estimated Backwater from ice a b #### 15215990 NICOLET CREEK NEAR CORDOVA LOCATION.--Lat $60^\circ 31'09''$, long $145^\circ 47'23''$, in $SW^1/_4$ $SE^1/_4$ sec. 32, T. 15 S., R. 3 W. (Cordova C-5 quad), Hydrologic Unit 19020201, on right bank 275 ft upstream from culvert for Whitshed Road, 475 ft upstream from mouth and 2.1 mi southwest of Cordova. DRAINAGE AREA. -- 0.75 mi². PERIOD OF RECORD. -- Annual maximum, water years 1991-99. September 1999 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 40 ft above sea level, from topographic map. REMARKS.--Records good except for discharges greater than 60 ft^3/s , which are fair; and estimated daily discharges, which are poor. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|---|--|---|--------------------------------------|--------------------------------------|--|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.4
2.2
2.1
2.0
60 | 3.2
3.2 | | | e25
e4.0
e3.0
e2.0
e1.0 | e4.5
e3.0
e1.0
e2.5
e3.0 | e1.0
e1.0
e5.5
e10
e4.0 | 7.8
27
31
5.4
8.1 | 5.7
5.5
4.8
4.0
3.3 | .19
.17
.17
5.9 | 1.6
1.1
.95
.93 | 2.7
1.7
2.0
33
14 | | 6
7
8
9
10 | 58
23
9.8
4.5 | 2.2
4.8
2.8
3.9 | e25
e25
e10
e8.0
e28 | e35
e80
e35
e12
e4.5 | e1.0 | - O E | e3.0
e2.5
e3.5
e2.0
e4.0 | 12
8.1
9.6
7.8
9.5 | 3.1
2.8
2.4
1.9
1.6 | 7.6
3.0
3.0
1.7 | .68
.60
.56
.53 | 2.8
5.2
3.5
3.1
1.7 | | 11
12
13
14
15 | 17
24
35
54
41 | 42
3.0
14
35
3.4 | e22
e9.0
e9.0
e7.0
e6.0 | e4.0
e10
e25
e80
e50 | e1.0 | e50 | e20
e10 | 7.0
6.7
7.9
9.6 | 1.3
1.2
1.4
1.2 | 1.4
1.3
1.9
3.7
1.5 | .40
.37
.34
.29 | 1.6
16
38
24
3.5 | | 16
17
18
19
20 | 34
7.3
3.9
5.3
2.9 | 15
40
73
43
13 | e10 | e7.0
e70
e40
e40
e9.5 | e1.0 | e10
e4.0
e2.5
e2.0
e1.7 | e9.0
e9.0
e7.0
e6.0
e6.0 | 11
7.8
7.3
10
8.5 | .80
.79
.91
.63 | 1.2
.97
.80
.68 | .39
.53
.57
7.9 | 2.7
12
7.5
3.8
3.8 | | 21
22
23
24
25 | 2.4
43
9.3
7.9
105 | 52
7.4
9.1
11
9.7 | e15
e9.0
e10
e15
e15 | e10
e15
e10
e5.5
e7.5 | e1.5 | e1.6
e1.5 | e9.0
e9.0
e9.0
e10
e25 | 33
11
9.6
14
14 | .44
.44
.36
.29 | 18
36
6.7
3.1
2.4 | 2.0
1.2
.88
1.5 | 2.9
11
22
19
9.9 | | 26
27
28
29
30
31 | 18
3.6
2.5
2.7
16
8.0 | 5.7
4.6
e4.0
e4.0
e3.5 | e30
e25
e15
e80
e50
e50 | e30 | e20
e70
e8.0
 | e9.0 | e20
e25
10
e6.5
e6.5 | 7.0
6.6
7.2
6.4
7.1
6.2 | .26
.24
.22
.18
.19 | 1.8 | 3.0
2.7
45
19
35
8.2 | 4.8
3.1
5.9
2.4
1.9 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 20.2
105
2.0
1240
26.9 | | 619.5
20.0
80
2.0
1230
26.6
30.73 | 26.6
80
4.0
1640
35.5 | 161.5
5.77
70
1.0
320
7.69
8.01 | 8.42
50
1.0
517
11.2 | 9.15
25
1.0
544
12.2 | 339.2
10.9
33
5.4
673
14.6
16.82 | 47.67
1.59
5.7
.18
95
2.12
2.36 | 6.79
56 | 153.98
4.97
45
.29
305
6.62
7.64 | 265.5
8.85
38
1.6
527
11.8
13.17 | | | | STATISTIC | S OF MONT | THLY MEAN I | DATA FOR | WATER YE. | ARS 2000 - | 2001, BY | WATER Y | EAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.9
20.2
2001
19.6
2000 | 12.1
16.3
2001
7.85
2000 | 20.2
20.4
2000
20.0
2001 | 18.8
26.6
2001
10.9
2000 | 8.52
11.2
2000
5.77
2001 | 9.31
10.2
2000
8.42
2001 | 10.1
11.1
2000
9.15
2001 | 13.5
16.1
2000
10.9
2001 | 5.10
8.62
2000
1.59
2001 | 6.19
6.79
2001
5.59
2000 | 5.01
5.05
2000
4.97
2001 | 8.97
9.09
2000
8.85
2001 | | | | CICS | FOR 2 | 2000 CALEN | DAR YEAR | F | | | | WATER YE | ARS 2000 | - 2001# | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM | | | 105
a1.1
1.3 | | | | Oct 25
7 Jul 2 | | 11.5
11.7
11.3
140
b.1 | Dec
7 Jul | 2001
2000
21 1999
2 2001 | | | MAXIMUN
MAXIMUN | M PEAK FL
M PEAK ST | OW
AGE | | 1.3 | Jan 12 | | c202
c24.48 | 9 Jun 27
Nov 11
8 Nov 11
5 Jul 2 | | .1
df988
f19.6 | Nov | 27 2001
3 1994
3 1994 | | INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | 8740
16.0
218.45
32
6.4
1.6 | | | 8470
15.6
211.8'
35
5.5 | 7 | | 8340
15.4
208.6
32
5.5
1.2 | 1 | | See Period of Record and Remarks From Jan. 15 to Jan. 17 and Jul. 14 Jul. 2 and 3 b May have been exceeded during period of gage malfunction from Nov. 28 to Apr. 30 From rating curve extended above 66 $\rm ft^3/s$ on basis of slope-area measurement of peak flow Estimated Site and datum then in use Solomon Gulch (A) profile and (B) schematic diagram of flows. #### 15225990 SOLOMON LAKE NEAR VALDEZ LOCATION.--Lat $61^{\circ}04'25''$, long $146^{\circ}18'08''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ sec. 21, T. 9 S.,R. 6 W.(Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, at outlet of Solomon Lake, 0.7 mi upstream from mouth of
Solomon Gulch, and 4.6 mi southeast of Valdez. DRAINAGE AREA. -- 19.2 mi². PERIOD OF RECORD.--October 1991 to current year. Additional unpublished records prior to period of record available from Copper Valley Electric Association and in station files of Geological Survey. REMARKS.--Reservoir is formed by a rockfill dam at outlet of Solomon Lake. Reservoir is used for power; power-plant operation began January 6, 1982. Usable capacity is 31,500 acre-feet below spillway crest at 685 ft. Discharge released to the penstocks is accounted for at Solomon Gulch Tailrace (station 15225996). Releases through the dam to maintain minimum flows, spillway releases, and incremental flow are accounted for at the Solomon Gulch at top of falls gage (station 15225997). COOPERATION.--Reservoir contents furnished by Copper Valley Electric Association. EXTREMES FOR PERIOD OF RECORD.--Maximum contents 32,500 acre-ft, September 21, 1993, from crest-stage gage and rating extended above 31,500 acre-ft; minimum contents, 2,167 acre-ft, May 1, 1995. EXTREMES FOR CURRENT YEAR.--Maximum contents, 31,900 acre-ft July 5, July 21, and September 5; minimum contents, 2,180 acre-ft, May 8. # MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ELEVATION | CONTENTS | CHANGE IN
CONTENTS | |--|--|---|---| | SEP 30
OCT 31
NOV 30
DEC 31
JAN 31
FEB 28
MAR 31
APR 30
MAY 31
JUN 30
JUL 31
AUG 31
SEP 30 | 684.5
677.6
672.6
666.8
661.6
651.2
636.2
634.2
680.0
685.3
685.4
683.0 | 30,100
26,200
23,400
20,400
17,800
13,100
7,400
3,000
6,700
27,700
31,600
31,700
29,800 | 3,900 -2,800 -3,000 -2,600 -4,700 -5,700 -4,400 +3,700 +21,000 +3,900 +100 -1,900 | | | | CAL YR 2000
WTR YR 2001 | -2,900
-300 | #### 15225996 SOLOMON GULCH TAILRACE NEAR VALDEZ LOCATION.--Lat $61^{\circ}05'01''$, long $146^{\circ}18'10''$, in $NE^1/_4$ $SE^1/_4$ $SW^1/_4$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on left wingwall of tailrace pool of Copper Valley Electric Association powerhouse facility, 350 ft upstream from mouth at Solomon Gulch, and 3.8 mi southeast of Valdez. DRAINAGE AREA. -- Indeterminate. PERIOD OF RECORD. -- September 1986 to current year. GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 40 ft above sea level, from topographic map. REMARKS.--Records good. Discharge shown herein is flow through the Solomon Gulch Power Plant turbines. Solomon Lake, 0.8 mi upstream, supplies water to the power-plant through two 48-in. diameter penstocks. Water for the fish hatchery, diverted upstream from the gage, is not included in these published daily values. Annual mean discharge for these diversions for 2001 water year was 12.4 ft³/s. COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 293 ${\rm ft}^3/{\rm s}$, January 2 and 3, 1992, gage height, 3.04 ${\rm ft}$; no flow at times most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $245 \text{ ft}^3/\text{s}$, June 6, gage height, 2.97 ft; no flow for periods on May 10, and May 21. | | | DISCHARGE | , CUBIC | C FEET PER | | | YEAR OCTOR | BER 2000 | TO SEPTEMBE | R 2001 | | | |-------|------|-----------|---------|------------|------|------|------------|----------|-------------|--------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 178 | 64 | 62 | 54 | 77 | 86 | 64 | 57 | 200 | 187 | 180 | 189 | | 2 | 190 | 75 | 60 | 55 | 67 | 83 | 66 | 58 | 195 | 197 | 189 | 188 | | 3 | 192 | 67 | 71 | 60 | 66 | 112 | 86 | 60 | 196 | 197 | 183 | 187 | | 4 | 189 | 68 | 64 | 68 | 70 | 110 | 81 | 71 | 202 | 195 | 179 | 193 | | 5 | 199 | 64 | 70 | 66 | 75 | 107 | 85 | 72 | 206 | 204 | 171 | 197 | | 6 | 187 | 65 | 68 | 71 | 98 | 106 | 84 | 72 | 209 | 204 | 189 | 196 | | 7 | 174 | 70 | 68 | 69 | 99 | 109 | 79 | 75 | 153 | 158 | 187 | 196 | | 8 | 172 | 69 | 68 | 66 | 99 | 82 | 81 | 21 | 192 | 188 | 196 | 180 | | 9 | 181 | 65 | 57 | 73 | 105 | 82 | 80 | 1.0 | 195 | 172 | 145 | 172 | | 10 | 189 | 58 | 56 | 68 | 97 | 85 | 82 | 4.6 | 194 | 171 | 196 | 184 | | 11 | 141 | 59 | 54 | 58 | 84 | 84 | 84 | 38 | 201 | 176 | 189 | 189 | | 12 | 102 | 61 | 54 | 54 | 86 | 86 | 91 | 38 | 158 | 174 | 191 | 190 | | 13 | 102 | 66 | 58 | 74 | 75 | 103 | 90 | 47 | 202 | 185 | 176 | 191 | | 14 | 159 | 61 | 61 | 65 | 81 | 105 | 105 | 54 | 204 | 197 | 202 | 140 | | 15 | 182 | 57 | 72 | 69 | 87 | 107 | 79 | 62 | 202 | 198 | 202 | 174 | | 16 | 192 | 57 | 68 | 56 | 105 | 107 | 66 | 64 | 196 | 201 | 200 | 175 | | 17 | 192 | 53 | 68 | 67 | 115 | 103 | 53 | 70 | 196 | 202 | 197 | 182 | | 18 | 197 | 56 | 68 | 56 | 112 | 109 | 58 | 80 | 198 | 193 | 197 | 172 | | 19 | 197 | 60 | 65 | 55 | 115 | 93 | 60 | 89 | 200 | 193 | 187 | 163 | | 20 | 196 | 55 | 57 | 61 | 92 | 87 | 59 | 87 | 204 | 189 | 201 | 141 | | 21 | 197 | 56 | 53 | 69 | 83 | 102 | 59 | 46 | 204 | 184 | 202 | 125 | | 22 | 198 | 63 | 56 | 67 | 102 | 112 | 64 | 68 | 199 | 182 | 200 | 164 | | 23 | 204 | 79 | 55 | 68 | 109 | 106 | 65 | 95 | 200 | 187 | 202 | 168 | | 24 | 153 | 67 | 57 | 71 | 106 | 101 | 65 | 209 | 199 | 180 | 200 | 138 | | 25 | 152 | 67 | 56 | 66 | 113 | 95 | 75 | 207 | 201 | 183 | 189 | 116 | | 26 | 108 | 69 | 66 | 65 | 107 | 97 | 58 | 207 | 200 | 176 | 193 | 117 | | 27 | 58 | 65 | 65 | 84 | 85 | 94 | 63 | 198 | 201 | 178 | 203 | 130 | | 28 | 63 | 66 | 63 | 85 | 80 | 86 | 59 | 197 | 198 | 176 | 205 | 157 | | 29 | 66 | 65 | 59 | 98 | | 89 | 56 | 209 | 196 | 182 | 203 | 173 | | 30 | 77 | 66 | 65 | 91 | | 64 | 57 | 202 | 191 | 183 | 204 | 176 | | 31 | 79 | | 54 | 90 | | 63 | | 201 | | 176 | 198 | | | TOTAL | 4866 | | 918 | 2119 | 2590 | 2955 | 2154 | 2959.6 | 5892 | 5768 | 5956 | 5063 | | MEAN | 157 | | 1.9 | 68.4 | 92.5 | 95.3 | 71.8 | 95.5 | 196 | 186 | 192 | 169 | | MAX | 204 | 79 | 72 | 98 | 115 | 112 | 105 | 209 | 209 | 204 | 205 | 197 | | MIN | 58 | 53 | 53 | 54 | 66 | 63 | 53 | 1.0 | 153 | 158 | 145 | 116 | | AC-FT | 9650 | 3790 3 | 800 | 4200 | 5140 | 5860 | 4270 | 5870 | 11690 | 11440 | 11810 | 10040 | CAL YR 2000 TOTAL 45455 MEAN 124 MAX 231 MIN 39 AC-FT 90160 WTR YR 2001 TOTAL 44153.6 MEAN 121 MAX 209 MIN 1.0 AC-FT 87580 #### SOUTH-CENTRAL ALASKA #### 15225997 SOLOMON GULCH AT TOP OF FALLS NEAR VALDEZ LOCATION.--Lat $61^{\circ}04'45''$, long $146^{\circ}18'11''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec. 21, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on right bank, 72 ft above Alyeska Pipeline Service Company Bridge, 150 ft upstream from top of falls, 0.3 mi upstream from mouth, and 4.2 mi southeast of Valdez. DRAINAGE AREA. -- Indeterminate. PERIOD OF RECORD. -- September 1986 to current year. REVISED RECORDS. -- WDR AK-00-1: 1999. GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. Prior to October 1, 1991, discharge computed for site 150 ft downstream at datum 72.00 ft higher. REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge shown herein represents controlled releases from bypass valve and flow over the spillway of dam at Solomon Lake, 0.5 mi upstream, plus inflow between the spillway and the gage. Spillway crest elevation is 685 ft above sea level, from construction plans. Water for power generation is diverted from Solomon Lake (see records for station 15225996). Water is diverted for fish hatchery use 1,150 ft downstream from gage. Reservoir spilled July 5 to August 10, August 13-26, August 28 to September 1, September 4-7, and September 14-15. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,280 ft³/s, October 11, 1986, by computation of peak flow by several indirect measurement methods; gage height, 82.20 ft from water surface profiles for 1986 flood at top of falls and at datum 72.00 ft lower (12.90 ft from profile at present site and datum); minimum daily discharge, about 0.20 ft³/s, January 23 to April 6, 1989. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 834 ft³/s, September 5, gage height, 7.22 ft; minimum daily discharge, 1.4 ft³/s, June 27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCII | ARGE, COD | IC PEEL F | | LY MEAN V | | JER 2000 1 | O DEFIEM | DER ZUUI | | | |--------------------------------------|--|-----------------------------------|--|-----------------------------------|------------------------------------|--|------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.2
4.3
4.3
3.9
9.7 | 4.2
4.1
3.9
4.0
4.1 | 5.9
5.8
4.7
4.6
6.6 | 8.8
8.0
7.9
7.6
6.3 | 5.3
5.2
5.0
5.0 | e4.2
e4.4
4.5
4.4 | 3.1
3.2
3.6
3.3
3.2 | 7.8
6.2
4.7
3.7
3.1 | 21
23
22
18
18 | 3.0
3.1
3.5
3.6 | 99
98
138
121
100 |
58
16
6.7
87
722 | | 6
7
8
9
10 | 25
13
7.5
5.9
5.7 | 4.7
4.7
4.7
4.7
5.4 | 7.1
6.1
5.8
5.7
5.8 | 5.8
22
12
8.2
7.4 | 4.8
4.7
4.7
4.6
4.5 | 4.4
4.5
4.5
4.4 | 2.9
3.1
3.2
3.2
3.1 | 3.0
3.0
4.7
6.4
6.8 | 23
14
15
15 | 454
393
318
214
223 | 75
66
47
50
29 | 306
78
17
5.4
5.3 | | 11
12
13
14
15 | 5.9
6.1
7.4
7.3 | 11
6.7
6.1
5.9
5.4 | 5.9
5.7
5.7
5.9 | 7.1
6.8
6.7
7.6
22 | 4.7
4.7
4.7
4.6
4.4 | e4.4
e4.4
e4.5
e4.5 | 2.9
2.8
3.2
3.4
3.5 | 7.6
7.7
9.5
12 | 12
9.4
8.7
8.2
7.8 | 178
154
134
131
153 | 7.9
5.3
5.5
38
29 | 4.9
4.6
13
85
67 | | 16
17
18
19
20 | 6.3
5.7
5.4
5.1
4.9 | 5.3
5.3
9.6
8.1
7.9 | 6.0
5.9
6.0
6.0 | 12
8.6
10
14
8.8 | 4.2
4.2
4.1
4.1
4.2 | 4.4
4.3
e4.1
e4.0
e3.9 | 3.7
3.6
3.4
4.2
4.9 | 18
14
14
19
20 | 8.0
7.0
5.6
5.1
5.7 | 124
140
175
172
620 | 19
19
12
24
134 | 12
5.6
5.3
5.2
5.5 | | 21
22
23
24
25 | 4.8
5.4
5.7
5.6
5.7 | 8.9
8.2
6.7
6.7 | 6.1
6.3
6.0
6.0 | 7.6
7.2
7.3
7.0
6.7 | 4.1
4.1
4.2
4.0
e4.0 | 3.8
3.7
3.5
3.5 | 5.3
5.6
5.1
4.9
5.2 | 16
13
12
16
16 | 5.1
4.3
4.3
4.2
3.8 | 665
566
387
262
189 | 76
64
33
91
77 | 5.2
5.0
5.2
5.6
5.4 | | 26
27
28
29
30
31 | 5.7
4.7
4.0
3.9
3.7
4.0 | 6.0
6.0
5.9
6.0
6.0 | 6.0
6.3
6.3
6.8
7.6
9.5 | 6.4
6.3
6.0
5.5
5.3 | e4.0
e4.1
e4.2
 | 3.4
3.5
3.4
3.3
3.4
3.3 | 6.6
9.1
8.2
7.8
7.7 | 14
19
40
22
20
20 | 3.6
3.0
3.0
3.2
3.1 | 172
151
130
110
98
118 | 26
7.4
68
327
188
171 | 5.2
5.0
4.9
4.6
4.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 198.2
6.39
25
3.7
393 | 182.5
6.08
11
3.9
362 | 190.0
6.13
9.5
4.6
377 | 268.2
8.65
22
5.3
532 | 125.4
4.48
5.3
4.0
249 | 125.3
4.04
4.5
3.3
249 | 133.0
4.43
9.1
2.8
264 | 394.2
12.7
40
3.0
782 | 298.1
9.94
23
3.0
591 | 6616.2
213
665
3.0
13120 | 2245.1
72.4
327
5.3
4450 | 1560.1
52.0
722
4.5
3090 | CAL YR 2000 TOTAL 7257.5 MEAN 19.8 MAX 663 MIN 1.9 AC-FT 14400 WTR YR 2001 TOTAL 12336.3 MEAN 33.8 MAX 722 MIN 2.8 AC-FT 24470 e Estimated #### 15226000 SOLOMON GULCH NEAR VALDEZ LOCATION.--Lat $61^{\circ}05'02''$, long $146^{\circ}18'13''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ Sw $^{1}/_{4}$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, at bridge crossing at mouth and 3.8 mi southeast across Port Valdez from Valdez. DRAINAGE AREA. -- 19.7 mi² PERIOD OF RECORD.--July to December 1948, October 1949 to September 1956, and September 1986 to current year. GAGE.--Nonrecording gage. Elevation of gage is at sea level. July 9, 1948 to May 21, 1950, nonrecording gage, and May 22, 1950 to September 30, 1956, water-stage recorder at about present site and datum. REMARKS.-- Records fair. Discharge data represent the flow at mouth which includes Solomon Gulch at top of falls (station 15225997), power plant tailrace (station 15225996), and all fish hatchery diversions. Water for power generation is diverted by a dam at Solomon Lake, 0.8 mi upstream. Water is diverted for the fish hatchery by a 24-in. penstock aeration system, and a 24-in. penstock line from the tailrace weir pool. An unaerated penstock and an 8-in. pipe for warm water supply are upstream. Additional water is diverted to the fish hatchery from Solomon Gulch bypass channel about 750 ft above gage, by means of a 12-in. diameter pipe. The fish hatchery discharges water directly into Port Valdez. Average daily diversion to fish hatchery for 2001 water year was 12.4 ft³/s. Power generation began January 6, 1982. COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines and monthly storage values for Solomon Lake. | | | DISCHARGE | , CUBIC | FEET PER | | WATER
MEAN | YEAR OCTOBER
VALUES | 2000 T | O SEPTEMBE | R 2001 | | | |--------------------------------------|-----------------------------------|----------------------------|----------------------------------|-------------------------------------|----------------------------------|------------------------------------|-------------------------------------|--|------------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 211
223
225
222
237 | 78
89
80
81
77 | 76
74
84
77
85 | 71
71
76
87
83 | 91
81
79
83
88 | e98
e97
125
122
121 | 74
77
96
92
96 | 69
69
70
80
79 | 221
218
218
220
224 | 190
200
201
199
377 | 305
313
347
326
297 | 272
229
219
305
944 | | 6
7
8
9
10 | 241
215
208
215
223 | 79
85
83
79
73 | 83
83
82
71
70 | 85
99
87
91
85 | 111
112
112
118
109 | 120
123
95
95
97 | 93
88
91
90
91 | 79
82
29
9.6
14 | 232
167
207
210
208 | 659
552
507
387
395 | 290
280
269
222
252 | 527
301
222
202
216 | | 11
12
13
14
15 | 175
136
138
197
219 | 79
77
82
76
72 | 68
68
72
75
86 | 73
69
89
81
99 | 97
99
88
94
100 | e97
e100
e116
e118
120 | 93
100
99
116
90 | 48
49
60
69
81 | 213
167
211
212
210 | 357
330
321
330
353 | 223
223
208
266
257 | 220
221
230
251
267 | | 16
17
18
19
20 | 229
229
232
216
208 | 72
66
72
75
70 | 82
82
81
78
70 | 76
84
73
76
76 | 117
127
123
126
103 | 120
115
e120
e104
e98 | | 86
84
94
108
107 | 204
203
204
205
210 | 327
344
370
368
833 | 244
241
234
236
360 | 213
214
204
196
174 | | 21
22
23
24
25 | 209
211
217
166
165 | 72
78
92
80
80 | 66
69
68
70
69 | 83
81
82
85
79 | 94
113
120
117
e124 | 114
124
117
111
105 | 75
76
75 | 571
81
107
225
223 | 209
204
205
203
205 | 873
772
598
466
396 | 303
289
260
316
291 | 158
196
200
171
149 | | 26
27
28
29
30
31 | 121
70
74
77
88
91 | 82
78
79
78
79 | 79
78
77
73
80
73 | 78
97
98
110
103
103 | e118
e96
e91
 | 107
105
96
99
74
72 | 76
71
68
68 | 221
217
237
231
295
221 | 204
204
201
199
194 | 372
353
330
316
306
320 | 244
235
298
555
417
394 | 150
162
190
205
208 | | TOTAL
MEAN
MAX
MIN
AC-FT | 5688
183
241
70
11280 | 78.1 7
92
66 | 349
5.8
86
66 | 2630
84.8
110
69
5220 | 2931
105
127
79
5810 | 3325
107
125
72
6600 | 2471 3
82.4
116
63
4900 | 995.6
129
571
9.6
7930 | 6192
206
232
167
12280 | 12702
410
873
190
25190 | 8995
290
555
208
17840 | 7416
247
944
149
14710 | | | | | ADJU | USTED FOR | R CHANGE | IN STO | ORAGE IN SOI | LOMON LA | AKE | | | | | MEAN
AC-FT | 120
7380 | 31.1 27.0
1850 1660 | 42.6
2620 | 20.0
1110 | 14.6
900 | 10. | 11530 | 558
3318(| | 292
17940 | 215
12810 | | 24.10 14.81 10.93 12.21 28.30 6.09 7.03 CFSM IN 1.58 1.37 2.16 1.01 1.06 0.74 0.86 0.51 9.52 10.99 Estimated ## SOUTH-CENTRAL ALASKA ### 15226000 SOLOMON GULCH NEAR VALDEZ--Continued | | STATISTICS | OF MOI | NTHLY MEAN | DATA FOR | WATER | YEARS 1986 | - 2001, | BY W | IATER | YEAR (WY) | # | | |---|--|-------------------------------------|---|-------------------------------------|-------------------------------------|--|-----------------------------------|------|--------------------------|---|-----------------------------------|--| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | | JUN | JUL | AUG | SEP | | MEAN 184
MAX 310
(WY) 1987
MIN 97.2
(WY) 1997 | 102
140
1989
77.1
1993 | 96.6
116
1987
75.2
1996 | 97.6
138
1995
73.2
1997 | 92.9
130
1987
64.3
1997 | 81.4
120
1987
5.08
1991 | 106
1998
26.2 | 153
213
1993
103
1992 | | 182
229
990
145 | 275
410
2001
177
1991 |
298
462
1993
152
1996 | 344
501
1989
152
1996 | | SUMMARY STATIS | TICS | FOR | 2000 CALE | NDAR YEAR | | FOR 2001 | WATER Y | EAR | | WATER : | YEARS 1986 | - 2001# | | ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL HIGHEST DAILY LOWEST DAILY LOWEST DAILY MANNUAL SEVEN-D MAXIMUM PEAK F ANNUAL RUNOFF ANNUAL RUNOFF ANNUAL RUNOFF ANNUAL RUNOFF 10 PERCENT EXC 50 PERCENT EXC 90 PERCENT EXC | MEAN MEAN EAN AY MINIMUM LOW (AC-FT) (CG-FT) (CFSM) (IN) EEDS EEDS | | 56773
155
*149
871
a49
55
112600
*108700
*7.58
*103.59
241
128
70 | Aug 4
Apr 26
Apr 25 | | 61037
167
*165
944
9
40
1211000
*120800
*8.43
*115.08
314
112
72 | Sep
.6 May | 9 | | 166
*166
197
125
2270
120300
*120300
*14:43
*114.43
294
124
71 | .0 Apr
.3 Mar
Sep | 1990
1996
24 1989
12 1989
24 1991
24 1989 | #### PRIOR TO CONSTRUCTION OF SOLOMON GULCH HYDROELECTRIC PROJECT | | | STATIST | rics of | MONTHLY | MEAN DATA | FOR WATER | YEARS | 1948 - 1 | 1956, BY | WATER YEAR | (WY)# | | |-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 124 | 58.9 | 18.3 | 13.3 | 10.4 | 8.82 | 10.9 | 102 | 370 | 385 | 322 | 260 | | MAX
(WY) | 304
1953 | 131
1953 | 35.6
1950 | 20.9
1956 | 12.2
1954 | 11.1
1953 | 18.3
1953 | 224
1953 | 544
1953 | 514
1955 | 442
1956 | 574
1951 | | MIN
(WY) | 48.0
1951 | 21.7 | 4.00 | 1.40 | 3.57
1951 | 7.19
1951 | 6.57 | 36.5
1955 | 261
1951 | 277
1950 | 254
1950 | 126
1955 | | SUMMARY STATISTICS | | WATER YEARS 1948 - 1956# | |---|-------|---| | ANNUAL MEAN | 143 | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | 1953
1950 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | | Sep 4 1951
Dec 31 1950 | | ANNUAL SEVEN-DAY MINIMUM | 1.0 | Jan 10 1951 | | MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW | c6.50 | Sep 4 1951
Sep 4 1951
Feb 20 1954 | | ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES) | 7.28 | | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for change in storage in Solomon Lake, unless otherwise noted * Adjusted for change in storage in Solomon Lake Apr. 26 and 28 b From rating curve extended above 620 ft³/s Site and datum then in use d No flow sometime during period Feb. 20 to Mar. 3, 1954, caused by temporary storage upstream Discharge Gage Height #### 15236900 WOLVERINE CREEK NEAR LAWING LOCATION.--Lat $60^{\circ}22'14''$, long $148^{\circ}53'48''$, in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 10, T.3 N., R.3 E. (Seward B-6 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on the left bank, about 0.1 mi downstream from terminus of Wolverine Glacier, 2.0 mi upstream from mouth, 16 mi east of Lawing, Alaska. DRAINAGE AREA. -- 9.51 mi². PERIOD OF RECORD.--October 1966 to September 1978, October 1980 to September 1981, May 1997 to September 1997, October 2000 to September 2001. GAGE.--Water-stage recorder. Elevation of gage is 1,200 ft above sea level from topographic map. REMARKS.--Records are poor. Large fluctuations from ice melt and alternate damming and storage releases during the melt season. Stream flow modified by Wolverine Glacier, which covers 6.8 mi², more than 70% of the drainage basin. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from computer files of the Alaska District. GOES satellite telemetry at station. A recording of air temperature, wind speed, and precipitation gage at 3,250 ft elevation. plus three snow and ice balance measurement sites are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey. EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 550 $\mathrm{ft^3/s}$ and maximum (*). Gage Height Discharge | Jun 1 | | Date | Time | Dischar
(ft³/s | | Gage Height
(ft) | | Date | Tim | | scharge
ft³/s) | Gage Hei
(ft) | .ght | |---|-------|-------|-------|-------------------|--------|---------------------|------|--------|----------|-----------|-------------------|------------------|------------| | Jun 3 | | Jun 1 | 2330 | 744 | | 2.88 | | Jun 9 | 164 | 5 | 618 | 2.69 | | | Jun 3 | | Jun 2 | 1445 | 737 | | 2.87 | | Jun 10 | 104 | 5 | 592 | 2.65 | | | DISCHARGE CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | Jun 3 | 0430 | 693 | | 2.81 | | Jun 15 | 031 | 5 | 1170 | 3.40 | | | DISCHARGE, CUBIC FEET FOR SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLLY MEAN VALUES | • | Jun 3 | 1015 | 3110 | | 4.79 | | Aug 28 | 154 | 5 | *4160 | *5.27 | 7 | | DAY OCT NOV DEC JAN FEB MAR APR MAP JUN JUL ADG SEP 1 36 1.9 e.10 e.50 .00 .00 .00 e.00 e.00 160 290 315 383 3 17 1.5 e.00 .11 .00 .00 .00 .00 e.00 160 290 315 383 3 17 1.5 e.00 .01 .00 .00 .00 e.00 160 290 315 383 4 14 e1.4 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 6 6 64 1.2 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 187 7 132 1.2 e.00 .00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 e.00 114 290 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 0.00 0.11 23 274 316 146 9 32 1.1 0.00 e.10 .00 .00 .00 0.00 178 281 316 142 10 15 e1.0 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00 178 281 316 122 10 15 e1.0 .00 .00 .00 .00 .00 .00 183 274 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e.90 .00 e.00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 613 280 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .78 613 280 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .00 1.78 281 326 335 158 15 19 e.80 .00 e.00 .00 .00 .00 .00 1.23 284 327 335 158 15 19 e.80 .00 e.00 .00 .00 .00 .00 123 284 327 335 158 16 21 4.4 44 .00 .00 e.00 .00 .00 .00 11 232 293 310 234 18 7.3 e.60 .26 .00 e1.0 .00 .00 .00 .00 11 281 292 244 359 317 150 27 e3.0 e.20 .00 e.00 .00 .00 .00 .00 11 281 292 244 359 317 150 28 e2.0 e3.0 e.40 .12 .00 .00 .00 .00 .00 11 281 292 244 359 317 150 29 e3.0 e.20 .00 e.00 .00 .00 .00 .00 11 281 293 313 330 324 21 4.4 44 .00 .00 .00 .00 .00 .00 .00 11 281 293 313 330 324 21 4.4 44 .00 .00 .00 .00 .00 .00 .00 11 281 293 313 330 324 25 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 11 281 293 314 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 .00 11 281 293 314 112 28 e2.5 e.14 .00 .00 .00 .00 .00 .00 .00 .00 | | Jun 3 | 1930 | 618 | | 2.69 | | | | | | | | | 1 36 | | | DISCH | ARGE, CUBI | C FEET | | | | BER 2000 | TO SEPTEM | IBER 2001 | | | | 2 24 1.6 6 e.00 e.10 .00 .00 .00 e.00 160 290 315 383 3 17 1.5 e.00 111 .00 .00 .00 e.00 142 281 e300 295 4 14 e1.4 e1.4 e.00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 255 6 6 64 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 114 290 e300 188 8 93 1.1 e.00 e.10 .00 .00 .00 e.00 114 290 e300 187 9 32 1.1 e.00 e.10 .00 .00 .00 .00 10 123 274 316 146 9 32 1.1 e.00 e.10 .00 .00 .00 .00 10 178 281 316 122 10 15 e1.0 .00 .10 .00 .00 .00 .00 .01 178 281 316 122 11 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00
.01 185 270 315 110 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 13 14 68 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 15 19 e.80 .00 e.00 .00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.90 .00 e.00 .00 .00 .00 .00 .00 1.7 226 293 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 .00 1.7 226 293 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 11 222 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 18 7.3 e.60 .00 e1.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 0 1.3 .00 .00 .00 .00 11 264 287 323 186 21 4.4 44 40 .00 .13 .00 .00 .00 .00 11 282 299 340 89 22 4.1 3.4 .00 .00 e.00 .00 .00 .00 11 282 299 340 89 22 4.1 3.4 .00 .00 .00 .00 .00 .00 11 282 299 341 122 33 3.9 1.4 .01 .00 .00 .00 .00 .00 .00 11 282 299 344 89 29 e2.5 e.14 .00 .00 .00 .00 .00 .00 .00 18 229 294 375 311 127 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 299 341 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 299 340 89 29 e2.5 e.10 e10 .00 .00 .00 .00 .00 .00 84 260 331 1930 567 MIN 2.2 1.00 .00 .00 .00 .00 .00 .00 84 260 331 1930 578 ENERN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 189 WATER YEAR (WY)# | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 17 1.5 6 e.00 .11 .00 .00 .00 e.00 242 281 e300 295 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 .00 122 283 e300 255 6 64 1.2 e.00 .00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 e.00 114 290 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 123 274 316 146 9 32 1.1 .00 e.10 .00 .00 .00 .00 101 178 281 316 146 9 32 1.1 .00 e.10 .00 .00 .00 .00 101 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 e.00 .00 .00 .00 .00 .00 144 29 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .00 .04 149 260 322 109 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 283 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .00 .78 163 283 333 212 15 19 e.80 .00 e.10 .00 .00 .00 .00 .00 2.8 243 279 337 268 15 19 e.80 .00 e.10 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.20 .00 e.00 .00 .00 2.28 243 279 317 150 17 10 e.70 .00 e.20 .00 e.00 .00 .00 2.28 243 279 317 150 18 7.3 e.60 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 21 4.4 44 .00 .00 13 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 286 295 361 229 24 3.6 1.1 3.3 .00 .00 .00 .00 .00 11 264 263 275 341 147 23 3.9 1.4 .00 .00 .00 .00 .00 .00 11 264 263 275 341 147 23 3.9 1.4 .00 .00 .00 .00 .00 .00 11 281 329 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 10 12 326 295 361 229 24 3.6 1.1 3.3 .00 .00 .00 .00 .00 10 12 326 295 361 229 24 4.1 3.4 .00 .00 .00 .00 .00 .00 11 281 329 334 182 25 2.1 .1 4.0 0.0 .00 .00 .00 .00 .00 18 229 294 394 112 27 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 294 394 112 27 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 329 344 .12 28 e2.5 e.14 e.00 .00 .00 .00 .00 .00 .00 .00 18 229 329 340 88 29 e2.5 e.14 e.00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | | | | | | | | | | | | | | | 4 14 el.4 el.4 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 255 6 6 64 1.2 e.00 e.00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 e.00 123 274 316 146 9 32 1.1 0.0 e.10 .00 .00 .00 .00 .01 178 281 316 146 10 15 el.0 .00 .10 .00 .00 .00 .00 .01 178 281 316 122 10 15 el.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 el.0 .00 .00 .00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .03 16 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 e.00 .00 .00 .00 .00 17, 266 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 226 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 128 243 278 324 134 18 7.3 e.60 .00 e.50 .00 .00 .00 .00 12 28 243 278 324 134 18 7.3 e.60 .00 e1.0 .00 .00 .00 10 2.0 2.8 243 278 324 134 18 7.3 e.60 .00 e1.0 .00 .00 .00 10 2.0 7.9 238 287 325 293 10 234 18 7.3 e.60 .00 e8.0 .00 e1.0 .00 .00 12 28 243 279 310 234 18 7.3 e.60 .00 e8.0 .00 .00 .00 10 20 7.9 238 287 325 293 11 2 2 4.1 3.4 400 .13 .00 .00 .00 10 14 264 287 323 186 20 4.8 10 .00 e8.0 .00 .00 .00 10 .00 13 262 295 361 229 24 1.1 3.4 .00 .00 .00 .00 .00 10 12 281 313 330 322 25 3.1 .73 1.2 .00 .00 .00 .00 .00 14 264 287 323 318 26 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 264 359 892 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .00 .00 18 229 293 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 294 477 195 30 e2.5 e.10 e10 e10 .00 .00 .00 .00 .00 10 135 293 333 322 156 31 2.2 e10 e10 .00 .00 .00 .00 .00 18 229 293 340 112 28 28 22.5 e.14 .00 .00 .00 .00 .00 .00 .00 18 229 329 340 11580 EVALUATION OF MONTHILY MEAN DATA FOR WATER YEARS 1967 - 2001, BY | | | | | | | | | | | | | | | Color | 4 | | | | | | | | | 145 | 278 | | | | The color of | 5 | 28 | 1.3 | e.00 | .00 | .00 | .00 | .00 | .00 | 122 | 283 | e300 | 255 | | B | | | | | | | | | | | | | | | 9 32 1.1 .000 e.10 .000 .000 .00 .01 178 281 316 122 10 15 el.0 .00 .10 .00 .00 .00 .00 .01 185 270 315 110 11 12 el.0 .00 .00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 .00 .00 .00 .00 .00 .17 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 .28 243 278 324 134 16 21 e.70 .00 e.20 .00 e.00 .00 .00 28 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 el.0 .00 .00 .00 .00 11 264 287 322 186 20 4.8 10 .00 1.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 1.0 .00 .00 .00 .00 11 264 287 323 186 21 4.4 44 4 .00 .13 .00 .00 .00 .00 14 264 287 323 186 22 4.1 3.4 .00 .00 .00 .00 .00 .00 11 264 287 323 186 23 3.9 1.4 .01 .00 .00 .00 .00 .00 11 264 287 323 186 24 1.4 .4 44 .00 .13 .00 .00 .00 .00 11 28 299 264 359 199 24 3.6 1.1 33 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 .00 34 254 306 1680 91 30 e2.5 e.10 e10 .00 .00 .00 .00 .00 34 254 306 1680 91 30 e2.5 e.10 e10 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 e1.0 .00 .00 .00 .00 .00 .00 84 260 333 1930 567 MAX 132 44 10 8.0 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 .00 .00 | | | | | | | | e.00 | | | 290
274 | | | | 11 | 9 | 32 | 1.1 | .00 | e.10 | .00 | .00 | .00 | .01 | 178 | 281 | 316 | 122 | | 12 | | | | | | | | | | | | | | | 13 36 e.90 .00 e.00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 e.10 .00 .00 .00 1.7 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 2.8 243 278 324 134 16 21 e.70 .00 e.20 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 el.0 .00 .00 .00 11 264 287 325 212 21 4.4 44 .00 .13 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .13 .00 .00 .00 18 229 264 359 199 22 4.1 3.4 .00 .00 .00 .00 .00 10 326 295 361 229 23 3.9 1.4 .01 .00 .00 .00 .00 10 326 295 361 229 24 3.6 1.1 .33 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 15 292 329 334 112 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 189 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .10 .00 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 12.04 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 12.04 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 2.04 .00 .00 .00 .00 .00 30 278 298 1490 57 TO | | | | | | | | | | | | | | | 14 68 e.80 .00 .00 .00 .00 .00 .00 .00 1.7 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 1.7 226 292 335 158 16 21 e.70 .00 e.20 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 e8.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 .00 1.0 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .01 3.00 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .03 .00 .00 .00 .00 14 229 264 359 199 22 4.1 3.4 .00 .00 .00 .00 .00 14 223 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 14 263 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.20 .00 .00 .00 .00 .00 15 292 329 344 12 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e3.0 .00 .00 .00 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00
.00 .00 .00 .00 84 264 339 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.7 33 .06 .05 .00 .00 .00 .00 .00 .00 .00 BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 MIN 13.1 2.80 .51 3.39 .000 .000 .000 .00 .00 .00 .00 .00 .00 | | | | | | | | .00 | .78 | | | | | | 16 | | | e.80 | .00 | .00 | .00 | .00 | .00 | 1.7 | 226 | 292 | 335 | 158 | | 17 | | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | | 20 | | | | | | .00 | .00 | .00 | | | | | | | 21 | | | | | | | .00 | | | | | | | | 22 4.1 3.4 .00 .00 .00 .00 .00 14 263 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 10 326 295 361 229 24 3.6 1.1 .33 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 11 281 313 330 324 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 34 254 306 1680 91 30 e2.5 e.10 e3.0 .0000 .00 34 254 306 1680 91 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 84 260 333 1930 567 MIN 2.72 .33 .06 .05 .04 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 57.81 22.83 MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.07 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | 199
147 | | 25 3.1 .73 1.2 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 254 306 1680 91 30 e2.5 e.10 e3.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 2 e1.0 .00 .0000 .00 30 278 298 1490 57 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 MAC-FT 1380 166 31 24 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .09 .00 .00 .00 .00 1.00 1.00 1.00 1.00 | 23 | 3.9 | 1.4 | .01 | .00 | .00 | .00 | .00 | 10 | 326 | 295 | 361 | 229 | | 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 30 250 317 1930 88 30 e2.5 e.10 e3.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 57.81 22.83 MAX 114 27.4 5.48 2.71 2.00 2.00 2.07 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | .33 | | | | | | | | | | | 27 e3.0 e.20 .00 .00 .00 .00 .00 .15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 30 e2.5 e.10 e3.0 .00 .00 .00 30 250 317 1930 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 30 e2.5 e.10 e3.0 .0000 .00 30 .278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 .000 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | e2.5 | e.14 | | | | | | | | | | 88 | | 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 600 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | e10
e3 0 | | | | | | | 306
298 | | | | MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 600 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | AC-FT 1380 166 31 24 .00 .00 .00 600 12610 17840
29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | IN. 2.72 .33 .06 .05 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0 | AC-FT | 1380 | 166 | 31 | 24 | .00 | .00 | .00 | 600 | 12610 | 17840 | 29310 | 11580 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0 | | | | | | | | | | | | | | | MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0 | | 2.72 | | | | | | | | | | | 22.03 | | MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0 | MEAN | 36.2 | 7.60 | 2.61 | 1.50 | 1.19 | .96 | 1.20 | 20.0 | 135 | | 345 | 198 | | MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0 | | | | 5.48 | 2.71 | | 2.00 | 2.27 | 89.3 | 262 | | | 351 | [#] See Period of Record; partial years used in monthly statistics e Estimated # 15236900 WOLVERINE CREEK NEAR LAWING--Continued | SUMMARY STATISTICS | FOR 2001 WATER YEAR | WATER YEARS 1967 - 2001# | |--------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 37075.27 | | | ANNUAL MEAN | 102 | 89.2 | | HIGHEST ANNUAL MEAN | | 123 1967 | | LOWEST ANNUAL MEAN | | 66.6 1970 | | HIGHEST DAILY MEAN | 1930 Aug 28 | 1930 Aug 28 2001 | | LOWEST DAILY MEAN | a.00 Dec 2 | a.00 Dec 2 2000 | | ANNUAL SEVEN-DAY MINIMUM | .00 Dec 2 | .00 Dec 2 2000 | | MAXIMUM PEAK FLOW | b4160 Aug 28 | b4160 Aug 28 2001 | | MAXIMUM PEAK STAGE | 5.27 Aug 28 | c6.28 Aug 21 1981 | | ANNUAL RUNOFF (AC-FT) | 73540 | 64590 | | ANNUAL RUNOFF (CFSM) | 10.7 | 9.37 | | ANNUAL RUNOFF (INCHES) | 145.03 | 127.37 | | 10 PERCENT EXCEEDS | 304 | 312 | | 50 PERCENT EXCEEDS | 1.4 | 6.0 | | 90 PERCENT EXCEEDS | .00 | 1.0 | [#] See Period of Record; partial years used in monthly statistics a No flow most days during winter b From rating curve extended above 1,290 ft³/s c From floodmarks, date approximate: flow over dense snow ### 15237730 GROUSE CREEK AT GROUSE LAKE OUTLET NEAR SEWARD LOCATION.--Lat $60^{\circ}11'54''$, long $149^{\circ}22'24''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 12, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on right bank, 200 ft downstream from Grouse Lake outlet, 0.2 mi upstream from Seward Highway, 7 mi north of Seward. DRAINAGE AREA.--6.22 mi². PERIOD OF RECORD. -- June 1997 to present. GAGE.--Water stage recorder and crest-stage gage. Elevation of gage is 250 ft above sea level from topographic map. REMARKS.--No estimated daily discharges. Records good. Rain gage recorder at station. GOES satellite telemetry and phone modem at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | |---|--|---|---|--|---|---|--|--|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.7
7.3
7.2
7.1
8.1 | 13
12
11
11 | 27
19
19
18
34 | 55
45
38
33
25 | 18
16
15
15 | 14
12
11
11 | 9.3
9.3
9.8
11
9.7 | 35
33
31
26
21 | 78
81
84
78
69 | 31
28
25
24
28 | 11
10
10
10
9.9 | 33
26
21
19
19 | | 6
7
8
9
10 | 10
14
16
13
12 | 10
9.7
9.4
10
27 | 36
31
24
19
18 | 21
57
58
47
38 | 14
14
13
12 | 13
13
12
12 | 9.3
9.1
9.1
9.1
9.2 | 19
20
24
28
28 | 65
57
53
56
58 | 23
19
18
17
16 | 9.5
9.2
9.0
8.8
8.6 | 16
16
14
13 | | 11
12
13
14
15 | 11
12
11
34
26 | 49
35
31
34
27 | 17
15
14
13
12 | 34
33
30
57
173 | 12
12
11
9.8 | 13
16
15
15 | 11
11
11
10 | 29
31
33
36
41 | 59
55
51
50
51 | 16
15
15
15
14 | 8.5
8.2
8.0
7.9
7.9 | 12
13
25
34
24 | | 16
17
18
19
20 | 32
31
23
18
16 | 27
32
49
93
108 | 11
11
13
12
14 | 88
74
144
205
100 | 10
10
9.5
9.7
9.4 | 15
14
13
12
12 | 11
12
12
12
13 | 45
47
49
51
58 | 53
53
49
45
43 | 14
13
12
15
30 | 8.3
8.5
10
9.9 | 19
18
17
18
16 | | 21
22
23
24
25 | 15
16
16
14
32 | 97
94
63
54
46 | 18
14
13
13 | 70
63
55
47
41 | 9.1
8.9
8.2
8.3
9.1 | 12
11
11
11 | 14
15
16
16 | 59
57
55
55
55 | 41
41
44
44 | 18
17
15
14 | 14
12
11
10
9.9 | 14
13
21
52
40 | | 26
27
28
29
30
31 | 30
22
18
16
15 | 39
33
35
39
33 | 32
34
34
75
97
76 | 38
34
29
24
21
20 | 9.9
19
17
 | 11
10
9.9
10 | 21
25
32
35
36
 | 53
52
60
70
72
75 | 41
40
39
37
34 | 13
12
12
11
11 | 9.5
9.3
36
49
49 | 33
27
22
19
17 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 524.4
16.9
34
7.1
1040
2.72
3.14 | 1141.1
38.0
108
9.4
2260
6.12
6.82 | 798
25.7
97
11
1580
4.14
4.77 | 1797
58.0
205
20
3560
9.32
10.75 | 336.9
12.0
19
8.2
668
1.93
2.01 | 379.9
12.3
16
9.9
754
1.97
2.27 | 436.9
14.6
36
9.1
867
2.34
2.61 | 1348
43.5
75
19
2670
6.99
8.06 | 1590
53.0
84
34
3150
8.52
9.51 | 536
17.3
31
11
1060
2.78
3.21 | 441.9
14.3
49
7.9
877
2.29
2.64 | 644
21.5
52
12
1280
3.45
3.85 | | | | STATISTIC | S OF MONTH | ILY MEAN I | DATA FOR V | WATER YE | ARS 1997 - | 2001, BY | WATER Y | EAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.4
25.7
2000
11.8
1998 | 24.9
38.0
2001
12.4
2000 | 17.0
25.7
2001
8.89
1999 | 20.1
58.0
2001
5.23
1998 | 8.67
12.0
2001
3.34
1999 | 9.57
15.6
1998
2.69
1999 | 20.6
38.6
1998
7.65
1999 | 53.5
67.9
1998
43.5
2001 | 46.2
70.7
1998
12.6
1997 | 12.7
19.2
1998
6.11
1997 | 8.48
14.3
2001
6.04
1999 | 20.8
35.3
1997
6.66
2000 | | SUMMARY | STATIST | rics | FOR 20 | 000 CALENI | DAR YEAR | F | OR 2001 WAT | ER YEAR | | WATER YEA | RS 1997 | - 2001# | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANT
ANNUAL
ANNUAL
ANNUAL
10 PERC
50 PERC | MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA M PEAK FI M PEAK ST TANEOUS I RUNOFF (| IEAN IEAN EAN EAN IY MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EEDS | | | Nov 20
Sep 9
Sep 4 | | 9974.1
27.3
205
7.1
8.2
269
7.32
6.9
19780
4.39
59.65
55
17
9.7 | Oct 4
Aug 11
Jan 19
Jan 19
Feb 23 | | 22.4
27.3
16.3
205
a2.1
2.2
269
7.32
b1.5
16230
48.95
56
12 | Mar
Mar
Jan
Jan
Apr | | See Period of Record, partial year used in monthly statistics Mar. 9 and 10, 1999 From temporary blockage of channel upstream from gage # SOUTH-CENTRAL ALASKA #### 15238600 SPRUCE CREEK NEAR SEWARD LOCATION.--Lat $60^{\circ}04'10''$, long $149^{\circ}27'08''$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 21, T. 1 S., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank 0.7 mi upstream from mouth at Resurrection Bay and 2.4 mi south of Seward. DRAINAGE AREA. -- 9.26 mi². PERIOD OF RECORD.--September 1967 to September 1979, annual maximum, water years 1980-90. October 1990 to current REVISED RECORDS.--WDR AK-76-1: 1966-67(M), 1970(M), 1972(M). WDR AK-77-1: 1969(M). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 75 ft above sea
level, from topographic map. REMARKS.--Records good, except January 8 to March 1 and April 25 to June 5, which are fair, and estimated daily discharges and discharges below $7.0~{\rm ft}^3/{\rm s}$, which are poor. Precipitation gage at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 21, 1966, reached a stage of 10.1 ft, from floodmarks; discharge, 3,090 $\,\mathrm{ft}^3/\mathrm{s}$, by slope-area measurement. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s, and maximum (*): | | Date | Time | Dis | scharge
Et ³ /s) | Gage Heig
(ft) | ht D | ate | Time | Discharge
(ft ³ /s) | Gage I
(f | | | |---|---|---|---|---|---|--|--|---|---|---|---|---| | | Jul 19 | 20:0 | 0 1 | L,060 | 6.25 | Au | ıg 28 | 15:30 | *1,070 | *6. | . 26 | | | | | DISCHAR | GE, CUBIO | C FEET PE | ER SECOND, N | WATER YE
MEAN VA | | BER 2000 T | O SEPTEMBER | 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 24
22
20
22
38 | 21
19
18
16
16 | 31
25
27
25
87 | 48
31
23
19
16 | 12
11
9.7
9.2
9.0 | 17
14
12
10 | 3.1
2.8
7.7
7.4
6.3 | 23
21
18
15
13 | 190
222
240
206
177 | 323
309
267
222
318 | 175
195
160
153
149 | 232
183
147
344
239 | | 6
7
8
9
10 | 192
195
101
62
48 | 15
14
14
16
107 | 55
48
34
27
30 | e14
e20
e59
33
19 | 9.5
9.1
8.7
8.4
7.9 | 13
11
9.9
10 | 5.9
5.4
4.9
4.5
4.6 | 12
11
10
10 | 182
170
156
190
230 | 306
274
232
225
227 | 164
146
125
115
108 | 134
109
96
80
69 | | 11
12
13
14
15 | 41
37
50
161
92 | 132
52
53
53
37 | 31
29
23
21
19 | 16
16
19
158
256 | 7.5
7.2
6.7
6.2
5.9 | 14
14
12
11 | 11
9.1
8.7
8.3
8.0 | 11
12
18
24
31 | 236
213
207
284
332 | 283
280
245
227
247 | 113
149
168
137
126 | 59
94
287
303
165 | | 16
17
18
19
20 | 84
68
53
45
37 | 36
72
68
194
233 | 18
17
16
29
29 | 66
61
130
131
50 | 5.7
5.3
5.0
4.9
5.1 | 9.9
8.9
8.1
7.2
6.5 | 7.6
7.0
6.6
6.4
6.7 | 36
38
41
49
65 | 346
310
284
242
234 | 231
251
254
446
655 | 126
121
148
165
413 | 123
124
115
106
104 | | 21
22
23
24
25 | 33
39
37
36
153 | 154
111
71
56
45 | 31
23
21
22
27 | 37
35
28
23
22 | 5.1
5.1
4.9
4.9
5.5 | 5.6
e5.0
4.6
4.1
3.7 | 7.3
8.3
9.2
10 | 62
60
54
59
65 | 264
303
469
600
506 | 347
294
226
203
189 | 382
296
180
146
168 | 101
88
290
276
140 | | 26
27
28
29
30
31 | 53
39
32
28
25
23 | 36
31
73
72
43 | 52
44
36
160
121
84 | 22
22
16
14
13 | 8.9
30
24
 | 3.8
3.9
3.6
3.5
e3.5 | 14
15
19
20
24 | 58
56
85
102
104
147 | 633
642
600
501
367 | 196
197
175
147
145
173 | 168
166
518
428
470
318 | 98
79
73
68
62 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 1890
61.0
195
20
3750
6.58
7.59 | 1878
62.6
233
14
3730
6.76
7.54 | 1242
40.1
160
16
2460
4.33
4.99 | 1429
46.1
256
12
2830
4.98
5.74 | 242.4
8.66
30
4.9
481
.93
.97 | 265.1
8.55
17
3.3
526
.92
1.06 | 270.8
9.03
24
2.8
537
.97 | 1321
42.6
147
10
2620
4.60
5.31 | 9536
318
642
156
18910
34.3
38.31 | 8114
262
655
145
16090
28.3
32.60 | 6396
206
518
108
12690
22.3
25.69 | 4388
146
344
59
8700
15.8
17.63 | | | S | STATISTICS | S OF MONT | HLY MEAN | DATA FOR W | ATER YE. | ARS 1967 | - 2001, E | BY WATER YE | AR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 86.2
333
1970
17.0
1997 | 37.4
129
1977
9.40
1974 | 16.3
51.1
1970
3.52
1997 | 10.6
46.1
2001
.65
1974 | 9.76
46.6
1994
.000
1972 | 4.06
15.3
1970
.000
1971 | 12.7
35.6
1969
.12
1972 | 72.2
135
1993
30.6
1971 | 203
318
2001
116
1972 | 193
371
1977
104
1997 | 150
323
1977
56.9
1969 | 170
372
1995
48.8
2000 | See Period of Record, partial year used in monthly statistics # 15238600 SPRUCE CREEK NEAR SEWARD--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1967 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 28948.8 | 36972.3 | | | ANNUAL MEAN | 79.1 | 101 | 80.0 | | HIGHEST ANNUAL MEAN | | | 123 1977 | | LOWEST ANNUAL MEAN | | | 50.6 1996 | | HIGHEST DAILY MEAN | 697 Aug 2 | 655 Jul 20 | 1650 Oct 11 1969 | | LOWEST DAILY MEAN | 2.1 Mar 12 | 2.8 Apr 2 | a.00 Mar 1 1969 | | ANNUAL SEVEN-DAY MINIMUM | 2.8 Mar 8 | 3.4 Mar 27 | .00 Mar 1 1969 | | MAXIMUM PEAK FLOW | | 1070 Aug 28 | b13600 Oct 11 1986 | | MAXIMUM PEAK STAGE | | 6.26 Aug 28 | c13.96 Oct 11 1986 | | INSTANTANEOUS LOW FLOW | | 2.6 Apr 2 | .00 Mar 1 1969 | | ANNUAL RUNOFF (AC-FT) | 57420 | 73330 | 57970 | | ANNUAL RUNOFF (CFSM) | 8.54 | 10.9 | 8.64 | | ANNUAL RUNOFF (INCHES) | 116.30 | 148.53 | 117.40 | | 10 PERCENT EXCEEDS | 222 | 275 | 210 | | 50 PERCENT EXCEEDS | 38 | 43 | 34 | | 90 PERCENT EXCEEDS | 6.0 | 6.9 | 1.5 | See Period of Record, partial year used in monthly statistics No flow many days in water years 1969, 1971-76, 1992, 1996, and 1999 Slope-area measurement of the release of water temporarily stored behind a debris-avalanche dam. Inflow into the ponded area was 5,420 ft³/s, from a slope-area measurement made about 0.3 mi upstream at a site with a drainage area of 8.98 mi² From floodmarks Location of the Bradley Lake Hydroelectric Project area. #### 15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER LOCATION.--Lat 59°41′04″, long 150°42′12″ (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank, 0.4 mi downstream from terminus of Nuka Glacier, 4.9 mi southeast of Bradley Lake, and 29 mi east of Homer, Alaska. DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 3 \min^2 and varied according to position of glacier terminus. PERIOD OF RECORD.--Occasional low-flow measurements, water years 1980-81, prior to shift in glacier terminus; September 1984 to current year. Records prior to July 29, 1990, are not equivalent. Published as "Upper Nuka River near Homer" prior to October 1989. Low-flow records not equivalent prior to November 1987 because most lowflow measurements were made at site 0.5 mi downstream. REVISED RECORDS. -- WDR AK-89-1: 1985 (M), 1986-88. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,300 ft above sea level, from topographic map. REMARKS.--Records fair except estimated daily discharges, which are poor. Water is diverted, 300 ft upstream from gage, into Bradley River drainage since July 29, 1990. Precipitation gage and air temperature recorder at station; daily values of precipitation and air temperature are available from the computer files of the Alaska District. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JIIN JUL AUG SEP 6.6 e.00 .00 e.00 e.00 e7.0 3.7 6.9 4.1 e1.6 e.10e.003.7 6.5 e.00 e.00 e6.0 6.4 e1.4 e.10 e.00 .00 e.00 3.8 3 6.3 3.9 e1.2 e.00 e.00 e.00 .00 e.00 e.10 e5.0 3.8 6.2 6.8 6.7 6.3 3.8 e1.0e.00e.00e.00.00 e.00e.10e5.05 3.7 7.0 3.5 e1.0 e.00 e.00 e.00 .00 e.00 e.10 e8.0 6 7.5 e.00 e.00 e.00 . 00 e.00 e6.0 3.4 e.80 e.10 3.8 6.3 5.9 7.6 3.3 e.70 e.00 e.00 e.00 .00 e.00 e6.0 3.7 e.10 .00 8 7 2 3 0 e.60 e.00 e.00 e.00 e.00 e.10 e5.0 3.7 5.2 6.9 4.6 e.50e.00 .00 e.00 4.4 e.00e.00e.10e5.03.7 10 6.7 8.0 e.40 e.00 e.00 e.00 e.00 e.10 4.3 e6.0 3.9 11 6.5 7.0 e.40 e.00 e.00 e.00 .00 e.00 e.10 4.1 6.2 5.0 e.30 e.00 e.00 e.00 e.00 e.20 6.4 6.9 13 5 0 e.30 e.00 e.00 e.00 e.00 e.00 e.20 e5 0 4 9 e.00 7.6 4.6 e.30 e.20 e.00 e.00 e.00 e.20 e6.0 5.2 14 7.0 e.20 e.00 e.00 e.00 16 7.0 3.9 e.20 e.30 e.00 e.00 e.00 e.00 e.40 e5.0 6.0 5.9 e.20 e.00 e.00 e.20 e5.0 5.7 17 6.6 5.2 e.00 e.00 e.50 18 6.1 6.5 e.10 e.20 e.00 e.00 e.00 e.00 e.70 e10 7.1 5.0 7.8 e.00 e.00 e200 4.9 e.10 e.20 e.00 e.00 e.90 19 20 3.2 9.2 e.00 e.00 e1.2 8.9 5.3 e.10 e.10 e.00 e.00 e40 21 2.7 7.8 e.10 e.10 e.00 e.00 e.00 e.00 e1.6 4.5 8.4 6.5 22 2.9 6.7 e.00 e.10 e.00 e.00 e.00 .00 e2.1 e3.0 4.4 7.9 5.9 23 5.0 .00 4.3 7.1 6.4 e.00 e.00 e.00 e.00 e.00 e.00 e.00 2.9 e.00 e.00 e.00 e.00 e4.0 4.0 6.9 25 6.4 3.2 e.00 e.00 e.00 e.00 e.00 e5.5 3.9 6.8 5.5 e.00 e.00 e.00 e7.0 26 4.6 3.0 e.00 e.00 e.00 e.00 3.9 6.6 27 3.9 7.3 e2.6 e2.4 e.00 e.00 e.00 e.00 e.00 e.00 e10 e15 3.8 6 5 3.8 28 e.00 8.0 e.00 e.00 e.00 e.00 e.00 e2.2 e.40 e.00 e.00 e.00 e.00 e10 3.8 8.1 3.6 e2.0 e.30 e.00 e.00 30 5.6 ___
0.0 e.00 e8.0 3.7 8 1 3.2 7.6 31 5.4 e.20 e.00e.00 e.00 0 00 TOTAL. 181 8 137 4 12 40 1 90 0 0 0 0 00 0 0 0 71 70 389 8 179 8 165 1 5.86 4.58 .061 .000 .000 .000 .000 12.6 5.50 MEAN .40 2.39 5.80 7.6 9.2 1.6 .00 .00 .00 .00 200 6.9 MAX .30 8.9 2.7 2.0 MTN .00 .00 .00 .00 .00 .00 .00 3.7 3.2 273 3.8 142 327 AC-FT 361 25 .00 .00 .00 .00 357 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2001. BY WATER YEAR (WY)# MEAN 2.98 1.61 .12 .035 .14 .000 .003 .69 37.3 17.6 10.4 XAM 5.86 6.45 .83 .16 1.56 .000 .015 2.73 209 272 53.1 31.9 1998 2000 1995 1994 (WY) 2001 1991 1991 1996 1999 1999 1998 1998 MIN .000 .000 .000 .000 .000 .000 .000 .000 1.06 1991 1991 1991 1992 1998 1992 1991 1991 1991 1992 1992 1991 (WY) [#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area e Estimated ### 15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER--Continued | | STATISTICS | OF MONT | THLY MEAN | DATA FOR | WATER Y | YEARS 1991 - | - 2001, B | Y WATER | YEAR (WY)# | | | |--|--------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | MEAN 2.98
MAX 5.86
(WY) 2001
MIN .000
(WY) 1992 | 1.61
6.45
1998
.000
1992 | .12
.83
2000
.000
1991 | .035
.16
1995
.000
1991 | .14
1.56
1994
.000
1991 | .000
.000
1991
.000
1991 | .003
.015
1991
.000
1992 | .69
2.73
1996
.000
1998 | 27.5
209
1999
1.06
1992 | 37.3
272
1999
2.96
1991 | 17.6
53.1
1998
.97
1991 | 10.4
31.9
1998
1.72
1991 | | SUMMARY STATIS | STICS | FOR 2 | 000 CALEN | DAR YEAR | | FOR 2001 WAS | TER YEAR | | WATER YEA | RS 1991 | - 2001# | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL | _ MEAN | | 1189.60
3.25 | | | 1139.90
3.12 | | | 8.24
a45.6 | | 1999 | | LOWEST ANNUAL
HIGHEST DAILY
LOWEST DAILY M
ANNUAL SEVEN-D | MEAN
IEAN | | 17
b.00 | | | e200
c.00 | Jul 19
Dec 22
Dec 22 | | 1.09
335
d.00
.00 | Jul
Nov
Nov | 1991
4 1999
3 1990
3 1990 | | MAXIMUM PEAK F
MAXIMUM PEAK S
ANNUAL RUNOFF | LOW
TAGE | | 2360 | oun 1 | | 2260 | DCC 22 | | 451
4.30
5970 | Jul
Jul | 4 1999
4 1999 | | 10 PERCENT EXC
50 PERCENT EXC
90 PERCENT EXC | CEEDS | | 7.5
1.6
.00 | | | 6.9
.30
.00 | | | 11
.10
.00 | | | ### PRIOR TO REGULATION AND DIVERSION OF NUKA RIVER | | | STATISTICS | OF | MONTHLY MEAN | DATA | FOR | WATER | YEARS 19 | 85 - 1989, | BY WATER | YEAR | (WY)# | | |-------------|--------------|------------|--------------|--------------|--------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | OCT | NOV | DEC | JAN | FEB | | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 47.6 | 7.01 | 2.83 | 1.48 | .49 | | .21 | .22 | 23.8 | 34.7 | 141 | 180 | 131 | | MAX
(WY) | 72.0
1987 | | 9.00
1987 | | 2.24
1985 | | .87
1985 | .72
1985 | 117
1986 | 81.2
1989 | 307
1989 | 432
1989 | 321
1989 | | MIN
(WY) | 3.84
1989 | | .000
1989 | | .000
1988 | | .000
1988 | .000
1988 | .016
1987 | | 5.41
1988 | 12.1
1986 | 7.08
1988 | | SUMMARY STATISTICS | WATER YEARS 19 | 85 - 1989# | |---|----------------------------|--| | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) | f.00 M
.00 M
g1630 A | 1989
1988
ug 25 1989
ay 6 1987
ay 6 1987
ug 25 1989
ug 25 1989 | | 10 PERCENT EXCEEDS | 183 | | ⁵⁰ PERCENT EXCEEDS 90 PERCENT EXCEEDS .00 See Period of Record and Remarks. Not adjusted to account for changes in drainage area Diversion dam failed Jun. 17, 1999; repaired Sep. 25, 1999 From Jan. 1 to May 11 and Dec. 22 to 28. From Dec. 22 - 28, Jan. 3 - 13, and Jan. 23 to Jun. 2 No flow most days during winter Estimated No flow many days each year since 1987 during winter through Jun. See Period of Record for remark on low-flow records From rating curve extended above 380 ft³/s c d Discharge Gage height ### 15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER PERIOD OF RECORD. -- August 1992 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,350 ft above sea level, from topographic REMARKS.--Records good except for estimated daily discharges, which are poor. The entire flow of Battle Creek at the station has been diverted into Bradley Lake since October 1991. EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 50 ${\rm ft}^3/{\rm s}$ and maximums (*). Discharge Gage Height | | Date | Time | Discl
(ft | narge
³ /s) | Gage Heigh
(ft) | t | Date | | Time | Discharge
(ft ³ /s) | | height
(ft) | |------------------------------------|---|---|--|--|------------------------------------|--------------------------------------|--|---|--|---|--|---| | | Jul. 19
Aug. 28 | 1645
1500 | | 32
51 | *6.63
6.10 | | Sep. | 23 | 1830 | 50 | 6 | .08 | | | | DISCH | ARGE, CUB | IC FEET | PER SECOND, | | YEAR OCTOB | ER 2000 | TO SEPTEM | MBER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .54
.51
.39
.51 | .08
.04
.02
.00 | .05
.00
.00
.00
e.05 | .17
.02
.00
.00 | .00 | .00
.00
.00
.00 | .00 | e.02
.01
.00
.00 | 3.7
4.5
7.4
6.3
5.3 | 21
18
17
17
18 | 11
12
13
12
10 | 8.9
7.0
6.3
13 | | 6
7
8
9
10 | 8.7
9.8
4.5
2.9 | .00
.00
.00
.06
2.9 | e.02
e.01
e.01
.00 | .00
.95
.59
.11 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | 5.3
5.1
5.7
7.7 | 19
17
15
16
17 | 9.6
11
17
15
12 | 7.0
5.2
4.0
3.0
2.5 | | 11
12
13
14
15 | 1.8
1.6
6.4
14
4.1 | 2.3
.84
1.3
1.2
.45 | .00
.00
.00
.00 | .00
.00
.00
e.02
e.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .01
.09
.16
.25 | 13
14
13
15 | 27
26
17
13
23 | 8.5
9.7
11
20
25 | 2.1
4.5
18
15
7.9 | | 16
17
18
19
20 | 3.1
2.3
1.7
1.3 | .35
.31
.34
2.8
7.6 | .00
.00
.00
e.01
e.01 | e.05
e.05
e.04
e.03
e.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .59
.77
.74
.78
1.0 | 17
16
16
16
17 | 24
21
23
57
50 | 21
19
19
18
28 | 5.9
6.0
4.6
4.4
6.9 | | 21
22
23
24
25 | .45
.61
.74
.74 | 4.6
2.1
1.0
.61
.32 | e.02
.00
.00
e.02
e.02 | e.01
e.01
e.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .99
.95
1.0
1.1 | 18
22
24
25
23 | 32
22
16
13
11 | 12
9.8
8.7
11
7.6 | 17
7.0
22
28
11 | | 26
27
28
29
30
31 | 1.7
.90
.49
.32
.27 | .10
.00
.51
.77
.28 | e.02
e.03
.03
e1.0
e5.0 | .00
.00
.00
.00 | .00
.00
.00
 | .00
.00
.00
.00 | .00
.00
.00
.00 | 1.0
1.0
1.5
2.6
3.6
2.9 | 28
30
30
36
30
 | 10
11
10
9.7
15 | 5.9
5.9
23
19
27
18 | 7.2
5.3
4.3
3.7
2.9 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 79.65
2.57
14
.18
158
2.70
3.12 | 30.88
1.03
7.6
.00
61
1.08
1.21 | 7.00
.23
5.0
.00
14
.24 | 2.09
.067
.95
.00
4.1
.07 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.01
.000
.01
.00
.02
.00 | 22.59
.73
3.6
.00
45
.77 | 480.0
16.0
36
3.7
952
16.8
18.80 | 621.7
20.1
57
9.7
1230
21.1
24.34 | 449.7
14.5
28
5.9
892
15.3
17.61 | 252.6
8.42
28
2.1
501
8.86
9.89 | | | | STATISTI | CS OF MON | THLY ME | AN DATA FOR | WATER | YEARS 1992 | - 2001, | BY WATER | YEAR (WY)# | ŧ | | | MEAN
MAX
(WY)
MIN
(WY) | 2.57
5.84
1994
.21
1997 | 1.06
2.83
1998
.009
2000 | .19
1.22
2000
.000
1996 | .041
.19
1995
.000
1996 | .13
.48
1994
.000
1996 | .002
.015
1998
.000
1994 | .14
.67
1997
.000
1999 | 2.52
7.67
1993
.21
1999 | 14.2
23.5
1998
5.55
1996 | 11.5
20.1
2001
1.83
1996 | 6.09
14.5
2001
.094
1996 | 7.04
16.9
1995
.91
1992 | See Period of Record and Remarks, partial years used in monthly statistics Estimated # 15238978 BATTLE CREEK DIVERSION ABOVE
BRADLEY LAKE NEAR HOMER--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1992 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 1254.34 | 1946.22 | | | ANNUAL MEAN | 3.43 | 5.33 | 3.86 | | HIGHEST ANNUAL MEAN | | | 5.34 1998 | | LOWEST ANNUAL MEAN | | | 1.23 1996 | | HIGHEST DAILY MEAN | 41 Aug 2 | 57 Jul 19 | 104 Sep 20 1995 | | LOWEST DAILY MEAN | a.00 Jan 1 | a.00 Nov 4 | b.00 Jun 3 1992 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan 1 | .00 Dec 9 | .00 Jan 11 1993 | | MAXIMUM PEAK FLOW | | 82 Jul 19 | 134 Sep 20 1995 | | MAXIMUM PEAK STAGE | | 6.63 Jul 19 | 7.32 Sep 20 1995 | | MAXIMUM PEAK STAGE | | | c8.09 May 20 1999 | | ANNUAL RUNOFF (AC-FT) | 2490 | 3860 | 2800 | | ANNUAL RUNOFF (CFSM) | 3.61 | 5.61 | 4.06 | | ANNUAL RUNOFF (INCHES) | 49.12 | 76.21 | 55.19 | | 10 PERCENT EXCEEDS | 15 | 18 | 13 | | 50 PERCENT EXCEEDS | .26 | .45 | .34 | | 90 PERCENT EXCEEDS | .00 | .00 | .00 | See Period of Record and Remarks, partial years used in monthly statistics No flow many days during the winter No flow many days most winters, and Jun. 3, 1992 (observation), Aug. 4, Aug. 5, Aug. 9, and Aug. 14 to Sept. 11, 1996 Backwater from ice jam a b #### 15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER LOCATION.--Lat 59°42'02", long 150°42'09", (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 1.0 mi downstream from Nuka Glacier terminus, 2.7 mi upstream from confluence with Kachemak Creek, 3.7 mi southeast of Bradley Lake, and 29 mi east of Homer. Prior to July 22, 1991 at site 0.2 mi downstream. DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 10 mi^2 and varied according to position of glacier terminus. PERIOD OF RECORD.--October 1979 to current year. Prior to October 1989, published as Upper Bradley River near Homer. REVISED RECORDS.--WDR AK-86-1: 1980-85, WRD AK-96-1: 1991-95 GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,250 ft above sea level, from topographic map. Prior to July 22, 1991 at site 0.2 mi downstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow diverted from Upper Nuka River into Upper Bradley River drainage since July 29, 1990. Air temperature recorder at station, daily values of air temperature available from the computer files of the Alaska District. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------| | 1 | 48 | e17 | e12 | e10 | e1.8 | e.00 | e.00 | e.00 | e70 | 758 | 514 | 509 | | 2 | 40 | 17 | e11 | e8.0 | e1.7 | e.00 | e.00 | e.00 | e100 | 743 | 537 | 444 | | 3
4 | 32
48 | 17
e16 | e11
e10 | e6.5
e5.5 | e1.6
e1.5 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e130
e130 | 711
671 | 496
468 | 396
535 | | 5 | 129 | 16 | e10
e10 | e5.5
e4.6 | e1.5
e1.0 | e.00 | e.00 | e.00 | e110 | 780 | 480 | 517 | | 3 | 127 | | 010 | 01.0 | 01.0 | 0.00 | 2.00 | 2.00 | 0110 | , 00 | 100 | 51, | | 6 | 249 | e15 | e9.0 | e4.6 | e1.0 | e.00 | e.00 | e.00 | e100 | 901 | 489 | 358 | | 7 | 261 | 15 | e8.0 | e4.6 | e.50 | e.00 | e.00 | e.00 | e90 | 837 | 457 | 283 | | 8 | 132 | 15 | e7.5 | e3.8 | e.50 | e.00 | e.00 | e.00 | e100 | 768 | 451 | 225 | | 9
10 | 68
47 | 33
88 | e6.5
e6.0 | e3.4
e2.9 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e120
e140 | 755
745 | 438
427 | 180
161 | | 10 | 4 / | 00 | e0.0 | 62.9 | e.00 | e.00 | e.00 | e.00 | 6140 | 745 | 427 | 101 | | 11 | 37 | 46 | e5.5 | e2.5 | e.00 | e.00 | e.00 | e.00 | e150 | 827 | 456 | 136 | | 12 | 33 | 26 | e5.0 | e2.2 | e.00 | e.00 | e.00 | e.00 | e170 | 874 | 544 | 295 | | 13 | 72 | 30 | e4.6 | e2.0 | e.00 | e.00 | e.00 | e.00 | e180 | 803 | 588 | 528 | | 14 | 148 | 27 | e4.2 | e8.0 | e.00 | e.00 | e.00 | e.00 | e200 | 762 | 564 | 468 | | 15 | 74 | 22 | e3.8 | e10 | e.00 | e.00 | e.00 | e.50 | e220 | 825 | 592 | 376 | | 16 | 68 | 21 | e3.6 | e6.5 | e.00 | e.00 | e.00 | e.50 | e250 | 851 | 580 | 314 | | 17 | 43 | 20 | e3.2 | e6.0 | e.00 | e.00 | e.00 | e1.0 | e290 | 893 | 569 | 329 | | 18 | 33 | 22 | e3.0 | e8.0 | e.00 | e.00 | e.00 | e1.5 | e320 | 915 | 673 | 286 | | 19 | 28 | 90 | e2.8 | e6.5 | e.00 | e.00 | e.00 | e2.0 | e360 | 1330 | 723 | 265 | | 20 | 26 | 167 | e2.7 | e5.5 | e.00 | e.00 | e.00 | e3.0 | e420 | 1160 | 999 | 356 | | 21 | 25 | 79 | e2.5 | e4.8 | e.00 | e.00 | e.00 | e4.0 | 452 | 1060 | 832 | 456 | | 22 | 24 | 45 | e2.4 | e4.4 | e.00 | e.00 | e.00 | e6.0 | 500 | 874 | 762 | 312 | | 23 | 23 | 27 | e2.2 | e4.0 | e.00 | e.00 | e.00 | e8.0 | 637 | 709 | 543 | 458 | | 24 | 31 | 23 | e2.1 | e5.0 | e.00 | e.00 | e.00 | e12 | 580 | 619 | 478 | 435 | | 25 | 66 | 22 | e2.0 | e3.4 | e.00 | e.00 | e.00 | e18 | 524 | 569 | 444 | 220 | | 26 | 28 | e19 | e1.9 | e3.0 | e.00 | e.00 | e.00 | e24 | 706 | 537 | 411 | 171 | | 27 | 24 | e17 | e1.8 | e2.7 | e.00 | e.00 | e.00 | e28 | 889 | 520 | 426 | 136 | | 28 | 25 | e15 | e1.8 | e2.5 | e.00 | e.00 | e.00 | e36 | 1070 | 492 | 886 | 130 | | 29 | 19 | e13 | e20 | e2.3 | | e.00 | e.00 | e42 | 1010 | 449 | 995 | 128 | | 30 | 19 | e12 | e17 | e2.1 | | e.00 | e.00 | e44 | 885 | 450 | 975 | 103 | | 31 | e18 | | e12 | e1.9 | | e.00 | | e50 | | 480 | 686 | | | TOTAL | 1918 | 992 | 195.1 | 147.2 | 9.60 | 0.00 | 0.00 | 280.50 | 10903 | 23668 | 18483 | 9510 | | MEAN | 61.9 | 33.1 | 6.29 | 4.75 | .34 | .000 | .000 | 9.05 | 363 | 763 | 596 | 317 | | MAX | 261 | 167 | 20 | 10 | 1.8 | .00 | .00 | 50 | 1070 | 1330 | 999 | 535 | | MIN | 18 | 12 | 1.8 | 1.9 | .00 | .00 | .00 | .00 | 70 | 449 | 411 | 103 | | AC-FT | 3800 | 1970 | 387 | 292 | 19 | .00 | .00 | 556 | 21630 | 46950 | 36660 | 18860 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1991 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 72.1 | 15.6 | 2.78 | .56 | .42 | .000 | .078 | 20.8 | 220 | 407 | 445 | 357 | | MAX | 213 | 38.4 | 19.4 | 4.75 | 4.35 | .000 | .55 | 93.6 | 363 | 763 | 597 | 851 | | (WY) | 1994 | 1998 | 2000 | 2001 | 1994 | 1991 | 1993 | 1993 | 2001 | 2001 | 1993 | 1995 | | MIN | 12.9 | 2.39 | .000 | .000 | .000 | .000 | .000 | .008 | 94.4 | 106 | 293 | 117 | | (WY) | 1997 | 2000 | 1995 | 1991 | 1991 | 1991 | 1992 | 1998 | 1999 | 1999 | 1998 | 1992 | [#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area e Estimated ## 15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1991 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 33915.30 | 66106.40 | | | ANNUAL MEAN | 92.7 | 181 | 129 | | HIGHEST ANNUAL MEAN | | | 181 2001 | | LOWEST ANNUAL MEAN | | | 91.1 1998 | | HIGHEST DAILY MEAN | 1010 Aug 3 | 1330 Jul 19 | a3600 Sep 21 1995 | | LOWEST DAILY MEAN | b.00 Jan 2 | c.00 Feb 9 | d.00 Dec 5 1990 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan 2 | .00 Feb 9 | .00 Dec 5 1990 | | MAXIMUM PEAK FLOW | | 2050 Jul 19 | f4100 Sep 20 1995 | | MAXIMUM PEAK STAGE | | 13.85 Jul 19 | g15.10 Sep 20 1995 | | ANNUAL RUNOFF (AC-FT) | 67270 | 131100 | 93510 | | 10 PERCENT EXCEEDS | 320 | 672 | 420 | | 50 PERCENT EXCEEDS | 10 | 17 | 5.0 | | 90 PERCENT EXCEEDS | .00 | .00 | .00 | ### PRIOR TO DIVERSION FROM UPPER NUKA RIVER STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1989, BY WATER YEAR (WY)# | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|------|------|------|------|------|------|------|------|------|------|------|------| | MEAN | 106 | 22.8 | 10.2 | 4.67 | 1.74 | 1.35 | 1.29 | 38.3 | 161 | 290 | 349 | 292 | | MAX | 279 | 75.7 | 54.6 | 15.1 | 4.82 | 6.50 | 4.67 | 92.0 | 270 | 458 | 595 | 673 | | (WY) | 1980 | 1980 | 1987 | 1981 | 1981 | 1984 | 1981 | 1986 | 1988 | 1981 | 1986 | 1982 | | MIN | 26.3 | 2.60 | .50 | .000 | .000 | .000 | .000 | .33 | 102 | 149 | 133 | 63.1 | | (WY) | 1986 | 1988 | 1989 | 1989 | 1989 | 1989 | 1986 | 1987 | 1985 | 1985 | 1985 | 1983 | | SUMMARY STATISTICS | WATER | YEARS 1980 - 1989 # | | | | | | | | |--------------------------|-----------------------|---------------------|--|--|--|--|--|--|--| | ANNUAL MEAN | 107 | | | | | | | | | | HIGHEST ANNUAL MEAN | 154 | 1986 | | | | | | | | | LOWEST ANNUAL MEAN | 49.6 | 1985 | | | | | | | | | HIGHEST DAILY MEAN | 1890 | Aug 27 1986 | | | | | | | | | LOWEST DAILY MEAN | d.00 | Dec 25 1979 | | | | | | | | | ANNUAL SEVEN-DAY MINIMUM | .00 | Dec 25 1979 | | | | | | | | | INSTANTANEOUS PEAK FLOW | h2530 | Oct 10 1986 | | | | | | | | | INSTANTANEOUS PEAK STAGE | i9.86 | Oct 10 1986 | | | | | | | | | ANNUAL RUNOFF (AC-FT) | 77650 | 10 PERCENT EXCEEDS | 338 | | | | | | | | | | 50 PERCENT EXCEEDS | 50 PERCENT EXCEEDS 15 | | | | | | | | | | 90 PERCENT EXCEEDS | .50 | | | | | | | | | See Period of Record and Remarks. Not adjusted to account for changes in drainage area Estimated discharge, but may have been higher during period of no gage-height record, Sep. 21 to Sep. 22, 1995 From Jan. 2 to May 2 From Feb. 9 to May 14 No flow in winter most years From rating curve extended above 400 ft³/s on basis of slope-area measurement of peak flow From floodmarks From rating curve extended above 440 ft³/s on basis of slope-area measurement of peak flow Site and datum then in use #### 15239000 BRADLEY RIVER NEAR HOMER - LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, about 1,300 ft
downstream from Bradley Lake dam, 3.3 mi upstream from confluence with Middle Fork Bradley River, and 26 mi northeast of Homer. - DRAINAGE AREA.--About 65 mi² since July and August 1990, when additional water was diverted into the basin. Prior drainage area was about 54 mi². - PERIOD OF RECORD.--July to August 1955, October 1957 to September 1990 (discharge). October 1991 to current year (beginning month reservoir contents and monthly discharges). - REVISED RECORDS.--WSP 2136: 1960(M), 1965. WDR AK-77-1: 1958, 1961, 1963(M), 1966, 1967, 1970, 1972, 1974, 1976. - GAGE. -- Nonrecording gage. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. July 13-22, 1955, non-recording lake gage at site 1 mi upstream and July 23 to August 5, 1955, at site 3 mi upstream at different datum. Prior to November 4, 1980, and April 29 to October 5, 1986, water-stage recorder at site 500 ft upstream at different datum and November 4, 1980 to April 28, 1986, water-stage recorder 1,300 ft upstream at different datum. April 29, 1986 to September 30, 1989, water-stage recorder at present site and datum. - REMARKS.--Reservoir is formed by an earthen dam with impermeable core and concrete face at the outlet of Bradley Lake. Construction began November 1986 and was completed in April 1991. Total and usable capacities below the spillway crest of 1,180 ft are 547,500 and 284,200 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed using totalizing flow meters; release flow enters Kachemak Bay and is not returned to stream. Spill, dam seepage, and fish-water bypass are measured at Bradley River below Dam (15239001) gage. Reservoir capacity table furnished by the Alaska Energy Authority. - COOPERATION.--Reservoir elevations and power generation discharge provided by the Homer Electric Association, for the Alaska Energy Authority. - AVERAGE DISCHARGE.--42 years (water years 1958 to 1989, and 1992 to current year), 453 ft³/s, 328,200 acre-ft/yr. The inflow diversions from Middle Fork Bradley River and Battle Creek into the reservoir are excluded. Flow diverted from Upper Nuka River into Upper Bradley since July 29, 1990 was not measurable and is included in the following tabulations. - EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 549,400 acre-ft, October 1, 1991, elevation 1180.5 ft; minimum contents observed, 246,600 acre-ft, April 23, 1997, elevation 1069.3 ft. Maximum computed discharge, 8,800 ft²/s, October 10, 1986, gage height, 10.90 ft from floodmarks, site and datum then in use. Maximum discharge, September 21-22, 1995 was probably higher, as indicated by extremes for period of record on these dates for other sites in the Bradley River basin; minimum daily, about 9.0 ft³/s, December 7, 1986, result of power tunnel construction at dam site. - EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 534,500 acre-ft, September 26, elevation 1176.7 ft; minimum contents observed, 316,900 acre-ft, May 15, elevation 1106.9 ft. BEGINNING OF MONTH RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ELEVATION | CONTENTS | CHANGE IN
CONTENTS | |-------|-----------|-------------|-----------------------| | Oct 1 | 1,135.1 | 393,100 | | | Nov 1 | 1,133.1 | 386,900 | -6,200 | | Dec 1 | 1,130.6 | 379,200 | -7,700 | | Jan 1 | 1,127.5 | 369,700 | -9,500 | | Feb 1 | 1,125.2 | 362,600 | -7,100 | | Mar 1 | 1,118.9 | 346,800 | -15,800 | | Apr 1 | 1,111.2 | 327,600 | -19,200 | | May 1 | 1,108.8 | 321,600 | -6,000 | | Jun 1 | 1,109.4 | 323,100 | +1,500 | | Jul 1 | 1,126.5 | 366,600 | +43,500 | | Aug 1 | 1,150.7 | 441,500 | +74,900 | | Sep 1 | 1,173.2 | 521,400 | +79,900 | | Oct 1 | 1,175.4 | 529,400 | +8,000 | | | | CAL YR 2000 | -37,300 | | | | WTR YR 2001 | +136,300 | #### DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES | MONTH | CHANGE IN CONTENTS | POWER
GENERATION | BRADLEY RIVER
BELOW DAM
15239001 | MIDDLE FORK
BRADLEY RIVER
15239050 | BATTLE CREEK
DIVERSION
15238978 | BRADLEY
RIVER
15239000 | |-------------|--------------------|---------------------|--|--|---------------------------------------|------------------------------| | OCT | -101 | 397 | 37.0 | 25.2 | 2.57 | 305 | | NOV | -129 | 403 | 25.2 | 33.6 | 1.03 | 264 | | DEC | -154 | 342 | 35.1 | 10.8 | 0.23 | 211 | | JAN | -116 | 358 | 33.8 | 8.47 | 0.07 | 268 | | FEB | -284 | 344 | 36.1 | 5.61 | 0.00 | 89.9 | | MAR | -312 | 340 | 36.8 | 4.93 | 0.00 | 59.5 | | APR | -101 | 136 | 35.3 | 4.42 | 0.00 | 65.5 | | MAY | +24 | 220 | 30.7 | 7.31 | 0.73 | 267 | | JUN | +731 | 560 | 0.40 | 117 | 16.0 | 1,160 | | JUL | +1,220 | 574 | 1.53 | 221 | 20.1 | 1,550 | | AUG | +1,300 | 582 | 21.3 | 204 | 14.5 | 1,680 | | SEP | +134 | 965 | 31.5 | 102 | 8.42 | 1,020 | | CAL YR 2000 | -54 | 505 | 37.5 | 44.6 | 3.43 | 442 | | WTR YR 2001 | +184 | 435 | 27.0 | 62.5 | 5.33 | 579 | #### 15239001 BRADLEY RIVER BELOW DAM NEAR HOMER LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank about 1,300 ft downstream from Bradley Lake Dam, 3.3 mi upstream from Middle Fork Bradley River, and 26 mi northeast of Homer. DRAINAGE AREA.--About 66 mi 2 since October 1991, when additional water was diverted into the basin. Prior drainage area was about 54 mi 2 . PERIOD OF RECORD.--October 1989 to current year. Prior to 1990 water year, records are equivalent to "Bradley River near Homer" (station no. 15239000). GAGE.--Water-stage recorder. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority). REMARKS.--No estimated daily discharges. Records fair. Nuka River and Middle Fork Bradley River were diverted into Bradley Lake, upstream from dam, beginning July 29 and August 7, 1990, respectively. Reservoir began filling April 26, 1991. Water has been diverted out of the basin through the turbines since hydro-power generation began on June 28, 1991. Battle Creek was diverted into reservoir in October 1991. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from the computer files of the Alaska District. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,450 $\rm ft^3/s$ September 21, 1990, gage height, 7.11 ft; minimum, 0.00 $\rm ft^3/s$, from rating curve extended below 0.18 $\rm ft^3/s$, most likely ponded water, but no measurable flow, June 9 and June 10, 1997. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 85 ft³/s, August 6, gage height, 3.03 ft; minimum, 0.10 ft³/s, July 13-15. | | | DISCHA | ARGE, CUBI | C FEET P | |), WATER Y
LY MEAN V | | DBER 2000 | TO SEPTEM | BER 2001 | | | |--------|------|--------|------------|----------|------|-------------------------|------|-----------|-----------|----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 44 | 38 | 25 | 35 | 37 | 36 | 38 | 32 | .79 | .18 | 5.7 | 17 | | 2 | 44 | 38 | 38 | 37 | 36 | 37 | 39 | 32 | .75 | .16 | 4.8 | 19 | | 3 | 42 | 38 | 39 | 40 | 36 | 40 | 39 | 37 | .86 | .18 | 4.8 | 30 | | 3
4 | 38 | 38 | 39 | 41 | 36 | 39 | 36 | 48 | .65 | .18 | 9.4 | 21 | | 5 | 39 | 37 | 40 | 41 | 37 | 38 | 36 | 55 | .56 | .22 | 17 | 6.0 | | 6 | 39 | 37 | 39 | 38 | 36 | 35 | 36 | 57 | .53 | .21 | 21 | 13 | | 7 | 34 | 43 | 39 | 32 | 36 | 35 | 36 | 73 | .44 | .36 | 21 | 17 | | 8 | 39 | 46 | 35 | 31 | 36 | 36 | 36 | 81 | .41 | .22 | 21 | 27 | | 9 | 38 | 46 | 35 | 30 | 36 | 35 | 36 | 81 | .45 | .15 | 21 | 27 | | 10 | 39 | 35 | 34 | 30 | 36 | 35 | 36 | 81 | .43 | .15 | 22 | 50 | | 11 | 38 | 27 | 36 | 35 | 38 | 35 | 36 | 81 | .41 | .14 | 36 | 64 | | 12 | 38 | 22 | 35 | 37 | 36 | 35 | 36 | 72 | .39 | .14 | 42 | 56 | | 13 | 39 | 25 | 35 | 37 | 36 | 35 | 36 | 65 | .36 | .12 | 29 | 35 | | 14 | 34 | 19 | 38 | 40 | 36 | 35 | 36 | 55 | .35 | .10 | 15 | 13 | | 15 | 28 | 17 | 38 | 41 | 36 | 35 | 37 | 36 | .38 | .13 | 9.2 | 26 | | 16 | 27 | 22 | 38 | 38 | 36 | 35 | 37 | 11 | .38 | .14 | 1.5 | 29 | | 17 | 39 | 24 | 38 | 39 | 35 | 35 | 37 | 4.0 | .39 | .12 | 14 | 43 | | 18 | 39 | 27 | 38 | 40 | 36 | 37 | 36 | 3.8 | .34 | .15 | 17 | 38 | | 19 | 38 | 22 | 39 | 35 | 36 | 38 | 36 | 3.9 | .28 | .33 | 25 | 34 | | 20 | 38 | 12 | 39 | 28 | 36 | 38 | 36 | 4.3 | .28 | 6.4 | 12 | 49 | | 21 | 38 | 11 | 38 | 24 | 36 | 38 | 37 | 3.9 | .27 | 4.6 | 14 | 50 | | 22 | 38 | 11 | 38 | 17 | 36 | 38 | 34 | 3.8 | .26 | .32 | 16 | 51 | | 23 | 38 | 10 | 38 | 30 | 36 | 38 | 33 | 3.9 | .74 | .33 | 27 | 63 | | 24 | 39 | 10 | 38 | 31 | 36 | 38 | 32 | 4.0 | .22 | .94 | 30 | 37 | | 25 | 41 | 15 | 33 | 31 | 36 | 38 | 32 | 3.9 | .19 | .31 | 45 | 49 | | 26 | 39 | 23 | 31 | 37 | 36 | 38 | 32 | 3.8 | .20 | 1.4 | 56 | 47 | | 27 | 38 | 23 | 31 | 30 | 36 | 38 | 32 | 3.9 | .20 | 2.6 | 62 | 19 | | 28 | 26 | 20 | 30 | 30 | 36 | 38 | 32 | 4.3 | .19 | .21 | 31 | 5.3 | | 29 | 26 | 10 | 23 | 30 | | 38 | 32 | 4.7 | .21 | 5.9 | 11 | 5.3 | | 30 | 31 | 9.8 | 20 | 30 | | 38 | 32 | 1.9 | .17 | 14 | 11 | 5.3 | | 31 | 38 | | 31 | 34 | | 38 | | .72 | | 7.0 | 9.6 | | | TOTAL | 1146 | 755.8 | 1088 | 1049 | 1011 | 1142 | 1059 | 951.82 | 12.08 | 47.39 | 661.0 | 945.9 | | MEAN | 37.0 | 25.2 | 35.1 | 33.8 | 36.1 | 36.8 | 35.3 | 30.7 | .40 | 1.53 | 21.3 | 31.5 | | MAX | 44 | 46 | 40 | 41 | 38 | 40 | 39 | 81 | .86 | 14 | 62 | 64 | | MIN | 26 | 9.8 | 20 | 17 | 35 | 35 | 32 | .72 | .17 | .10 | 1.5 | 5.3 | | AC-FT | 2270 | 1500 | 2160 | 2080 | 2010 | 2270 | 2100 | 1890 | 24 | 94 | 1310 | 1880 | CAL YR 2000 TOTAL 13735.13 MEAN
37.5 MAX 109 MIN .10 AC-FT 27240 WTR YR 2001 TOTAL 9868.99 MEAN 27.0 MAX 81 MIN .10 AC-FT 19580 #### 15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER LOCATION.--Lat $59^{\circ}46'42''$, long $150^{\circ}45'15''$, in NW_{4}^{1} NE_{4}^{1} sec.2, T.5 S., R.9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 6.0 mi upstream from mouth and 27 mi east of Homer. DRAINAGE AREA.--9.25 mi². Date Jun 29 Time 0330 PERIOD OF RECORD.--October 1979 to current year. Published as Bradley River tributary near Homer prior to October 1989. REVISED RECORDS.-- WDR AK-86-1: 1980(P), 1981-82(M), 1984(M). WRD AK-2000-1: 1995-1997. Discharge (ft^3/s) 368 GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,300 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station; daily values of air temperature and precipitation are available from the computer files of the Alaska District. Date Aug 20 Discharge (ft^3/s) 334 Time 0715 Gage height 8.25 (ft) EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft^3/s and maximums (*). Gage Height (ft) 8.32 | | oun 25 | 0550 | 5. | | 0.52 | | nag 20 | 0713 | 331 | | 0.23 | | |---|--|--|---|--|---|---|--|--|----------------------------------|---|---|---| | | Jul 19 | 2045 | *5 | 20 | *8.59 | | Aug 28 | 1530 | 431 | | 8.44 | | | | | DISCHA | RGE, CUBI | IC FEET PEI | | , WATER
LY MEAN | | BER 2000 T | O SEPTEMBER | 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAF | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 35
32
30
29
38 | e8.5
e8.5
e8.0
e7.5 | e24
e23
e20
e18
e16 | e9.0
e8.0
7.4
7.4
7.2 | e6.0
5.8
5.8
5.9
6.1 | 5.1
5.1
5.1
5.3
5.4 | 4.5
4.7
4.7
4.5
4.5 | 4.3
4.2
4.1
4.0
4.0 | 28
38
47
46
40 | 226
209
193
178
188 | 174
181
173
162
159 | 179
156
146
178
186 | | 6
7
8
9
10 | 40
43
39
34
31 | e7.0
e7.0
e6.5
e6.5
e10 | e16
e14
e12
e11
e9.5 | e10
e12
e9.0
7.3
e6.5 | 6.4
5.8
5.7
5.7 | 5.2
5.1
5.2
5.1
5.1 | 4.5
4.4
4.5
4.6
4.6 | 3.9
3.9
3.8
3.8 | 39
37
35
41
45 | 201
194
181
200
203 | 154
156
159
160
156 | 134
106
87
75
67 | | 11
12
13
14
15 | 28
26
31
44
35 | e11
e10
e9.0
e8.0
e7.5 | e8.5
e8.0
7.4
8.4
8.3 | e6.5
e6.0
e6.0
e13
e14 | 5.9
5.7
5.6
5.5 | 5.1
5.0
4.9
5.0
5.0 | 4.5
4.5
4.4
4.4 | e3.8
e4.0
e4.2
e4.4
e4.6 | 48
50
52
60
71 | 219
216
181
174
193 | 146
154
171
203
238 | 61
80
118
127
102 | | 16
17
18
19
20 | 30
26
23
22
20 | e7.0
e6.5
e6.0
e100
e120 | 7.6
e7.5
e7.5
e7.5 | e12
11
13
9.6
8.9 | 5.6
5.5
5.4
5.4 | 4.9
4.9
4.9
4.9 | 4.5
4.5
4.5
4.5
4.6 | e4.8
e5.0
e5.5
e6.0
e6.5 | 89
93
92
93
109 | 198
197
203
375
460 | 256
250
266
242
305 | 88
89
87
88
89 | | 21
22
23
24
25 | e19
18
e16
15
e13 | e130
e110
e90
e75
e60 | e7.0
e7.0
e7.0
7.1
6.8 | 8.2
7.4
7.4
8.4
8.3 | 5.3
5.3
5.3
5.2
e5.0 | 4.8
4.8
4.8
4.8 | 4.5
4.2
4.2
4.1
4.2 | e7.0
e7.5
e8.0
e8.5
e9.0 | 124
149
174
200
e230 | 423
322
259
218
197 | 254
240
200
172
153 | 100
86
106
139
94 | | 26
27
28
29
30
31 | e12
e12
e11
e10
e9.5
e9.0 | e50
e44
e38
e25
e24 | 6.7
e6.5
e7.0
e15
e12
e10 | e8.0
6.6
6.4
e6.0
e6.0 | e6.0
5.4
5.1
 | 4.8
4.7
4.6
4.6
4.6
4.6 | 4.2
4.2
4.2
4.1
4.3 | e10
11
14
19
22
22 | 302
291
321
302
277 | 181
176
170
159
164
179 | 133
129
290
312
330
258 | 73
61
55
50
45 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 780.5
25.2
44
9.0
1550
2.72
3.14 | 1008.0
33.6
130
6.0
2000
3.63
4.05 | 333.3
10.8
24
6.5
661
1.16
1.34 | 262.5
8.47
14
6.0
521
.92
1.06 | 157.1
5.61
6.4
5.0
312
.61 | 152.9
4.93
5.4
4.6
303
.53 | 132.5
4.42
4.7
4.1
263
.48
.53 | 226.6
7.31
22
3.8
449
.79 | 12.7 | 6837
221
460
159
13560
23.8
27.50 | 6336
204
330
129
12570
22.1
25.48 | 3052
102
186
45
6050
11.0
12.27 | e Estimated # 15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER--Continued | | STATISTICS | OF MOI | NTHLY MEAN | DATA FOR | WATER Y | EARS 1980 - | 2001, BY | WATER | YEAR (WY)# | | |---|--|--------------------------------------|--|--------------------------------------|--------------|--|--------------------------------------|-------------|--|--| | MEAN 43.8
MAX 144
(WY) 1987
MIN 15.6
(WY) 1997 | 17.1
34.5
1980
5.29
1985 | 8.54
33.4
1987
4.45
1985 | 17.0
1981 | 4.69
9.32
1981
2.86
1991 | 7.17
1981 | 4.42
2001 | 16.3
44.5
1990
5.45
1987 | 162
1998 | 161
221
2001
111
1996 | 145
204
2001
86.9
1996 | | SUMMARY STATISTI | CS | FOR | 2000 CALEN | DAR YEAR | F | OR 2001 WAT | ER YEAR | | WATER YEA | RS 1980 - 2001 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME HIGHEST DAILY ME LOWEST DAILY ME LOWEST DAILY MEA ANNUAL SEVEN-DAY MAXIMUM PEAK STA MAXIMUM PEAK STA MAXIMUM PEAK STA ANNUAL RUNOFF (A ANNUAL RUNOFF (C ANNUAL RUNOFF (I 10 PERCENT EXCEE 50 PERCENT EXCEE | AN AN N MINIMUM W GE GE C-FT) FSM) NCHES) DS | | 16340.7
44.6
389
a2.5
2.6
32410
4.83
65.72
133 | Aug 3
Mar 28
Mar 27 | | 22801.4
62.5
460
b3.8
3.9
520
8.59
f9.42
45230
6.75
91.70
197 | May 5
Jul 19
Jul 19
Jun 25 | | 51.0
63.8
34.6
966
c1.1
1.1
1470
d8.86
g16.16
36950
74.91
153
12 | Mar 28 1986
Mar 28 1986
Sep 20 1995
Sep 20 1995 | a From Mar. 28 to Apr. 2 b May 8-11 c From Mar. 28 to Apr. 10, 1986 d From recorded range in stage f Backwater from snow bridge collapse g Backwater from ice #### 15239060 MIDDLE FORK BRADLEY RIVER BELOW NORTH FORK BRADLEY RIVER NEAR HOMER LOCATION.--Lat $59^{\circ}47'54''$, long $150^{\circ}51'48''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 29, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 100 ft upstream from confluence with the main stem Bradley River, 0.2 mi below the mouth of the North Fork Bradley River, 5.5 mi downstream from the Middle Fork Bradley River diversion dam, and 25 mi east of Homer. DRAINAGE AREA. -- 24.8 mi² PERIOD OF RECORD. -- August 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Water from upper Middle Fork Bradley River (15239050) is diverted into Bradley Lake at Middle Fork Bradley River diversion dam, located 5.5 mi upstream. Air temperature recorder at station, daily values of air temperature are available from the computer files of the Alaska District. | | | DISCHAR | GE, CUBI | C FEET PER | | | YEAR OCTOBE | R 2000 | TO SEPTEMBE | R 2001 | | | |---|--|--|---|--|--|---|---|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 27
26
26
25
30 | 33
32
29
27
27 | 48
e46
e44
44
92 | 69
53
46
39
36 | 23
23
22
20
18 |
e10
e9.5
e9.0
e9.0 | e8.0
8.0
15
12 | 48
40
34
31
29 | 252
273
320
299
270 | 245
222
211
188
218 | 133
137
132
123
116 | 115
111
102
111
118 | | 6
7
8
9
10 | 33
46
47
43
40 | 26
25
25
30
88 | 86
69
54
47
43 | 34
114
96
67
49 | 18
17
e16
16
e15 | e12
e11
e11
e10
e11 | 10
9.7
9.5
9.2 | 26
25
24
25
28 | 264
239
217
229
242 | 240
214
195
186
185 | 110
114
116
112
107 | 99
93
82
73
66 | | 11
12
13
14
15 | 37
36
47
119
93 | 90
68
84
88
69 | 40
39
35
33
31 | 47
42
41
113
288 | 15
e14
e12
e11
e11 | e13
e14
e14
e14
e13 | 19
18
16
15
16 | 29
36
48
64
92 | 253
252
236
230
259 | 217
206
163
152
188 | 98
101
110
129
135 | 60
70
95
111
92 | | 16
17
18
19
20 | 82
69
57
49
43 | 63
69
73
143
222 | 30
28
32
37
38 | 127
149
217
155
97 | 12
12
11
12
12 | e13
13
13
e11
e10 | 15
15
16
16
19 | 111
119
120
128
156 | 295
304
294
268
255 | 191
181
196
326
325 | 133
125
130
115
157 | 83
78
76
77
71 | | 21
22
23
24
25 | 37
36
34
37
132 | 179
152
105
84
67 | 40
35
34
33
35 | 76
66
50
39
40 | 12
11
e10
e10
e11 | e9.5
e8.5
e8.5
e8.5 | 22
30
35
33
32 | 150
134
133
148
158 | 271
295
302
304
286 | 249
197
165
148
139 | 126
123
108
97
87 | 77
67
102
204
141 | | 26
27
28
29
30
31 | 85
66
50
47
39
38 | 51
47
86
91
67 | 41
41
38
173
176
98 | 35
37
32
29
27
25 | e12
e11
e11
 | e8.5
e8.5
e8.5
8.5
8.3 | 31
32
36
38
44 | 149
150
190
269
266
228 | 298
329
340
342
298 | 132
137
140
136
138
141 | 77
72
149
151
160
143 | 111
94
85
76
66 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 1576
50.8
132
25
3130
2.05
2.36 | 2240
74.7
222
25
4440
3.01
3.36 | 1660
53.5
176
28
3290
2.16
2.49 | 2335
75.3
288
25
4630
3.04
3.50 | 398
14.2
23
10
789
.57
.60 | 324.5
10.5
14
8.2
644
.42
.49 | 600.4
20.0
44
8.0
1190
.81 | 3188
103
269
24
6320
4.15
4.78 | 8316
277
342
217
16490
11.2
12.47 | 5971
193
326
132
11840
7.77
8.96 | 3726
120
160
72
7390
4.85
5.59 | 2806
93.5
204
60
5570
3.77
4.21 | | | | STATISTICS | OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1996 - | 2001, | BY WATER YE | EAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 47.8
75.4
2000
23.2
1997 | 51.0
96.3
1998
16.2
2000 | 20.7
53.5
2001
7.69
1997 | 19.4
75.3
2001
2.68
1999 | 11.4
16.7
1998
2.00
1999 | 9.95
20.7
1998
2.74
1999 | 23.4
36.4
1998
9.59
1999 | 110
131
1998
97.0
2000 | 201
277
2001
103
1997 | 114
193
2001
45.7
1997 | 51.6
120
2001
12.5
1996 | 78.4
116
1997
27.6
2000 | | SUMMARY | STATIST | ICS | FOR 2 | 2000 CALENI | DAR YEAR | | FOR 2001 WAT | TER YEAR | 2 | WATER YE | ARS 1996 | - 2001# | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC | MEAN ANNUAL II ANNUAL MI DAILY ME SEVEN-DA I PEAK FLO I PEAK ST RUNOFF (A RUNOFF (A RUNOFF (C) RUNOFF (C) RUNOFF (C) | EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS | | 20544.7
56.1
285
a3.8
3.9
40750
2.26
30.82
146 | Jun 7
Jan 29
Jan 28 | | 33140.9
90.8
342
b8.0
8.3
d432
11.61
65730
3.66
49.71
229 | Jun 29
Apr 1
Mar 27
Jul 19
Jul 19 | L
7
9 | 63.0
90.8
44.0
626
c1.0
1.0
d875
13.64
45610
2.54
34.49 | Nov
Nov | | | | ENT EXCE | | | 34
5.5 | | | 64
11 | | | 31
5.5 | | | See Period of Record partial years used in monthly statistics From Jan. 29 to Feb. 1 Apr. 1-2 Feb. 5-12, 1999 From rating curve extended above 50 ft³/s on basis of comparison of instantaneous discharge of Bradley River below Dam (15239001) and instantaneous discharge of Bradley River near Tidewater (15239070) Fatinated Estimated #### 15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER LOCATION.--Lat $59^{\circ}48'06''$, long $150^{\circ}52'58''$, in $SE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 30, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.7 mi upstream from mouth, 0.8 mi downstream from Middle Fork Bradley River, 4.3 mi downstream from Bradley Lake outlet and dam site, and 25 mi east of Homer. DRAINAGE AREA. -- Indeterminate. PERIOD OF RECORD. -- May 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map. REMARKS.--Records good, except for estimated daily discharges, which are poor. Flow occasionally affected by high tides. Intermittent regulation during construction at the Bradley River dam site began in November 1986. Flow has been regulated since the reservoir began filling April 26, 1991. (See station 15239001.) Upper Nuka River was diverted into Upper Bradley River on July 29, 1990; flow from about 10 mi² of Middle Fork Bradley River upstream drainage has been seasonally diverted into the Bradley Lake reservoir since August 7, 1990. Battle Creek was diverted into the reservoir in October 1990. Water has been diverted out of the basin through the turbines since hydropower generation began June 28, 1991. Rain gage and air temperature recorder at station; daily values of precipitation and air temperature available from the computer files of the Alaska District. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e100 e65 e48 e95 e65 e48 e100 e60e50e50 e60 e100 e60 e50 e60 e48 e59 e55 e48 e55 e55 e48 e85 e55 e48 e55 e48 e55 e48 e48 e48 e48 e50 e50 e50 e48 e50 e48 e50 e46 e50 e46 1 / 2 ΩΩ e48 e48 47 TOTAL MEAN 48.8 MAX MIN 70.5 43.9 70.7 93.8 50 5 2001, BY WATER YEAR (WY)# 91.5 51 2 64.6 47.1 41.6 63.6 42.2 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 94.4 64.0 AC-FT MEAN MAX MIN (WY) (WY) [#] See Period of Record and Remarks [#] See Period e Estimated ## 15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER--Continued | SUMMARY STATISTICS | FOR 2000 CALEND | AR YEAR | FOR 2001 WATE | ER YEAR | WATER YEARS | 1992 - 2001# | |--------------------------|-----------------|---------|---------------|---------|-------------|--------------| | ANNUAL TOTAL | 39137 | | 46428 | | | | | ANNUAL MEAN | 107 | | 127 | | 106 | | | HIGHEST ANNUAL MEAN | | | | | 127 | 2001 | | LOWEST ANNUAL MEAN | | | | | 83.8 | 1996 | | HIGHEST DAILY MEAN | 315 | Nov 20 | 477 | Jan 15 | 954 | Sep 21 1995 | | LOWEST DAILY MEAN | a44 | Jan 13 | b46 | Feb 25 | c40 | Dec 15 1992 | | ANNUAL SEVEN-DAY MINIMUM | 45 | Jan 10 | 47 | Feb 23 | 40 | Jan 28 1999 | | MAXIMUM PEAK FLOW | | | 749 | Jan 15 | 1320 | Nov 9 1997 | | MAXIMUM PEAK STAGE | | | 6.82 | Jan 15 | 7.59 | Nov 9 1997 | | MAXIMUM PEAK STAGE | | | d7.11 | Mar 11 | d8.80 | Dec 22 1999 | | INSTANTANEOUS LOW FLOW | | | | | 30 | Dec 1 1997 | | ANNUAL RUNOFF (AC-FT) | 77630 | | 92090 | | 76750 | | | 10 PERCENT EXCEEDS | 172 | | 233 | | 177 | | | 50 PERCENT EXCEEDS | 102 | | 112 | | 89 | | | 90 PERCENT EXCEEDS | 47 | | 50 | | 48 | | ### PRIOR TO REGULATION AND DIVERSION OF BRADLEY DAM | | | STAT | ISTICS OF | MONTHLY | MEAN DATA | FOR | WATER YEARS | 1983 - | 1989, BY | WATER | YEAR (WY)# | | |------|------|------|-----------|---------|-----------|------|-------------|--------|----------|-------|------------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 808 | 224 | 198 | 145 | 82.1 | 74.0 | 72.8 | 462 | 1032 | 1390 | 1318 | 966 | | MAX | 1908 | 480 | 503 | 223 | 114 | 163 | 101 | 676 | 1357 | 1577 | 1781 | 1746 | | (WY) | 1987 | 1984 | 1987 | 1985 | 1985 | 1984 | 1989 | 1987 | 1988 | 1988 | 1988 | 1989 | | MIN | 363 | 86.1 | 78.9 | 72.5 | 37.4 | 27.4 | 42.5 | 282 | 862 | 1153 | 907 | 470 | | (WY) | 1984 | 1986 | 1988 | 1989 | 1989 | 1989 | 1985 | 1985 | 1986 | 1983 | 1983 | 1983 | | SUMMARY STATISTICS | WATER YEARS | 1983 - 1989# | |---|-------------------------|---| | ANNUAL MEAN | 583 | | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN | 722
475 | 1987
1985 | | HIGHEST DAILY MEAN LOWEST DAILY MEAN | 10000
19 | Oct 11 1986
Dec 7 1986 | | ANNUAL SEVEN-DAY MINIMUM | 22 | Mar 26 1989 | | MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW | | Oct 11 1986
Oct 11 1986
Mar 28 1989 | | ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN) | 422700
7.11
96.67 | | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | 1470
388
52 | | [#] See Period of Record and Remarks a Jan. 13 to 16 b Feb. 25, 26 c Dec. 15 to Dec. 18, 1992; Apr. 20 to Apr. 21, 1995; Jan. 9 and Apr. 22, 1997; Mar. 5, 1998; Jan. 16 to Jan. 20, and Jan. 28 to Feb. 12, 1999 d Backwater from ice and high tide f From rating curve extended above 2,400 ft³/s on basis of runoff comparisons with nearby stations g From floodmarks h Minimum recorded, but may have been less during period of ice effect, Mar. 28 to Mar. 31, 1989 ### 15241600 NINILCHIK RIVER AT NINILCHIK LOCATION.--Lat $60^{\circ}02'56''$, long $151^{\circ}39'48''$, in $\mathrm{NE}^{1}/_{4}$
sec. 34, T. 1 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 60 ft downstream from bridge, 0.9 mi upstream from mouth, at Ninilchik. DRAINAGE AREA. -- 135 mi² (revised). ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1963 to September 1985, October 1998 to September 2001 (discontinued). GAGE.--Water-stage-recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1965, at site 0.2 mi upstream at different datum. REMARKS.--Records good, except for estimated daily discharges, which are poor. | | necola | DISCHAR | | C FEET PER | SECOND, | | EAR OCTOBER | 2000 TO | SEPTEMBE | ER 2001 | | | |-------------|-----------------------|------------------|------------|------------|--------------|------------|--------------|------------------|------------|----------------|------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MEAN V | ALUES | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | | | | | | 1 | 98 | e85 | e70 | e70 | e55 | e60 | e60 | 556 | 202 | 58 | 72 | 87 | | 2 | 94
94 | e80
e80 | e70
e70 | e70
e65 | e55
e55 | e60
e60 | e60
e65 | 467
372 | 182
163 | 57
58 | 69
67 | 82
87 | | 4 | 125 | e80 | e70 | e65 | e55 | e60 | e65 | 281 | 144 | 70 | 80 | 88 | | 5 | 168 | e80 | e70 | e65 | e55 | e65 | e65 | 214 | 125 | 91 | 91 | 127 | | 6 | 174 | e80 | e70 | e65 | e55 | e65 | e70 | 193 | 113 | 110 | 82 | 116 | | 7 | 158 | e80 | e70 | e65 | e55 | e65 | e80 | 193 | 115 | 88 | 73 | 102 | | 8 | 167 | e80 | e70 | e65 | e55 | e65 | e90 | 215 | 117 | 76 | 69 | 99 | | 9
10 | 160
141 | e80
e80 | e70
e70 | e65
e65 | e55
e55 | e65
e65 | e100
e110 | 238
297 | 108
97 | 87
84 | 69
68 | 88
82 | | 11 | 130 | e85 | e70 | e65 | e55 | e65 | e130 | 338 | 91 | 90 | 66 | 79 | | 12 | 127 | e85 | e70 | e65 | e55 | e65 | e150 | 298 | 89 | 105 | 65 | 76 | | 13 | 121 | e80 | e70 | e65 | e55 | e65 | e180 | 265 | 91 | 107 | 63 | 78 | | 14 | 132 | e80 | e70 | e65 | e55 | e65 | e200 | 253 | 87 | 94 | 62 | 87 | | 15 | 148 | e80 | e70 | e65 | e55 | e65 | e250 | 257 | 82 | 87 | 62 | 91 | | 16 | 135 | e80 | e70 | e65 | e60 | e65 | e300 | 254 | 78 | 101 | 64 | 84 | | 17
18 | 125
113 | e80
e80 | e70
e70 | e65 | e60 | e60 | 343
371 | 231
212 | 75
73 | 98
82 | 75
120 | 85
92 | | 19 | 106 | e85 | e70 | e65
e60 | e60
e60 | e60
e60 | 413 | 208 | 73 | 83 | 138 | 133 | | 20 | 101 | e85 | e75 | e60 | e60 | e60 | 409 | 211 | 72 | 139 | 144 | 174 | | 21 | 91 | e80 | e70 | e60 | e60 | e60 | 503 | 215 | 70 | 141 | 126 | 149 | | 22 | e85 | e80 | e65 | e60 | e55 | e60 | 585 | 217 | 68 | 169 | 104 | 129 | | 23 | e85 | e80 | e70 | e60 | e55 | e60 | 654 | 201 | 66 | 197 | 85 | 109 | | 24 | e85 | e75 | e70 | e60 | e55 | e60 | 653 | 196 | 64 | 155 | 81 | 99 | | 25 | e90 | e75 | e70 | e60 | e60 | e60 | 665 | 189 | 63 | 125 | 97 | 95 | | 26 | e85 | e75 | e70 | e60 | e65 | e65 | 689 | 191 | 61
59 | 107
89 | 94 | 92
89 | | 27
28 | e85
e85 | e75
e75 | e70
e70 | e60
e55 | e65
e60 | e65
e65 | 668
625 | 191
198 | 59
58 | 79 | 86
87 | 89
86 | | 29 | e85 | e75 | e75 | e55 | | e65 | 567 | 232 | 50
57 | 74 | 109 | 88 | | 30 | e85 | e70 | e70 | e55 | | e60 | 561 | 292 | 58 | 71 | 103 | 86 | | 31 | e85 | | e70 | e55 | | e60 | | 257 | | 72 | 96 | | | TOTAL | 3563 | 2385 | 2175 | 1940 | 1600 | 1940 | 9681 | 7932 | 2801 | 3044 | 2667 | 2959 | | MEAN | 115 | 79.5 | 70.2 | 62.6 | 57.1 | 62.6 | 323 | 256 | 93.4 | 98.2 | 86.0 | 98.6 | | MAX | 174 | 85 | 75 | 70
55 | 65
55 | 65
60 | 689 | 556 | 202 | 197 | 144 | 174 | | MIN | 85 | 85
70
4730 | 65 | 55 | | | 60 | 189 | 57 | 57 | 62 | 76 | | AC-FT | 7070 | 4730 | 4310 | 3850 | 3170 | 3850 | 19200 | 15730 | 5560 | 6040 | 5290 | 5870 | | CFSM
IN. | .88
1.01 | .61
.68 | .54
.62 | .48
.55 | . 44
. 45 | .48
.55 | 2.46
2.75 | 1.95
2.25 | .71
.80 | .75
.86 | .66
.76 | .75
.84 | | IIV. | | | | | | | | | | | . 70 | .01 | | | | STATISTICS | S OF MONT | HLY MEAN I | DATA FOR V | VATER YE | ARS 1963 - | 2001, BY | WATER Y | EAR (WY)# | | | | MEAN | 131 | 97.4 | 64.0 | 55.7 | 57.1 | 64.6 | 160 | 233 | 119 | 87.8 | 89.0 | 116 | | MAX | 221 | 314 | 98.5 | 86.0 | 93.9 | 108 | 548 | 488 | 238 | 151 | 155 | 204 | | (WY) | 1981 | 1980 | 1980 | 1980 | 1982 | 1970 | 1974 | 1977 | 1964 | 1980 | 1981 | 1982 | | MIN | 78.2 | 41.1 | 42.0 | 36.8 | 36.0 | 36.9 | 41.4 | 81.7 | 62.2 | 57.6 | 47.8 | 54.6 | | (WY) | 1969 | 1964 | 1966 | 1974 | 1974 | 1974 | 1985 | 1969 | 1969 | 1983 | 1969 | 1969 | | SUMMARY | STATISTI | ICS | FOR 2 | 000 CALEN | DAR YEAR | F | OR 2001 WAT | ER YEAR | | WATER YEAR | RS 1963 | - 2001# | | ANNUAL ' | | | | 37709 | | | 42687 | | | | | | | ANNUAL I | MEAN
ANNUAL N | ME AN | | 103 | | | 117 | | | 107
151 | | 1980 | | | ANNUAL M
ANNUAL ME | | | | | | | | | 55.4 | | 1969 | | | DAILY ME | | | e650 | May 1 | | 689 | Apr 26 | | 1220 | Apr | 24 1974 | | | DAILY MEA | | | a50 | Mar 26 | | b55 | Apr 26
Jan 28 | | | Jul | 24 1974
20 1966 | | ANNUAL | SEVEN-DAY | MINIMUM | | 52 | Mar 23 | | 55 | Jan 28 | | 30
32 | Jan | 9 1983 | | | PEAK FLO | | | | | | 767 | Jan 28
Apr 23 | | 1240 | Apr | 24 1974 | | | PEAK STA | | | | | | 5.52 | Apr 23 | | 6.04
c8.69 | Apr | 24 1974 | | | PEAK STA
RUNOFF (A | | | 74800 | | | 84670 | | | c8.69
77210 | Apr | 14 1969 | | | RUNOFF (| | | .79 | | | .89 | | | .81 | | | | | RUNOFF () | | | 10.71 | | | 12.12 | | | 11.05 | | | | | ENT EXCE | | | 180 | | | 213 | | | 200 | | | | | ENT EXCE | | | 75 | | | 80 | | | 76 | | | 60 49 55 90 PERCENT EXCEEDS See Period of Record, partial years used in monthly statistics From Mar. 26 to 29 From Jan. 28 to Feb. 15, and Feb. 22 to 24 Backwater from ice ### SOUTH-CENTRAL ALASKA ### 15241600 NINILCHIK RIVER AT NINILCHIK--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1952-53, 1955-58, 1963-65, 1967-68, 1975, 1978-79, and 1998 to September 2001 (discontinued). PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: May to September 1963, October 1964 to July 1965, and October 1998 to September 2001. SEDIMENT: October 1963 to July 1965. INSTRUMENTATION. -- Electronic water temperature recorder set for 15-minute recording interval. REMARKS.--Records represent water temperature at sensor within 0.5°C . Temperature at the sensor was compared with the average for the river by cross sections on February 5, and June 5. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD. - WATER TEMPERATURE: Maximum, 20.5°C, July 4, 1999; minimum, 0.0°C on many days during fall and winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 20.0°C, June 28 ; minimum, 0.0°C on many days during fall and winter. | | | SAMPLE | | | | | | | |------|------|----------|----------|----------|----------|-----------|---------|-----------| | | | LOCA- | | PH WATER | | | | OXYGEN, | | | | TION, | | WHOLE | | | | DIS- | | | | CROSS | SPECIFIC | FIELD | TEMPERA- | BAROMET- | OXYGEN, | SOLVED | | | | SECTION | CONDUC- | (STAN- | TURE | RIC PRES- | DIS- | (PERCENT | | | | | CONDUC- | | | | | • | | | | (FT FM L | TANCE | DARD | WATER | SURE (MM | SOLVED | SATURA- | | | | BANK) | (US/CM) | UNITS) | (DEG C) | OF HG) | (MG/L) | TION) | | DATE | TIME | (00009) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | FEB | | | | | | | | | | 05 | 1400 | 4.00 | 100 | 7.2 | 0 | 772 | 11.8 | 79.7 | | 05 | 1401 | 11.0 | 100 | 7.3 | 0 | 772 | 11.8 | 79.7 | | 05 | 1402 | 18.0 | 100 | 7.3 | 0 | 772 | 11.8 | 79.7 | | 05 | 1403 | 25.0 | 100 | 7.3 | 0 | 772 | 11.8 | 79.7 | | JUN | | | | | | | | | | 05 | 1630 | 6.00 | 68 | 7.9 | 12.5 | 762 | 11.0 | 103 | | 05 | 1631 | 18.0 | 68 | 7.8 | 12.5 | 762 | 10.8 | 101 | | 05 | 1632 | 30.0 | 68 | 7.8 | 12.5 | 762 | 10.8 | 101 | | 05 | 1633 | 42.0 | 68 | 7.8 | 12.5 | 762 | 10.7 | 100 | | 05 | 1634 | 54.0 | 68 | 7.8 | 12.5 | 762 | 10.7 | 100 | | DATE | | EDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | (CODE) | VISIT (CODE) | INDICA-
TOR
CODE | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | AIR
(DEG C) | |-----------|-------|---------------|----------------|------------------------------------|-------------------------------------|---|--|----------------|--------------|------------------------|---|--|----------------| | OCT | | | | | | | | | | | | | | | 04
NOV | 0900 | 9 | 9 | 42. | 0 4. | 23 1 | L1 | 10 30 | 45 10 | 01 | 8 | 37 7 | 7.4 | | 06 | 1520 | 9 | 9 | 42. | 0 4. | 66 | 30 | 10 30 | 45 10 | 01 | | 39 7 | 7.7 | | JAN | 1.500 | | • | 4.0 | • | | | | 45 10 | 0.7 | , | | | | 02
FEB | 1630 | 9 | 9 | 42. | 0 - | - 6 | 9 | 10 30 | 45 10 | 01 | 9 | 90 7 | 7.3 | | 05 | 1420 | 9 | 9 | 30. | 0 - | - 5 | 6 | LO 304 | 15 10 | 01 - | 10 | 0 7 | .3 -1.5 | | MAR | | | | | | | | | | | | | | | 05
APR | 1450 | 9 | 9 | 28. | 0 – | - 6 | 7 | 10 30 | 45 10 | 01 . | 10 |)8 7 | 7.0 4.0 | | 17 | 1220 | 9 | 9 | 53. | 0 4. | 81 3: | 23 | 10 30 | 45 10 | 06 | | 72 7 | 7.7 5.5 | | 20 | 1630 | 9 | 9 | 56. | | | | 10 30 | | | | | 7.7 8.0 | | MAY | | | | | | | | | | | | | | | 08 | 1440 | 9 | 9 | 60. | 5 4. | 64 2: | 20 | 10 30 | 45 10 | 01 | 5 | 57 7 | 7.7 2.5 | | JUN
05 | 1600 | 9 | 7 | 50. | 0 4. | 30 12 | 12 | 10 30 | 45 10 | 01 3 | 0 6 | 8 7 | .8 14.5 | | JUL | 1600 | 9 | , | 50. | 0 4. | 30 1. | . 3 | 10 30 | 45 10 | 01 3 | 0 6 | 00 / |
.0 14.5 | | 11 | 1500 | 9 | 9 | 49. | 0 4. | 12 9 | 2 | 10 30 | 45 10 | 01 | 9 | 94 7 | .6 13.0 | | AUG | | | | | | | | | | | | | | | 06 | 1630 | 9 | 7 | | | | | 10 30 | | | | | 7.6 | | 22
22 | 1112 | D
9 | 9
9 |
59. | | | - 80 | 10 80
10 30 | | | |
94 7 | .5 17.0 | | SEP | 1240 | 9 | 9 | 59. | 0 4. | 10 10 | 12 | 10 30 | #5 IU | 00 | 9 | 74 / | .5 17.0 | | 05 | 1610 | 9 | 9 | 50. | 0 4. | 33 1 | 57 | 10 30 | 45 10 | 01 1 | 0 9 | 95 7 | 7.5 | # SOUTH-CENTRAL ALASKA # 15241600 NINILCHIK RIVER AT NINILCHIK--Continued | DATE | TEMP-
ERATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICARBO
NATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/S AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |--|---|---|---|--|--|---|---|--|--|---|--|---|---| | OCT
04 | 3.0 | 770 | 13.0 | 96 | 30 | 6.77 | 3.14 | 6.3 | 41 | 1.98 | 48 | 39 | .6 | | NOV
06 | .0 | | 14.2 | 98 | 29 | 6.58 | | 6.8 | 41 | 1.62 | 48 | 40 | .7 | | JAN
02 | .0 | | 13.6 | 94 | 32 | 7.14 | 3.40 | 6.7 | 41 | 1.86 | 50 | 41 | .7 | | FEB
05 | .0 | 0 772 | 11.8 | 80 | 37 | 8.56 | 3.87 | 7.5 | 49 | 2.03 | 58 | 48 | .6 | | MAR
05 | .0 | 0 749 | 11.2 | 78 | 38 | 8.57 | 4.01 | 7.4 | 51 | 2.24 | 60 | 50 | .7 | | APR
17 | .5 | | 13.5 | 94 | 27 | 6.13 | 2.74 | 4.3 | 31 | 1.58 | 37 | 30 | . 3 | | 20
MAY
08 | 1.5 | | 13.4 | 95
97 | 22
19 | 5.01
4.46 | 2.30
1.99 | 3.3 | 28
25 | 1.31 | 33
30 | 27
24 | .2 | | JUN
05 | 12.5 | | 10.8 | 101 | 23 | 5.30 | | 4.6 | 32 | 1.40 | 38 | 31 | .5 | | JUL
11 | 12.5 | | 10.8 | 101 | 34 | 7.83 | | 7.1 | 44 | 1.63 | 51 | 43 | . 3 | | AUG
06 | 16.0 | | 9.7 | 97 | 37 | 8.56 | | 7.2 | 48 | 1.85 | 56 | 46 | . 4 | | 22
22 | 12.5 | |
9.7 |
92 | | | | | | | | | | | SEP
05 | 11.5 | 756 | 11.0 | 102 | 36 | 8.25 | 3.73 | 6.9 | 42 | 2.03 | 51 | 43 | . 4 | | | | | | | | | | | | | | | | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
04
NOV | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
04
NOV
06
JAN | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
04
NOV
06 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
04
NOV
06
JAN
02
FEB | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.049 | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.49
.18 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.19
.16 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045 | | OCT 04 NOV 06 JAN 02 FEB 05 MAR 05 APR 17 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
E.1
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6 | IDS,
RISI-
DUE AT
180
DEG.
C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.083
.081
.129
.132
.138 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.045
.051 | | OCT
04
NOV
06
JAN
02
FEB
05
MAR
05
APR
17 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3
1.8 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
E.1
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6
15.7 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66
71 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55
47 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.19
.16
.19
.19
.20 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093
.186
.309 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.048
.051
.052 | | OCT 04 NOV 06 JAN 02 FEB 05 MAR 05 APR 17 20 MAY 08 JUN | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3
1.8
1.9 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
E.1
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6
15.7 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66
71
69 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55
47 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002 .001 .003 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .018 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.19
.16
.19
.20
.26
.24
.25 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093
.186
.309
.118 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059
.057
.049 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.048
.051
.052
.042
.035 | | OCT 04 NOV 06 JAN 02 FEB 05 MAR 17 20 MAY 08 JUN 05 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3
1.8
1.9
1.9 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6
15.7
19.8
20.5 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66
71
69
66 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55
47
50 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003 .002 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093
.186
.309
.118 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059
.057
.049 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.045
.051
.052
.042
.035 | | OCT | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3
1.8
1.9
1.9 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6
15.7
19.8
20.5
29.0 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66
71
69
66 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55
47
50
56
77 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029 .040 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004 .018 .017 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28 .34 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25 .20 .22 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093
.186
.309
.118
.085 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059
.057
.049
.051 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.048
.051
.052
.042
.035
.039 | | OCT
04
NOV
06
JAN
02
FEB
05
MAR
17
20
MAY
08
JUN
05
JUN
05 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
3.6
2.8
2.6
2.6
3.3
1.8
1.9
1.9 | RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <. | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.0
30.0
31.5
32.9
32.1
18.6
15.7
19.8
20.5 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
84
81
91
92
103
66
71
69
66 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
75
76
80
88
89
55
47
50 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003 .002 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.182
.070
.075
.073
.093
.186
.309
.118 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.066
.051
.055
.052
.059
.057
.049 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.058
.045
.045
.051
.052
.042
.035 | # 15241600 NINILCHIK RIVER AT NINILCHIK--Continued | | | | | CAR- | | CAR- | | | | | | | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | BON, | CAR- | BON, | NITRO- | CHLOR-A | | PERIPH- | | | | | | | | CAR- | INOR- | BON, | INORG + | GEN, | PERIPH- | PERIPH- | YTON | | | SEDI- | | | | MANGA- | BON, | GANIC, | ORGANIC | ORGANIC | PARTIC- | YTON | YTON | BIO- | PHEO- | | MENT, | | | IRON, | NESE, | ORGANIC | PAR- | PARTIC- | PAR- | ULATE | CHROMO- | BIO- | MASS | PHYTIN | SEDI- | DIS- | | | DIS- | DIS- | DIS- | TIC. | ULATE | TIC. | WAT FLT | GRAPHIC | MASS | TOTAL | Α, | MENT, | CHARGE, | | | SOLVED | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SUSP | FLUO- | ASH | DRY | PERI- | SUS- | SUS- | | | (UG/L | (UG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | ROM | WEIGHT | WEIGHT | PHYTON | PENDED | PENDED | | | | | | | | | | | | | | | | | | AS FE) | AS MN) | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | G/SQ M | (MG/M2) | (MG/L) | (T/DAY) | | DATE | (01046) | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | (62359) | (80154) | (80155) | | OCT | | | | | | | | | | | | | | | 04 | 650 | 115 | 4.9 | <.1 | 1.4 | 1.4 | .110 | | | | | 19 | 5.7 | | NOV | | | | | | | | | | | | | | | 06 | 480 | 81.2 | 3.9 | < .1 | . 2 | . 2 | <.022 | | | | | 4 | .86 | | JAN | | | | | | | | | | | | | | | 02 | 550 | 45.2 | 4.2 | < .1 | . 2 | .3 | .037 | | | | | 4 | .75 | | FEB | | | | _ | | | | | | | | _ | | | 05 | 610 | 99.6 | 3.6 | <.1 | .2 | .2 | <.022 | | | | | 6 | .91 | | MAR
05 | 680 | 116 | 3.7 | <.1 | . 4 | . 4 | .036 | | | | | 8 | 1.4 | | APR | 680 | 110 | 3.7 | <.1 | . 4 | . 4 | .036 | | | | | 8 | 1.4 | | 17 | 1250 | 136 | 7.4 | | | 1.7 | .148 | | | | | 70 | 61 | | 20 | 1070 | 172 | 7.4 | | | 9.0 | .668 | | | | | 164 | 182 | | MAY | 1070 | 1/2 | , | | |
5.0 | .000 | | | | | 101 | 102 | | 08 | 620 | 42.1 | 6.5 | | | 1.5 | .113 | | | | | 33 | 20 | | JUN | | | | | | | | | | | | | | | 05 | 500 | 70.0 | 6.0 | | | 1.0 | .065 | | | | | 16 | 5.3 | | JUL | | | | | | | | | | | | | | | 11 | 600 | 86.5 | 5.7 | | | 1.3 | .105 | | | | | 19 | 4.7 | | AUG | | | | | | | | | | | | | | | 06 | 850 | 81.1 | 6.0 | | | E1.4 | E.110 | | | | | 19 | 4.1 | | 22 | | | | | | | | . 5 | 38.5 | 39.4 | .3 | | | | 22 | | | | | | | | | | | | | | | SEP | | | | | | 2 0 | 04: | | | | | 4.0 | 1.0 | | 05 | 780 | 70.7 | 6.5 | | | 3.0 | .244 | | | | | 40 | 17 | | DATE | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------|--| | OCT | | | 04 | 75 | | NOV | | | 06 | | | JAN
02 | 97 | | FEB | 91 | | 05 | 89 | | MAR | | | 05 | 78 | | APR | | | 17
20 | 53
60 | | MAY | 60 | | 08 | 70 | | JUN | | | 05 | 72 | | JUL | | | 11 | 80 | | AUG
06 | 80 | | 22 | | | 22 | | | SEP | | | 05 | 74 | | | | # SOUTH-CENTRAL ALASKA # 15241600 NINILCHIK RIVER AT NINILCHIK--Continued TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|-------------------------|--------------------------|---|----------------------|-------------------------------------|---|---|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 3.5
3.0
3.5
4.0
5.0 | 1.0
2.0
2.5
3.0
3.5 | 2.0
2.5
3.0
3.5
4.0 | .0.0.0.0 | .0 | .0
.0
.0
.0 | .0 | .0 | .0.0.0.0 | . 0
. 0
. 0
. 0 | .0 | .0
.0
.0
.0 | | 6
7
8
9
10 | 5.5
5.0
4.5 | | 4.5
5.0
4.5
4.0
2.0 | .0 | 0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0 | . 0
. 0
. 0
. 0 | | 11
12
13
14
15 | 3.0
3.0
2.0
3.5
2.5 | 1.0
1.5
.5
2.0
2.0 | 2.0
2.0
1.5
2.5
2.5 | .0.0.0.0 | .0 | .0
.0
.0
.0 | .0 | .0 | | . 0
. 0
. 0
. 0 | . 0
. 0
. 0 | . 0
. 0
. 0
. 0 | | 16
17
18
19
20 | 3.0
3.0
2.5
2.0
1.5 | 2.0
1.5
1.0
1.0 | 2.5
2.5
2.0
1.5 | .0
.0
.0
.0 | .0 .0 .0 .0 | .0
.0
.0
.0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0
.0
.0
.0 | | 21
22
23
24
25 | .5
1.0
1.0
1.5
2.0 | .0
.0
.5
.5 | .0
.5
.5
1.0
1.5 | .0 | .0 | . 0
. 0
. 0
. 0 | .0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0 | . 0
. 0
. 0
. 0 | | 26
27
28
29
30
31 | | .5
.0
.0
.0 | | .0
.0
.0
.0 | .0 | .0
.0
.0
.0 | .0.0.0 | .0.0.0.0.0 | .0.0.0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0.0.0 | | MONTH | 5.5 | .0 | 1.9 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0.0.0 | .0
.0
.0
.0 | .0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 1.0
.0
.0
.0 | .0.0.0.0 | .0
.0
.0
.0 | 4.0
4.0
4.0
3.5
3.5 | 2.0
2.0
1.5
1.5 | 3.0
3.0
3.0
2.5
2.0 | | 6
7
8
9
10 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.5
.0 | .0.0.0.0 | .0.0.0.0 | 5.0
6.5
7.0
5.0
5.5 | 2.0
2.5
3.0
3.0 | 3.0
4.0
4.5
3.5
3.5 | | 11
12
13
14
15 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 1.0
.0
.0
.5 | . 0 | .0.0.0.0 | 6.5
7.5
8.0
9.0
8.0 | 3.5
4.0 | 4.5
5.5
6.0
6.5
7.0 | | 16
17
18
19 | . 0 | .0 | .0 | . 0 | 0 | 0 | | | | | F 0 | <i>c</i> 0 | | 20 | . 0
. 0
. 0 | . 0
. 0
. 0 | .0.0 | .0 | .0 | .0
.0
.0 | .0
.5
1.0
1.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 7.0
8.0
9.0
10.0
9.0 | 5.0
4.5
4.5
5.5
6.5 | 6.0
6.0
7.0
7.5
8.0 | | | .0 | . 0
. 0
. 0 | . 0
. 0
. 0 | .0
.0
.0 | .0
.0
.0 | . 0
. 0
. 0 | .5
1.0
1.0 | .0.0 | .0.0 | 8.0
9.0
10.0 | 4.5
4.5
5.5 | 6.0
7.0
7.5 | | 20
21
22
23
24 | .0.0 | .0.0.0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 | .0.0.0 | .5
1.0
1.0
1.5
2.0
2.5
2.0
3.0 | .0
.0
.0
.0 | .0
.0
.5
1.0
1.5
1.0 | 8.0
9.0
10.0
9.0
8.0
9.0
9.0
7.0 | 4.5
4.5
5.5
6.5
5.5
5.5
5.0 | 6.0
7.0
7.5
8.0
7.0
7.0
7.0 | # 15241600 NINILCHIK RIVER AT NINILCHIK--Continued TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | S | EPTEMBE | R | | 1
2
3
4
5 | 13.5
15.0
13.0
13.0 | 9.5
9.5
10.5
9.0
9.0 | 11.5
12.0
12.0
11.0 | 17.5
18.5
15.5
14.0
14.5 | 11.5
11.5
11.5
11.0 | 14.5
15.0
12.5
12.0 | 17.5
17.0
15.0
13.5
15.5 | 11.5
11.5
12.5
11.5
10.0 | 14.5
14.5
13.5
12.5
12.5 | 12.0
11.0
13.0
11.0 | 7.5
9.0
8.5
9.5
8.5 | 10.0
10.0
10.5
10.0
9.5 | | 6
7
8
9
10 | 12.0
12.0
14.5
15.5 | 9.5
8.5
8.5
9.0
9.5 | 10.5
10.0
11.5
12.0
12.5 | 16.0
14.5
15.0
16.5
14.5 | 10.5
12.0
11.5
10.0
11.5 | 13.0
13.5
13.0
13.0 | 16.0
16.0
15.0
14.5
15.0 | 10.5
10.5
12.5
12.0
12.0 | 13.5
13.5
13.5
13.0
13.5 | 10.0
11.5
11.0
10.5
10.0 | 7.5
8.5
6.5
6.0
5.5 | 9.0
9.5
9.0
8.0 | | 11
12
13
14
15 | 14.0
12.5
15.5
16.5
17.0 | 10.5
10.0
9.5
10.0
10.5 | 12.5
11.0
12.0
13.0
14.0 | 12.5
12.5
14.5
16.5
14.0 | 10.5
10.5
10.5
11.0 | 11.5
11.5
12.5
13.5
13.0 | 16.5
16.5
17.5
16.0
17.0 | 11.0
12.5
11.5
13.0
13.5 | 14.0
14.5
14.5
14.5
15.0 | 9.5
8.5
9.0
9.0 | 5.0
7.0
6.5
7.0
7.5 | 7.5
7.5
7.5
8.0
8.5 | | 16
17
18
19
20 | 17.5
17.5
16.5
16.5 | 11.0
11.0
11.0
11.5 | 14.5
14.5
14.0
14.0 | 15.0
17.0
14.5
13.5 | 11.5
11.0
12.0
12.0 | 13.0
14.0
13.5
13.0 | 15.0
13.5
13.5
12.5
12.5 | 13.5
12.0
11.0
11.5
10.5 | 14.0
12.5
12.0
12.0
11.5 | 9.0
10.5
10.0
9.5
10.0 | 7.0
8.0
8.5
8.5 | 8.0
9.0
9.0
9.0
9.0 | | 21
22
23
24
25 | 18.0
18.5
19.0
19.0 | 12.5
11.5
12.0
13.0
12.5 | 15.0
15.0
16.0
16.0 | 12.5
12.5
14.5
16.0
15.0 | 12.0
11.5
11.5
11.5
12.5 | 12.0
12.0
12.5
13.5
14.0 | 13.5
14.5
14.0
12.5
12.5 | 9.5
10.0
9.5
10.5
10.0 | 11.5
12.0
12.0
11.0
11.0 | 9.0
8.5
8.0
8.0 | 7.5
6.5
6.5
6.0
5.0 | 8.0
7.5
7.5
7.0
6.5 | | 26
27
28
29
30
31 | 19.5
19.0
20.0
18.0
17.5 | 13.0
13.5
13.5
14.0
11.5 | 16.5
16.5
17.0
16.0
14.5 | 17.0
17.5
17.0
17.5
16.0
16.5 | 11.5
12.5
12.0
12.0
13.0
12.5 | 14.5
15.0
14.5
14.5
14.5 | 12.5
11.5
10.5
10.0
11.0 | 10.0
9.0
9.5
9.0
9.0 | 11.5
10.5
10.0
9.5
10.0 | 7.5
6.5
7.0
7.0
6.0 | 5.5
4.0
4.0
4.0 | 6.5
5.5
5.5
5.0 | | MONTH | 20.0 | 8.5 | 13.6 | 18.5 | 10.0 | 13.2 | 17.5 | 8.5 | 12.5 | 13.0 | 4.0 | 8.0 | | YEAR | 20.0 | .0 | 4.7 | | | | | | | | | | #### 15243900 SNOW RIVER NEAR SEWARD LOCATION.--Lat $60^{\circ}17'42''$, long $149^{\circ}20'38''$, in $\mathrm{NE}^{1}/_{4}$ SW $^{1}/_{4}$ sec. 6, T. 2 N., R. 1 E. (Seward B-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on left bank, 0.5 mi below the Alaska Railroad bridge, 3.0 mi upstream from the mouth at Kenai Lake, and 13.5 mi north of Seward. DRAINAGE AREA. -- 128 mi² (revision pending). PERIOD OF RECORD.--August to September of 1970, 1974, 1977 and April 1997 to current year. GAGE.--Water stage recorder. Elevation of gage is 470 ft above sea level, from topographic map. Prior to April 9, 1998 at site 0.5 mi upstream at different datum. REMARKS.--Records fair, except estimated daily discharges which are poor. Rain gage at station. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Glacier-dammed lake outburst flood about August 31, 1967, $55,000 \text{ ft}^3/\text{s}$ from rating curve extended above 27,000 ft³/s, gage-height 42.60 ft from floodmarks, site and datum then in use. | | | DISCHA | RGE, CUBI | C FEET PER | | | YEAR OCTO | BER 2000 | TO SEPTEM | BER 2001 | | | |----------|-----------------------|-----------------|--------------|--------------|------------------|--------------|--------------|---------------------|--------------|--------------
--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAI | | MAY | JUN | JUL | AUG | SEP | | 1 | 596 | 244 | e250 | 620 | e160 | e130 | e110 | 316 | 1470 | 3480 | 2750 | 4150 | | 2 | 537 | 230 | e200 | 538 | e160 | e130 | e110 | 304 | 1680 | 3460 | 2980 | 3290 | | 3 | 493 | 216 | e220 | 447 | e150 | e130 | e120 | 296 | 2010 | 3360 | 2910 | 3040 | | 4 | 458 | 153 | 400 | 371 | e150 | e130 | e120 | 209 | 2000 | 3030 | 2770 | 3110 | | 5 | 477 | 216 | 494 | e280 | e150 | e130 | e110 | e140 | 1780 | 3220 | 2780 | 3210 | | 6 | 672 | 198 | 428 | e300 | e150 | e120 | e110 | e130 | 1660 | 3150 | 2780 | 2700 | | 7 | 1190 | 190 | 367 | e450 | e150 | e120 | e110 | e110 | 1490 | 2900 | 2540 | 2500 | | 8 | 1370 | 171 | 210 | 499 | e150 | e120 | e110 | e120 | 1330 | 2820 | 2360 | 2270 | | 9 | 760
599 | 173 | e200 | 421 | e150 | e120 | e110 | 182 | 1480 | 2660 | 2300 | 2130 | | 10 | 599 | 311 | e230 | 294 | e150 | e120 | e110 | 196 | 1650 | 2630 | 2200 | 2120 | | 11
12 | 524
494 | 466
331 | 257
152 | e200
e200 | e150
e150 | e120
e120 | e120
e120 | 254
322 | 1680
1600 | 2520
2690 | 2220
2580 | 2210
3530 | | 13 | 494 | 368 | e160 | e200 | e150
e150 | e120 | e120
e120 | 356 | 1610 | 2890 | 2890 | 5100 | | 14 | 1290 | 393 | e160 | 505 | e150 | e120 | e110 | 408 | 1680 | 2780 | 2860 | 5520 | | 15 | 739 | 302 | e160 | 1190 | e150 | e120 | e110 | 475 | 2100 | 2790 | 2680 | 5740 | | | | | | | | | | | | | | | | 16
17 | 785
734 | 321
341 | e160
e160 | 694
751 | e150
e150 | e120
e120 | e110
e110 | 539
535 | 2570
2850 | 2610
2790 | 2650
2500 | 6830
8870 | | 18 | 569 | | e160 | 1540 | e150 | e120 | e110 | 537 | 2900 | 2990 | 2670 | 11200 | | 19 | 479 | 510 | e160 | 2030 | e140 | e120 | e110 | 559 | 2910 | 3310 | 2550 | 12700 | | 20 | 420 | 632 | 146 | 886 | e140 | e120 | e110 | 713 | 2790 | 4630 | 4290 | 13500 | | | | | | | | | | | | | | | | 21 | 380 | 873 | 303 | 658 | e130 | e120 | e110 | 845 | 2630 | 4580 | 4250 | 13500 | | 22
23 | 386
365 | 726
545 | e160
e160 | 578
518 | e130 | e120 | e110
e110 | 769
634 | 2840
3600 | 4660
4340 | 3740
2980 | 13400
9040 | | 23 | 334 | 502 | e180 | 434 | e130
e130 | e110
e110 | e110
e110 | 589 | 3460 | 3650 | 2980
2570 | 6800 | | 25 | 449 | 453 | 354 | 381 | e130 | e110 | e110 | 571 | 3320 | 3280 | 2420 | 3410 | | | | | | | | | | | | | | | | 26 | 384 | 372 | 388 | 332 | e130 | e110 | e110 | 559 | 3950 | 3110 | 2430 | 2300 | | 27
28 | 340
302 | 302
399 | 370
366 | 252
e180 | e160
e130 | e110
e110 | e130
145 | 549
698 | 4320
4430 | 3100
2960 | 2520
6520 | 1710
1560 | | 29 | 285 | 396 | 845 | e170 |
e130 | e110 | 221 | 927 | 4270 | 2680 | 7500 | 1440 | | 30 | 282 | | 1020 | e170 | | e110 | 284 | 1100 | 3840 | 2520 | 7050 | 1060 | | 31 | 265 | | 804 | e170 | | e110 | | 1290 | | 2630 | 5880 | | | TOTAL | 17432 | 11049 | 9624 | 16259 | 4070 | 3670 | 3690 | 15232 | 75900 | 98220 | 102120 | 157940 | | MEAN | 562 | 368 | 310 | 524 | 145 | 118 | 123 | 491 | 2530 | 3168 | 3294 | 5265 | | MAX | 1370 | 873 | 1020 | 2030 | 160 | 130 | 284 | 1290 | 4430 | 4660 | 7500 | 13500 | | MIN | 265 | 153 | 146 | 170 | 130 | 100 | 110 | 110 | 1330 | 2520 | 2200 | 1060 | | AC-FT | 34580 | 21920 | 19090 | 32250 | 8070 | 7280 | 7320 | 30210 | 150500 | 194800 | 202600 | 313300 | | | | STATISTIC | S OF MON | THLY MEAN I | DATA FOR | WATER | YEARS 1970 | 0 - 2001, | BY WATER | YEAR (WY |)# | | | MEAN | 983 | 322 | 204 | 201 | 117 | 108 | 178 | 713 | 2228 | 3163 | 3016 | 3369 | | MAX | 2506 | 514 | 312 | 524 | 188 | 220 | 277 | 841 | 2530 | 3281 | 5598 | 6294 | | (WY) | 1999 | 1998 | 2000 | 2001 | 1998 | 1998 | 1998 | 2000 | 2001 | 1998 | 1977 | 1974 | | MIN | 279 | 188 | 87.3 | 57.0 | 42.0 | 39.2 | 81.8 | 491 | 1780 | 2866 | 1764 | 1157 | | (WY) | 1998 | 2000 | 1999 | 1999 | 1999 | 1999 | 1999 | 2001 | 1999 | 1999 | 1998 | 2000 | | SUMMARY | STATIST: | ICS | FOR : | 2000 CALEND | AR YEAR | | FOR 2001 | WATER YEAR | 3 | WATER Y | EARS 1970 | - 2001# | | ANNUAL | TOTAT | | | 357799 | | | 515206 | | | | | | | ANNUAL | | | | 978 | | | 1412 | | | 1114 | | | | | C ANNUAL I | | | | | | | | | 1412 | | 2001 | | | ANNUAL M | | | | | | | | | 965 | | 2000 | | | DAILY M | | | 4620 | Jul 17 | | ab13500 | Sep 20 | | b23800 | Sep | 20 1974 | | | DAILY ME | AN
Y MINIMUM | | 43
44 | Mar 31
Mar 27 | | 100
109 | Mar 29
Mar 23 | | c36
37 | | 3 1999
26 1999 | | | SEVEN-DA
1 PEAK FL | | | -11 | rial 2/ | | b14900 | riat 23 |) | b26400 | | 20 1999 | | | I PEAK ST | | | | | | | Sep 22
20 Sep 22 | 2 | d40.7 | | 20 1974 | | | CANEOUS L | | | | | | | | | 36 | | 3 1999 | | ANNUAL | RUNOFF (| AC-FT) | | 709700 | | | 1022000 | | | 807100 | | | | | CENT EXCE | | | 2890 | | | 3380 | | | 3490 | | | | | CENT EXCE | | | 451 | | | 453 | | | 672 | | | | 90 PERC | CENT EXCE | EDS | | 69 | | | 120 | | | 71 | | | See Period of Record, partial years used in monthly summary statistics Sept. 20 and Sept. 21 Result of release of stored water from glacier-dammed lake Mar. 3 and Mar. 4, 1999 Site and datum then in use c d Estimated # 15258000 KENAI RIVER AT COOPER LANDING LOCATION.--Lat 60°29'34", long 149°48'28", in SE¹/₄ sec. 28, T. 5 N., R. 3 W. (Seward B-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on right bank 10 ft downstream from bridge on Sterling Highway, 0.9 mi upstream from Bean Creek, 0.9 mi east of Cooper Landing, and at Kenai Lake outlet. DRAINAGE AREA. -- 634 mi². PERIOD OF RECORD. -- May 1947 to current year. REVISED RECORDS. -- WSP 2136: 1964 (M). GAGE.--Water-stage recorder. Datum of gage is 419.92 ft above sea level (levels by Alaska Department of Transportation). See WSP 2136 for history of changes prior to August 28, 1965. August 28, 1965 to January 21, 1974, at site 10 ft upstream at present datum. January 22, 1974 to September 30, 1981, non-recording gage at site 40 ft upstream at present datum. REMARKS.--No estimated daily discharges. Records good. Diversion from Cooper Lake to Kenai Lake above gage through Cooper Lake power plant began May 1961. No diversions occurred from October 2000 to February 2001. Rain gage at station. GOES satellite telemetry and telephone modem at station. COOPERATION. -- Records of diversion provided by Chugach Electric Association. | | | DISCHA | ARGE, CUBI | C FEET | PER SECOND,
DAII | WATER
LY MEAN | | BER 2000 | TO SEPTEM | MBER 2001 | | | |---------------------------------------|---|--|---|---|---|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2980
2820
2690
2570
2450 | 1610
1550
1490
1460
1400 | 1370
1330
1310
1280
1290 | 1270
1290
1310
1320
1300 | 1830
1730
1650
1580
1520 | 791
779
773
775
756 | 605
616
630
618
624 | 944
998
1040
1080
1110 | 3950
4350
4830
5290
5630 | 12400
12100
11700
11300
10900 | 8140
8000
7930
7840
7730 | 12100
11300
10400
9610
8920 | | 6
7
8
9 | 2370
2370
2460
2480
2480 | 1360
1300
1280
1260
1250 | 1300
1300
1280
1280
1270 | 1300
1370
1450
1470
1460 | 1440
1360
1310
1240
1220 | 746
745
748
725
722 | 639
639
643
651
664 | 1140
1150
1170
1180
1200 | 5840
6010
6010
6040
6160 | 10700
10500
10200
9920
9640 | 7670
7540
7280
7060
6910 | 8420
7840
7330
6760
6250 | | 11
12
13
14
15 | 2400
2340
2300
2320
2370 | 1240
1240
1290
1300
1300 | 1260
1220
1190
1150
1130 | 1460
1440
1410
1430
1620 | 1200
1140
1090
1070
1040 | 717
703
699
699
686 | 667
665
668
673
682 | 1210
1250
1290
1340
1410 | 6330
6510
6600
6730
6950 | 9360
9090
8910
8750
8650 | 6690
6600
6610
6790
6880 | 5810
5600
5800
6160
6380 | | 16
17
18
19
20 | 2390
2430
2420
2390
2310 | 1300
1300
1320
1350
1380 | 1090
1100
1090
1070
1050 | 1770
1860
2080
2600
2900 | 1020
969
932
911
879 | 675
668
651
642
638 | 680
685
694
704
719 | 1500
1600
1710
1840
2000 | 7390
7880
8370
8760
9070 | 8500
8400
8450
8570
9080 | 6890
6900
6920
6930
7020 | 6620
7040
7790
8870
10400 | | 21
22
23
24
25 | 2250
2170
2110
2070
2030 | 1440
1530
1570
1580
1560 | 1030
1010
1000
988
975 | 3040
3060
3000
2910
2730 | 849
826
806
786
784 | 630
620
612
605
595 | 727
737
749
758
776 | 2170
2330
2490
2600
2690 | 9240
9360
9720
10400
10900 | 9750
10300
10700
10700
10500 | 7530
7900
7970
7730
7380 | 12300
14700
15000
13900
12600 | | 26
27
28
29
30
31 | 1990
1900
1840
1790
1700
1660 | 1540
1510
1510
1470
1430 |
982
981
985
1010
1110
1210 | 2600
2420
2290
2170
2030
1910 | 786
806
796

 | 597
592
588
587
590
593 | 787
809
836
863
902 | 2770
2820
2940
3140
3330
3590 | 11400
11900
12500
12900
12700 | 10200
9890
9560
9220
8800
8440 | 7040
6800
7250
9420
11200
12200 | 11100
9740
8600
7680
6880 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 70850
2285
2980
1660
2370
140500
3.60
4.16 | 42120
1404
1610
1240
1390
83550
2.21
2.47 | 35641
1150
1370
975
1130
70690
1.81
2.09 | 60270
1944
3060
1270
1770
119500
3.07
3.54 | 31570
1128
1830
784
1060
62620
1.78
1.85 | 20947
676
791
587
675
41550
1.07 | 21110
704
902
605
681
41870
1.11
1.24 | 57032
1840
3590
944
1500
113100
2.90
3.35 | 239720
7991
12900
3950
7170
475500
12.6
14.07 | 305180
9845
12400
8400
9750
605300
15.5
17.91 | 236750
7637
12200
6600
7280
469600
12.0
13.89 | 271900
9063
15000
5600
8510
539300
14.3
15.95 | | | | | | ADJUSTEI | TO EXCLUD | E DIVER | SION FROM | COOPER L | AKE | | | | | MEAN
CFSM
IN
AC-FT | 2285
3.60
4.15
140500 | 1404
2.21
2.47
83550 | 1150
1.81
2.09
70690 | 1943
3.06
3.53
119500 | 1128
1.78
1.85
62620 | 482
0.76
0.88
29630 | 568
0.90
1.00
33790 | 1606
2.53
2.92
98720 | 7683
12.12
13.52
457200 | 9605
15.15
17.47
590590 | 7518
11.86
13.67
462260 | 8924
14.08
15.70
531020 | ## 15258000 KENAI RIVER AT COOPER LANDING--Continued | STAT | ISTICS OF MONTHLY MEA | AN DATA FOR WAT | ER YEARS 1947 | - 2001, BY WATER | R YEAR (WY)# | | |---|--|-----------------------------|--|---|---------------------------------|--| | MEAN 3271 17 MAX 8955 48 (WY) 1980 19 MIN 1264 6 (WY) 1956 19 | 77 3469 2807
58 1986 1981
54 364 310 | 2066 11
1981 19
251 2 | 512 546
122 1071
977 1980
208 262
951 1952 | 1907 5413
3508 10010
1990 1953
658 3268
1952 1972 | 10480 114
1980 19
4868 36 | 381 5308
130 11490
277 1967
551 2629
269 1969 | | SUMMARY STATISTICS | FOR 2000 CAL | ENDAR YEAR | FOR 2001 W | ATER YEAR | WATER YEARS | 1947 - 2001# | | ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST ANNUAL MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MIN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FL ANNUAL RUNOFF (AC-FT ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | OW 1928000 1905060 *4. | Apr 14
Apr 9 | 592
a15700
a14.78
578
2763000
*2680070 | Mar 29
Mar 25
Sep 22
8 Sep 22
Mar 29 | 100
190
a23100
17.18 | 1977
1969
Sep 21 1974
Mar 28 1964
Mar 15 1951
Sep 21 1974
Sep 21 1974
Mar 27 1964 | [#] See Period of Record and Remarks; partial years used in monthly statistics. Values shown on this page are unadjusted for inflow from diversion, unless otherwise noted * Adjusted to account for inflow from diversion, see Remarks a Result of release of stored water from glacier-dammed lake at head of unnamed glacier in the Snow River Basin b No flow, Mar. 27 and Mar. 28, 1964, caused by earthquake #### 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING LOCATION.--Lat $60^{\circ}28'50''$, long $149^{\circ}52'50''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec. 31, T. 5 N., R. 3 W. (Seward B-8 quad), Hydrologic Unit 19020302 Kenai Peninsula Borough, on left bank, approximately 0.5 mi upstream from mouth, and 1.5 mi west of Cooper Landing. DRAINAGE AREA. -- 48.6 mi². #### WATER DISCHARGE RECORDS PERIOD OF RECORD.--October 1957 to January 1965, August 1998 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. From October 1957 to January 1965, 0.4 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Since July 1959, entire flow from $31.8\,$ mi 2 of drainage area has been regulated by dam at Cooper Lake outlet. No spilling since 1959 except for period May 1961 to October 1962. GOES satellite telemetry at station. | | | DISCHA | RGE, CUBIC | FEET PE | | , WATER
LY MEAN | YEAR OCTOBER | 2000 | TO SEPTEMBE | R 2001 | | | |---|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|--|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
33
32
32
34 | e25
e24
23
e22
e22 | e32
e30
e30
e30
e30 | 27
e26
e25
e23
e22 | 17
e17
e16
e16
e15 | e10
e9.5
e9.5
e9.5
e9.5 | e7.0
e7.5
e7.5
e7.5
e7.5 | 31
28
26
24
22 | 154
170
184
158
149 | 158
151
154
151
152 | 97
95
96
93
90 | 75
71
69
70
73 | | 6
7
8
9
10 | 35
38
37
34
33 | 21
21
23
23
29 | e29
27
27
e25
e24 | e20
e18
e17
e15
e15 | e15
e14
e14
e13
e13 | 9.3
9.1
9.0
9.1
9.3 | e7.5
e8.0
e8.0
e8.0
e8.0 | 21
21
24
27
30 | 146
138
132
140
149 | 153
152
154
145
141 | 85
81
80
78
74 | 66
65
60
55
53 | | 11
12
13
14
15 | 33
32
31
39
36 | 31
e30
29
29
e27 | e23
22
21
21
e21 | e14
e13
e13
e12
e12 | e12
e12
e12
e12
e12 | 9.7
9.7
10
9.6
9.5 | e8.0
e8.5
8.6
9.0
9.3 | 35
40
45
53
62 | 152
150
150
151
172 | 143
140
124
117
119 | 71
71
73
77
75 | 50
50
51
48
46 | | 16
17
18
19
20 | 36
35
34
32
31 | 25
25
27
35
47 | e20
e20
e20
19
19 | e11
40
54
70
48 | e11
e11
e11
e11 | 9.3
e9.0
e9.0
e9.0 | 9.7
9.9
10
11
14 | 67
73
74
76
88 | 207
214
207
184
177 | 124
121
127
144
175 | 75
72
74
70
88 | 44
44
46
49
46 | | 21
22
23
24
25 | 33
33
30
29
38 | 46
45
40
36
35 | 19
e18
e18
e18
17 | 38
32
28
25
23 | 11
11
e10
e10
e10 | e9.0
e9.0
e9.0
e8.5
e8.5 | 16
18
20
20
21 | 89
85
81
86
87 | 191
216
240
253
250 | 154
147
133
120
113 | 84
76
68
63
59 | 45
43
50
67
57 | | 26
27
28
29
30
31 | 34
30
e29
e28
e27
26 | e35
e35
e35
35
32 | 17
16
15
30
36
29 |
21
20
e19
e18
e17
e17 | e10
e10
e10
 | e8.5
e8.5
e8.5
8.3
e8.0
e7.5 | 23
26
29
30
32 | 86
88
106
127
144
138 | 246
242
240
234
206 | 113
114
107
100
95
100 | 55
53
100
140
104
88 | 53
49
47
45
42 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1018
32.8
39
26
2020 | 912
30.4
47
21
1810 | 723
23.3
36
15
1430 | 753
24.3
70
11
1490 | 347
12.4
17
10
688 | 280.9
9.06
10
7.5
557 | 409.5
13.6
32
7.0
812 | 1984
64.0
144
21
3940 | 5602
187
253
132
11110 | 4141
134
175
95
8210 | 2505
80.8
140
53
4970 | 1629
54.3
75
42
3230 | | | ٤ | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | R WATER | YEARS 1958 - | 2001, | BY WATER Y | EAR (WY)‡ | ŧ | | | MEAN
MAX
(WY)
MIN
(WY) | 74.8
264
1958
20.7
1964 | 52.7
285
1958
11.9
1964 | 25.4
82.9
1958
10.0
1964 | 20.5
58.9
1958
8.00
1964 | 14.0
32.4
1958
6.43
1999 | 11.9
28.0
1958
4.50
1999 | 18.9
50.3
1958
9.00
1960 | 101
219
1961
42.6
1964 | 204
412
1958
73.7
1963 | 156
326
1961
68.1
1960 | 88.8
226
1961
38.0
1963 | 79.5
309
1961
21.6
1963 | | SUMMARY | STATISTIC | CS FOR | 2000 CALE | NDAR YEAR | | FOR 2001 | WATER YEAR | | WATER Y | EARS 1958 | - 2001# | | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM | | AN
AN
N
MINIMUM
W
GE | | Jun 5 | 7
7
6 | 25
28
1 | 55.6
53 Jun 24
7.0 Apr 1
7.4 Mar 31 | | 71.
a174
29.
ab810
c4.
4.
ab841
b2.
f3. | 9 Sep
0 Mar
0 Mar
Sep
10 Sep | 1958
1963
22 1961
19 1999
19 1999
21 1961
21 1961
1 1960 | | | 10 PERC
50 PERC | RUNOFF (AGENT EXCEED ENT EXCEUTER ENT EXCEED ENT EXCEUTER EX | DS
DS | 28080
89
31
9.! | 5 | | | | | 51990
195
34
9. | 5 | | | See Period of Record, partial years used in monthly statistics Includes natural flow or spill from area upstream from Cooper Lake dam Caused by release of water behind log jam upstream. Site and datum then in use From Mar. 19 to Apr. 14, 1999 Not determined. See lowest daily mean Estimated Caused by temporary storage behind ice jam upstream (observed) Caused by temporary storage behind ice jam upstream (observed) ### 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval. REMARKS.--Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature at the sensor was compared with the average for the stream by cross section on December 12. No variations were found within the cross section. No variation was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 11.5°C, July 14, 1999; Minimum, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum, 10.0° C, August 13; Minimum, 0.0° C on many days during winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |------|------|------------------------------------|--|-------------------------------------|---|--|--------------------------------------|---|---| | DEC | | | | | | | | | | | 12 | 1346 | 31.0 | 5.00 | 9.92 | 21 | 10 | 8010 | 1.0 | 2.5 | | 12 | 1348 | 31.0 | 10.0 | 9.92 | 21 | 10 | 8010 | 1.0 | 2.5 | | 12 | 1350 | 31.0 | 15.0 | 9.92 | 21 | 10 | 8010 | 1.0 | 2.5 | | 12 | 1352 | 31.0 | 20.0 | 9.92 | 21 | 10 | 8010 | 1.0 | 2.5 | | 12 | 1354 | 31.0 | 25.0 | 9.92 | 21 | 10 | 8010 | 1.0 | 2.5 | TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|-------------------------|--------------------------| | | | OCTOBER | | N | NOVEMBER | | | DECEMBER | | | JANUAR: | Y | | 1
2
3
4
5 | 2.0
3.0
4.0
4.0
5.0 | .0
.5
2.0
3.0
3.0 | 1.0
1.5
3.0
3.5
4.0 | 1.0
1.0
.5
.0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0 | . 0
. 0
. 0
. 0 | .0
.0
.0
.0 | 1.0
.0
.0
.0 | .0
.0
.0
.0 | .5
.0
.0
.0 | | 6
7
8
9
10 | 5.5
4.5
4.0
3.5
3.0 | 4.0
3.5
2.0
.5 | 4.5
4.0
3.0
2.0
1.5 | 1.5
1.0
1.5
2.0
2.5 | .0
.0
.0
1.5
2.0 | 1.0
.5
.5
2.0
2.5 | .5
1.0
.0
.0 | .0.0.0 | .0
1.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | 11
12
13
14
15 | 3.0
3.5
3.5
4.0
3.5 | 2.0
2.5
2.0
3.0
2.0 | 2.5
2.5
3.0
3.5
3.0 | 2.5
.0
1.0
1.0 | .0.0.0 | 1.0
.0
.5
.5 | 1.0
1.0
.5
.5 | .0
.5
.0
.0 | .5
1.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | 16
17
18
19
20 | 3.5
3.5
3.0
3.0
2.5 | 2.5
2.0
1.5
1.5 | 3.0
2.5
2.0
2.0
1.5 | 1.5
1.5
1.0
2.0
2.0 | .5
.5
.5
1.0 | 1.0
1.0
1.0
1.5
2.0 | .5
.0
.0
1.0 | .0
.0
.0
.0 | .0
.0
.0
1.0 | 1.0
1.5
1.5
1.5 | .5
1.0
1.0
1.0 | .5
1.0
1.0
1.0 | | 21
22
23
24
25 | 1.5
2.0
1.5
2.0
2.5 | .0
1.0
.0
.0 | .5
1.5
1.5
1.0
2.0 | 2.0
1.5
2.0
2.0
1.5 | 1.0
1.5
1.0
1.0 | 1.5
1.5
1.5
1.5 | .5
.0
.0
1.0 | .0
.0
.0
.0 | .5
.0
.0
.5 | 1.5
1.5
1.5
1.5 | 1.0
.5
1.0
1.0 | 1.0
1.0
1.0
1.0 | | 26
27
28
29
30
31 | 1.5
.5
.0
.0
.5 | .5
.0
.0
.0 | 1.0
.5
.0
.0 | .0
.0
.0
1.0 | .0
.0
.0
.0 | .0
.0
.5
.5 | 1.0
1.5
1.5
1.5 | .5
1.0
.0
.5 | 1.0
1.0
1.0
1.0
1.0 | 1.0
1.0
.0
.0 | .5
.0
.0
.0 | 1.0
.5
.0
.0 | | MONTH | 5.5 | .0 | 2.0 | 2.5 | .0 | .8 | 1.5 | .0 | . 4 | 1.5 | .0 | . 4 | # 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|---|---|---|--|---|--|--|--|--|---|---|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .5
.0
.0
.0 | .0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0 | .0
.0
.0
.0 | .0
1.0
2.0
1.5 | .0.0.0 | .0
.5
1.0
1.0 | 3.5
4.0
3.0
4.0
3.5 | .5
.5
1.0
.5 | 2.0
2.0
1.5
1.5 | | 6
7
8
9
10 | | | .0.0.0.0 | 1.0
1.0
1.0
1.5 | .0
.0
.0
.5 | .5
.5
.5
1.0 | 1.0
2.0
2.0
2.0
2.0 | .0
.0
.5
.0 | .5
.5
1.0
1.0 | 4.0
5.0
5.5
5.0
6.0 | 1.0
1.0
1.5
1.0 | 2.5
3.0
3.0
2.5
3.0 | | 11
12
13
14
15 | .0.0.0.0 | .0.0.0 | .0.0.0.0 | 1.5
1.5
1.0
2.0
2.0 | .5
.5
.0
.5 | | 2.0
2.5
3.0
2.5
3.0 | | 1.0
1.5
1.5
1.0 | 5.0
5.0
5.5
5.5
4.5 | 1.0
1.0
1.0
1.0 |
2.5
2.5
2.5
2.5
3.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | | | 2.0
.5
.0
.0 | | 1.0
.0
.0
.0 | 3.5
3.5
4.0
4.0
3.5 | .5
.5
1.0
.5 | 1.5
1.5
2.0
1.5
2.0 | 4.5
5.0
4.0
5.5
4.5 | 1.5
1.0
1.5
1.5
2.0 | 2.5
2.5
2.5
3.0
3.0 | | 21
22
23
24
25 | 1.0
.5
.0
.0 | .5
.0
.0
.0 | .5
.5
.0
.0 | .0
.5
.5
.0 | .0 | .0
.0
.0
.0 | 4.0
4.0
3.0
4.5
4.0 | 1.5
1.0
.5
.5 | 2.0
2.0
1.5
2.0
2.5 | 4.0
4.5
5.0
5.0 | 2.0
1.5
1.5
1.5 | 2.5
2.5
3.0
3.0 | | 26
27
28
29
30
31 | .0 | .0 | .0
.0
.0
 | .0
1.5
1.5
.5 | .0
.0
.5
.0 | .0
.0
.5
1.0
.0 | 4.0
4.0
3.5
5.0
4.5 | 1.0
1.0
1.5
1.0 | 2.5
2.5
2.5
2.5
2.0 | 5.0
5.5
6.0
5.0
4.0
5.5 | 2.0
1.5
2.0
2.0
2.5
2.0 | 3.0
3.0
3.5
3.5
3.0
3.5 | | MONTH | 1.0 | .0 | .0 | 2.0 | .0 | | 5.0 | .0 | 1.5 | 6.0 | .0 | 2.7 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | JULY | | | MIN
AUGUST | | : | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 5.5 | | | 7.0
7.0
6.0
5.5
6.0 | JULY | | 9.0
9.0
6.5
8.0
9.0 | AUGUST
5.0
5.0
5.5
5.0 | MEAN 6.5 6.5 6.0 6.5 6.5 | 7.0
7.0
8.0
6.5
6.0 | 4.5
5.5
5.5
5.5
4.0 | | | 1
2
3
4 | 5.5
5.5
5.0
4.5
5.0 | JUNE
2.5 | 3.5
3.5
3.5
3.5
3.5 | | JULY 3.0 3.5 3.5 4.0 4.0 | | | AUGUST
5.0
5.0
5.5
5.0 | | 7.0
7.0
8.0
6.5
6.0 | 4.5
5.5
5.5
5.5
4.0
3.0
4.5
3.5
3.0 | 6.0
6.0
6.5
6.0 | | 1
2
3
4
5
6
7
8 | 5.5
5.5
5.0
4.5
5.0
4.5
6.0
6.5 | JUNE 2.5 2.0 2.5 2.5 2.5 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0 | 7.0
7.0
6.0
5.5
6.0 | JULY 3.0 3.5 3.5 4.0 4.0 4.0 4.0 4.0 3.5 | 5.0
5.0
4.5
4.5
4.5
4.5
5.0
5.0 | 9.0
9.0
6.5
8.0
9.0
9.0
9.0
8.0
8.0 | 5.0
5.0
5.5
5.0
5.0
5.0
5.0
5.0 | 6.5
6.5
6.0
6.5
6.5 | 7.0
7.0
8.0
6.5
6.0 | 4.5
5.5
5.5
5.5
4.0
3.0
4.5
3.5
3.0 | 6.0
6.0
6.5
6.0
5.0
4.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 5.5
5.5
5.0
4.5
5.0
4.5
6.0
4.5
4.5
6.0 | JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.0 2.5 3.0 3.0 3.0 3.0 2.5 | 3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
3.5
3.5
4.0 | 7.0
7.0
6.0
5.5
6.0
5.5
6.0
7.5
6.5
5.5
6.0
7.5 | JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.0 | 5.0
5.0
5.5
4.5
4.5
4.5
5.0
5.0
5.0
5.5 | 9.0
9.0
6.5
8.0
9.0
9.0
9.0
8.0
7.5
9.5
9.5
9.5 | 5.0
5.0
5.5
5.0
5.0
5.0
5.0
5.0
6.0
5.5
5.5 | 6.5
6.5
6.5
6.5
6.5
6.5
7.5
6.0
7.5
7.5 | 7.0
7.0
8.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 4.5
5.5
5.5
5.5
4.0
3.0
4.5
3.0
3.0
4.5
4.5 | 6.0
6.0
6.5
6.0
5.0
4.5
4.5
4.5
4.5
5.5
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 5.5
5.5
5.0
4.5
6.5
6.5
6.5
6.5
6.5
6.0
4.5
6.5
6.0
6.5
6.0
6.5 | JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.0 2.5 2.5 3.0 3.0 3.0 2.5 3.0 3.0 2.5 3.0 | 3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
3.5
4.0
4.0
4.0
4.0
3.5
4.0 | 7.0
7.0
6.0
5.5
6.0
5.5
5.5
6.5
7.5
6.5
7.0
6.0
7.5
6.0 | JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.5 4.5 4.5 | 5.00
5.05
4.55
4.55
4.55
5.00
5.05
5.55
5.5 | 9.0
9.0
6.5
8.0
9.0
9.0
9.0
8.0
7.5
9.5
9.5
9.5
8.0
9.5 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.5
5.5
6.0
5.5
6.0
5.5
6.0 | 6.5
6.5
6.5
6.5
6.5
6.5
7.5
6.0
7.5
7.0
7.0
6.5
6.5 | 7.0
7.0
8.0
6.5
6.0
6.5
6.0
6.0
6.0
6.0
6.0
7.0
6.5
7.0
7.0 | \$EPTEMBE 4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.0 3.0 4.5 4.5 4.5 4.5 6.5 6.5 6.5 | 6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.5
5.5
5.5
5.5
5.6
6.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 5.5
5.5
5.0
4.5
4.5
6.5
4.5
6.5
6.6
6.5
6.5
5.5
6.5
6.5
6.5
6.5
6 | JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.5 2.5 3.0 3.0 3.0 2.5 3.0 3.0 3.5 3.0 3.5 3.0 3.0 3.5 3.0 | 3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
3.5
4.0
4.0
4.0
4.5
4.5
4.5 | 7.0
7.0
6.0
5.5
6.0
5.5
5.5
6.5
7.5
6.5
7.0
6.0
7.5
6.0
7.5
6.0
7.0
6.0
6.0
6.0 | JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.5 4.5 4.0 4.5 5.0 | 5.005
54.55
5.000
54.55
5.000
55.55
56.000
55.55
55.55 | 9.0
9.0
6.5
8.0
9.0
9.0
9.0
8.0
7.5
9.5
9.5
9.5
8.0
9.5
8.0
9.5
8.0
9.5
8.0
9.5 | 5.0
5.0
5.5
5.0
5.0
5.0
5.0
5.5
5.5
5.5 | 6.5
6.5
6.5
6.5
6.5
6.5
6.5
7.5
7.5
7.0
6.5
7.5
7.0
6.5
7.5
6.5
6.5
7.5
7.5
7.6
6.5
7.5
7.6
6.5
7.6
6.5
7.6
6.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.0
7.0
8.0
6.5
6.0
6.5
6.0
6.0
6.0
6.0
6.0
7.0
6.5
7.0
7.0
7.0
6.5 | \$EPTEMBE 4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.0 3.0 4.5 4.5 4.5 6.0 5.5 6.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | 6.00
6.50
5.05
4.55
5.55
5.55
5.55
5.55
5.55
5 | ### 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING LOCATION.--Lat $60^{\circ}28'00''$, long $150^{\circ}35'56''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 1, T. 4 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 3.5 mi downstream from Skilak Lake, 7 mi southeast of Sterling. DRAINAGE AREA.--1,206 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1997 to current year. REVISED RECORDS. -- WRD-AK-00-1: Drainage area. GAGE.--Water stage recorder. Elevation of gage is 240 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage recorder at station. GOES satellite telemetry and phone modem at station. | | Г | DISCHARGE | , CUBI | C FEET PER | | WATER MEAN | | BER 2000 TC | SEPTEMB | ER 2001 | | | |--|---|--------------------------------------|--|---|---|--|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 e50
3 e49
4 e49 | 000 2
900 2
800 2 | 2850
2770
2690
2620
2550 | 2570
2510
2480
2440
2480 | 1890
1900
1910
1910
1910 | 3450
3330
3210
3060
3000 | 1600
1590
1540
1580
1540 | 1100
1170
1210
1070
1080 | 1290
1370
1410
1450
1500 | 4260
4600
5010
5380
5770 | 16100
16200
16200
16200
16200 | 15000
14600
14300
14200
14000 | 17700
18200
18300
18000
17400 | | 7 e4!
8 e4
9 e4 | 500 2
400 2
400 2 | 2480
2400
2320
2350
2360 | 2430
2420
2360
2320
2310 | 1900
2150
2220
2270
2280 | 2960
2790
2680
2620
2530 | 1510
1490
1530
1450
1450 | 1070
1070
1060
1070
1270 | 1530
1550
1580
1610
1640 | 6140
6480
6750
6980
7190 | 16200
15900
15900
15700
15400 | 13700
13400
13300
13100
12900 | 16700
16000
15200
14300
13500 | | 12 e43
13 43
14 40 | 130 2
130 2
080 2 | 2210
2170
2290
2210
2190 | 2290
2210
2170
2160
2070 | 2280
2330
2410
2570
2710 | 2440
2420
2340
2250
2050 | 1480
1390
1380
1410
1340 | 1170
1070
1080
1060
1060 | 1670
1690
1740
1780
1840 | 7420
7650
7840
7990
8170 | 15200
14900
14600
14300
14000 | 12500
12200
12000
12000
12100 | 12700
11900
11400
10900
10600 | | 17 38
18 3'
19 3' | 870 2
780 2
720 2 | 2180
2260
2210
2260
2230 | 2030
2020
2030
2110
2000 | 2830
2960
3160
3490
3610 | 2280
2140
1970
1930
1860 | 1330
1310
1280
1250
1220 | 1070
1070
1080
1090
1130 | 1900
1970
2060
2160
2290 | 8430
8800
9260
9700
10100 | 13900
13800
13600
13800
14000 | 12300
12600
12800
13000
13100 |
10500
10500
10500
10800
11200 | | 22 3!
23 34
24 3! | 520 2
490 2
500 2 | 2350
2400 | 1960
1890
1860
1830
1800 | 3800
3950
4050
4190
4120 | 1810
1760
1710
1660
1610 | 1210
1180
1160
1150
1130 | 1160
1110
1130
1150
1190 | 2420
2530
2670
2810
2960 | 10500
10900
11400
11900
12500 | 14600
15300
15900
16300
16600 | 13500
13800
14200
14300
14400 | 11800
12800
14100
15000
15500 | | 27 33
28 33
29 30
30 29 | 200 2
120 2
030 2
960 2 | 2420
2520
2570
2590 | 1790
1780
1730
1810
1860
1880 | 4120
3980
3880
3750
3670
3570 | 1650
1680
1620
 | 1120
1110
1090
1070
1090
1110 | 1190
1210
1270
1260
1290 | 3110
3260
3410
3560
3760
3990 | 13200
13800
14500
15200
15800 | 16600
16600
16400
16200
15700
15200 | 14200
13800
13700
14500
15500
16700 | 15400
14900
14200
13300
12500 | | MAX 50
MIN 29
AC-FT 2423
CFSM 3 | 939 2
000 2
920 2
100 143 | 2403
2850
2170
3000 13 | 5600
2116
2570
1730
0100
1.75
2.02 | 91770
2960
4190
1890
182000
2.45
2.83 | 64810
2315
3450
1610
128600
1.92
2.00 | 41090
1325
1600
1070
81500
1.10
1.27 | 34010
1134
1290
1060
67460
.94
1.05 | 68510
2210
3990
1290
135900
1.83
2.11 | 273620
9121
15800
4260
542700
7.56
8.44 | 477500
15400
16600
13600
947100
12.8
14.73 | 421700
13600
16700
12000
836400
11.3
13.01 | 415800
13860
18300
10500
824700
11.5
12.83 | | | STA | TISTICS | OF MONT | THLY MEAN I | DATA FOR I | WATER Y | EARS 1997 | - 2001, B | Y WATER | YEAR (WY)# | | | | MAX 74
(WY) 19
MIN 39 | 498 4
998 2
939 2 | 1441
2000
2403 | 1835
2116
2001
1528
1999 | 1761
2960
2001
1164
1999 | 1424
2315
2001
891
1998 | 1052
1325
2001
870
1998 | 1103
1241
1998
995
1999 | 2394
2637
1998
2210
2001 | 8048
9795
1998
6156
1997 | 13300
15400
2001
11960
1999 | 11930
13600
2001
10310
1998 | 10220
13860
2001
5659
2000 | | SUMMARY STA | ATISTICS | | FOR 2 | 2000 CALEN | DAR YEAR | | FOR 2001 | WATER YEAR | | WATER Y | EARS 1997 | - 2000# | | ANNUAL TOT: ANNUAL MEAI HIGHEST ANNI HIGHEST DA: LOWEST DAI: ANNUAL SEVI MAXIMUM PE: MAXIMUM PE: INSTANTANE ANNUAL RUN ANNUAL RUN 10 PERCENT 50 PERCENT 90 PERCENT | N NUAL MEAN UAL MEAN LY MEAN LY MEAN EN-DAY MI AK FLOW AK STAGE OUS LOW F OFF (AC-F OFF (TNCH EXCEEDS EXCEEDS | ENIMUM
FLOW
FT) | | 1628721
4450
14500
915
929
3231000
3.69
50.24
11900
2440
1060 | | | 2148540
5887
18300
a1060
1070
18500
4262000
466
15000
2830
1210 | Apr 12
Sep 2
.21 Sep 2
Apr 8 | | 5200
5887
4742
18300
776
792
18500
13.2
5767000
4.3
13100
3410
1040 | Mar
Sep
21 Sep
Mar | 2001
2000
3 2001
13 1998
9 1998
2 2001
2 2001
12 1998 | [#] See Period of Record, partial year used in monthly statistics a Apr 8, 14, and 15 b Mar 12 and 13, 1998 e Estimated ### 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1998 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1998 to current year. INSTRUMENTATION. -- Electronic water-temperature recorder set at 15-minute recording interval. REMARKS.--No record October 1-12 due to low powerto the data recorder, and March 18 to May 1 when the sensor was out of water. Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the river average by cross section on October 6 and July 31. No variation was found within the cross-sections. No variation was found between mean stream temperature and temperature at the sensor. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum observed, 15.0°C, July 7, but may have been higher during period of missing record in June and July 1999; minimum, 0.0°C on many days in winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 15.0° C, August 7 and 14; minimum, 0.0° C on many days in winter. | DATE | TIME | SAMPLE
LOCA-
TION,
CROSS
SECTION
(FT FM L
BANK)
(00009) | SPECIFIC
CONDUC-
TANCE
(US/CM) | PH WATER WHOLE FIELD (STAN- DARD UNITS) (00400) | TEMPERA-
TURE
WATER
(DEG C)
(00010) | RIC PRES-
SURE (MM
OF HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PERCENT
SATURA-
TION)
(00301) | |-----------|-------|--|---|---|---|---------------------------------|-------------------------------------|--| | | 11112 | (0000) | (000)37 | (00100) | (00010) | (00025) | (00500) | (00301) | | OCT
12 | 1802 | 30.0 | 62 | 0 1 | 7.0 | 751 | 12.6 | 105 | | | | | 62 | 8.1 | | | | | | 12 | 1804 | 100 | | 8.1 | 7.0 | 751 | 12.5 | 104 | | 12 | 1806 | 170 | 62 | 8.0 | 7.0 | 751 | 12.5 | 104 | | 12 | 1808 | 240 | 62 | 8.1 | 7.0 | 751 | 12.5 | 104 | | 12 | 1810 | 310 | 62 | 8.1 | 7.0 | 751 | 12.5 | 104 | | AUG | | | | | | | | | | 07 | 1540 | 40.0 | 68 | 8.1 | 15.0 | 773 | 10.9 | 107 | | 07 | 1541 | 120 | 68 | 8.1 | 15.0 | 773 | 10.7 | 105 | | 07 | 1542 | 200 | 68 | 8.1 | 15.0 | 773 | 10.6 | 104 | | 07 | 1543 | 280 | 68 | 8.1 | 15.0 | 773 | 10.6 | 104 | | 07 | 1544 | 360 | 68 | 8.1 | 15.0 | 773 | 10.5 | 103 | | SEP | | | | | | | | | | 04 | 1535 | 40.0 | 64 | 7.8 | 11.5 | 744 | 10.7 | 101 | | 04 | 1536 | 120 | 64 | 7.8 | 11.5 | 744 | 10.8 | 101 | | 04 | 1537 | 200 | 64 | 7.8 | 11.5 | 744 | 10.7 | 101 | | 04 | 1538 | 280 | 64 | 7.8 | 11.5 | 744 | 10.6 | 100 | | 04 | 1539 | 360 | 64 | 7.8 | 11.5 | 744 | 10.6 | 100 | | DATE | N
TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | (CODE) | VISIT (CODE) | QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400 | AIR
(DEG | E
R
C) | |-----------|-----------|----------------|----------------|------------------------------------|-------------------------------------|---|--|--------|--------------|---|---|--|-------------|--------------| | OCT | | | | | | | | | | | | | | | | 12 | 1740 | 9 | 9 | 340 | 8. | 29 448 | 30 | 10 30 | 053 10 | 001 | | 62 | 8.1 | | | NOV | 1400 | 9 | 9 | 325 | 7 | 26 22 | 7.0 | 10 30 | 053 10 | 0.01 | | 64 | 7 0 | | | 07
JAN | 1420 | 9 | 9 | 345 | 7. | 36 23 | 70 | 10 30 | J53 II | 001 | | 04 | 7.9 | | | 03 | 1120 | 9 | 9 | 395 | 7. | 06 192 | 2.0 | 10 30 | 045 10 | 001 | | 63 | 7.7 | | | FEB | 1120 | | _ | 3,3 | | | | 10 00 | | , 0 1 | | 0.5 | | | | 06 | 1050 | 9 | 9 | 390 | 7. | 69 303 | 0 | 10 30 | 10 | 01 | | 61 8 | 3.0 | -1.5 | | MAR | | | | | | | | | | | | | | | | 06 | 1100 | 9 | 7 | 375 | 6. | 78 149 | 0 | 10 30 |)45 10 | 001 3 | 0 | 62 | 7.5 | 4.0 | | MAY | | | | | | | _ | | | | | | | | | 09 | 1620 | 9 | | 385 | 6. | | | | | | | | 7.6 | .00 | | 09 | 1621 | D | 9 | | | | - : | 10 80 | 10 10 | 199 | | | | | | JUN | 1500 | | | 255 | | | | 10 00 | | | • | | | | | 13 | 1520 | 9 | 9 | 357 | 9. | | | | | 01 1 | | | 3.0 | 14.5 | | 22 | 1230 | 9 | 9 | 375 | 10. | | | | | | | | 7.9 | 18.0 | | 27 | 1310 | 9 | 9 | 390 | 11. | 91 1390 |) () | 10 30 |)53 10 | 001 | | 68 | 7.8 | 22.5 | | JUL | | | | | | | | | | | | | | | | 12 | 1250 | 9 | 9 | 380 | 12. | | | | | | | | 7.3 | 15.5 | | 24 | 1630 | 9 | 9 | 380 | 12. | 64 1640 | 00 | 10 30 |)53 10 | 002 | | 64 ' | 7.8 | 15.5 | | AUG | | | | | | | | | | | | | | | | 07 | 1530 | 9 | 9 | 390 | 11. | 78 136 | 00 | 10 30 | 053 10 | 001 | | 68 | 8.1 | | | SEP | | _ | _ | | | | | | | | | | | | | 04 | 1520 | 9 | 9 | 380 | 13. | 09 175 | JU | 10 30 | 053 10 | 001 | | 64 | 7.8 | | # SOUTH-CENTRAL ALASKA # 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued | DATE | TEMP-
ERATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | HCO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/S AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |--|---|---|---
---|--|---|--|---|--|---|--|--|--| | OCT
12 | 7.0 | 751 | 12.5 | 104 | 27 | 9.71 | .683 | 1.0 | 23 | .67 | 26 | 21 | 6.2 | | NOV
07 | 4.5 | 755 | 12.6 | 98 | 27 | 9.65 | .671 | 1.0 | 23 | .90 | 27 | 22 | 6.3 | | JAN
03 | 2.5 | 755 | 13.7 | 101 | 28 | 9.96 | .733 | 1.1 | 23 | .80 | 28 | 23 | 6.1 | | FEB
06 | 1.5 | 759 | 13.0 | 93 | 29 | 10.4 | .723 | 1.1 | 24 | .81 | 28 | 23 | 6.2 | | MAR
06 | 1.5 | 748 | 13.5 | 98 | 27 | 9.61 | .696 | 1.0 | 23 | 1.10 | 26 | 22 | 6.6 | | MAY
09 | 5.0 | 758 | 13.0 | 102 | 27 | 9.83 | .694 | 1.1 | 24 | .76 | 27 | 22 | 6.5 | | 09
JUN | | | | | | | | | | | | | | | 13
22 | 10.5 | 761
762 | 11.6
10.3 | 104
98 | 29
29 | 10.4 | .759
.745 | 1.1 | 23
24 | .70
.61 | 27
27 | 23
22 | 1.2 | | 27
JUL | 13.0 | 763 | 11.1 | 105 | 30 | 10.8 | .778 | 1.2 | 24 | .72 | 26 | 23 | 6.4 | | 12
24 | 11.0
12.0 | 760
765 | 11.0
10.5 | 100
97 | 29
30 | 10.4
10.7 | .773
.776 | 1.2
1.2 | 24
27 | .73
.69 | 28
29 | 23
24 | 6.7
6.9 | | AUG
07 | 15.0 | 773 | 10.6 | 104 | 29 | 10.4 | .752 | 1.1 | 24 | .70 | 28 | 23 | 6.8 | | SEP
04 | 11.5 | 744 | 10.7 | 101 | 29 | 10.3 | .742 | 1.1 | 22 | .69 | 25 | 21 | 6.7 | | | | | | | | | | | | | | | | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
12 | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE
DIS-
SOLVED
(MG/L
AS F) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L) | GEN NITRITE DIS- SOLVED (MG/L AS N) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
12
NOV
07 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
12
NOV
07
JAN
03 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
12
NOV
07
JAN
03
FEB
06 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.159 | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
E.05 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.007 | | OCT
12
NOV
07
JAN
03
FEB
06 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.6
2.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
41
37
43 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
35
36
37 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.159
.150 | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.017
.002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
<.10
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.009
.007 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.007
<.007 | | OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 09 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
.8
.8
.8
.9 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.6
2.6
2.9
2.8
2.6
2.7 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
41
37
43
36
39
45 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
35
36
37
37 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 | PHORUS
TOTAL
(Mg/L
AS P)
(00665)
.009
.007
.006
.005
.005 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006
<.006
<.006 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007 | | OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 099 JUN 13 22 27 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.8
.8
.8 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.6
2.6
2.9
2.8
2.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
41
37
43
36
39 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
35
36
37
37 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 E.06 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.009
.007
.006
.005 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006
<.006 |
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.007
<.007
<.007
<.007 | | OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 199 22 27 JUL 12 24 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.8
.8
.9
.8 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.6
2.6
2.9
2.8
2.6
2.7
 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
41
37
43
36
39
45
 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
35
36
37
36
36
37
36 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 .001 <.001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 .155154 .158 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06 <.08 E.06 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.009
.007
.006
.005
.005
.005 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006
<.006
<.006
<.006 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | | OCT 12 NOV 07 JAN 03 FEB 06 MAR 09 13 22 27 JUL 12 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.8
.8
.9
.8
.7

.8
.8
.8 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED (MG/L
AS SIO2) (00955)
2.6
2.6
2.9
2.8
2.6
2.7

3.0
3.0
3.1 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
41
37
43
36
39
45

39
33
42 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
35
36
37
36
36

32
37
37
37 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 .001 .001 .001 .001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 .155154 .158 .159 .164 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002002 .003 <.002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06 <.08 E.06 E.06 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.007
.006
.005
.005
.005
.005
.005 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | # 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued | | IRON,
DIS-
SOLVED
(UG/L | MANGA-
NESE,
DIS-
SOLVED
(UG/L | CAR-
BON,
ORGANIC
DIS-
SOLVED
(MG/L | CAR-BON,
INOR-GANIC,
PAR-TIC.
TOTAL | CAR-BON, ORGANIC PARTIC-ULATE TOTAL (MG/L | CAR-BON, INORG + ORGANIC PAR- TIC. TOTAL (MG/L | NITRO-
GEN,
PARTIC-
ULATE
WAT FLT
SUSP
(MG/L | CHLOR-A PERIPH- YTON CHROMO- GRAPHIC FLUO- ROM | PERIPH-
YTON
BIO-
MASS
ASH
WEIGHT | PERIPH-
YTON
BIO-
MASS
TOTAL
DRY
WEIGHT | PHEO-
PHYTIN
A,
PERI-
PHYTON | SEDI-
MENT,
SUS-
PENDED | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED | |------------------|----------------------------------|--|--|--|---|--|--|--|--|---|--|----------------------------------|---| | | AS FE) | AS MN) | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | G/SQ M | (MG/M2) | (MG/L) | (T/DAY) | | DATE | (01046) | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | (62359) | (80154) | (80155) | | OCT
12
NOV | <10 | <3.2 | .59 | <.1 | <.1 | <.1 | <.022 | | | | | 3 | 36 | | 07
JAN | <10 | <3.2 | .44 | <.1 | <.1 | <.1 | <.022 | | | | | 7 | 45 | | 03
FEB | <10 | <3.2 | .56 | <.1 | <.1 | <.1 | .024 | | | | | 5 | 26 | | 06
MAR | <10 | <3.2 | . 49 | <.1 | .1 | .1 | <.022 | | | | | 7 | 57 | | 06
MAY | <10 | <3.2 | .47 | <.1 | <.1 | <.1 | <.022 | | | | | 4 | 16 | | 09
09
JUN | M
 | E2.4 | .47 | | | <.1 | <.022 | 1.8 | 39.6 | 41.5 | .6 | 2 | 8.7 | | 13
22 | <10
<10 | <3.0
<3.0 | .58 | | | . 2 | <.022
<.022 | | | | | 1 2 | 22
59 | | 27
JUL | <10 | <3.0 | .51 | | | . 2 | .044 | | | | | 3 | 113 | | 12
24 | <10
<10 | <3.0
<3.0 | .64
.55 | | | .3 | .031 | | | | | 4
5 | 159
221 | | AUG
07
SEP | <10 | <3.0 | .51 | | | E.2 | E.017 | | | | | 2 | 73 | | 04 | <10 | <3.0 | .44 | | | .2 | .026 | | | | | 3 | 142 | | DATE | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------|--| | OCT | | | 12 | | | NOV | | | 07 | | | JAN
03 | 83 | | FEB | 0.3 | | 06 | 96 | | MAR | , , | | 06 | | | MAY | | | 09 | | | 09 | | | JUN | | | 13 | | | 22 | | | 27
JUL | | | 12 | | | 24 | 82 | | AUG | 02 | | 07 | | | SEP | | | 04 | | | | | # 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | |

 |

 | 5.0
4.5
5.0
4.0
4.5 | 4.0
4.0
4.0
3.5
3.5 | 4.5
4.0
4.5
4.0 | 3.5
2.5
2.5
3.0
3.5 | 2.0
2.0
2.0
2.0
3.0 | 2.5
2.0
2.0
2.5
3.5 | 2.5
2.5
2.0
2.5
2.5 | 2.0
2.0
2.0
2.0
1.5 | 2.5
2.0
2.0
2.0
2.0 | | 6
7
8
9
10 | |

 |

 | 4.0
4.5
4.5
4.5
5.0 | 3.0
3.0
3.5
4.0
4.0 | 4.0
3.5
4.0
4.5 | 3.5
3.5
3.5
3.5
3.0 | 3.0
3.0
3.0
2.5
2.5 | 3.5
3.5
3.5
3.0 | 1.5
2.0
2.5
2.5
2.5 | .5
1.0
2.0
2.5
1.0 | 1.0
1.5
2.5
2.5
2.0 | | 11
12
13
14
15 |
7.0
7.0
6.5 |
6.0
6.0
6.0 |
6.5
6.5
6.5 | 5.0
4.0
4.0
4.5
4.0 | 4.0
4.0
3.5
4.0
3.5 | 4.5
4.0
4.0
4.5
4.0 | 3.5
3.5
3.0
3.0
2.5 | 3.0
3.0
2.5
2.0
2.0 | 3.5
3.5
3.0
2.5
2.5 | 1.5
1.5
2.0
3.0
3.0 | .5
.5
1.5
2.0
2.5 | 1.0
1.0
2.0
2.5
2.5 | | 16
17
18
19
20 | 7.0
6.5
6.5
6.5 | 6.0
6.0
6.5
5.5 | 6.5
6.0
6.0
6.0 | 4 0 | 3.5
3.5
3.5
4.0
4.0 | 4.0
4.0
4.0
4.0 | 2.5
2.0
3.0
3.5
3.0 | 2.0
1.5
2.0
2.5
2.5 | 2.0
2.0
2.5
3.0
3.0 | 2.5
2.5
3.0
3.0 | 2.0
1.5
2.5
2.5
2.5 | 2.0
2.0
2.5
2.5
2.5 | | 21
22
23
24
25 | 5.5
5.5
6.0
5.5
6.0 | 4.5
4.5
5.0
5.0 | 5.0
5.0
5.5
5.5 | 4.5
4.0
4.0
3.5
3.5 | 4.0
4.0
3.5
3.0 | 4.0
4.0
4.0
3.0
3.5 | 2.5
2.0
2.0
2.0
2.5 | 2.0
1.5
1.5
1.5 | 2.5
2.0
2.0
2.0
2.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.0
2.0
2.0 | 2.5
2.5
2.5
2.0
2.5 | | 26
27
28
29
30
31 | 5.5
5.5
5.0
4.5
5.0 | 5.0
4.5
4.5
4.5
3.5 | 5.0 | 3.5
3.5
4.0
4.5
4.0 | 3.0
3.0
3.0
4.0
3.5 | 3.0
3.5
3.5
4.0
4.0 | 2.5
2.5
3.0
3.0
3.0 | 2.0
2.0
2.0
3.0
2.5
2.5 | 2.5
2.0
2.5
3.0
3.0 | 2.5
2.5
2.0
2.0
1.5 | 2.0
2.0
1.5
1.5
1.5 | 2.5
2.5
2.0
1.5
1.5 | | MONTH | | | | 5.0 | 3.0 | 4.0 | 3.5 | 1.5 | 2.7 | 3.0 | .5 | 2.1 | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | | 1.0
1.5
1.0
1.0 | 1.5
2.0
1.5
1.5 | 2.0
3.0
2.0 | 1.0 | 1.0
1.5
1.0
1.0 |

 |

 |

 | 6.0
5.0
6.0
9.5 | 1.5
2.0
1.5
1.5 | 3.5
3.5
3.0
4.5 | | 6
7
8
9
10 | 2.0
2.0
1.5
2.0 | 1.5
1.0
1.0
1.0 | 1.5
1.5
1.0
1.5 | 2.5
4.0
2.0
3.5
4.5 | 1.0
.5
.5
.5 | 1.5
2.0
1.0
1.5
2.5 |

 | |

 | 7.0
7.0
7.5
7.0
8.0 | 3.5
3.0
3.5
3.5
3.5 | 4.5
4.5
5.0
5.0 | | 11
12
13
14
15 | 1.5
2.0
1.5
1.0 | .5
1.0
.5
.0 | 1.0
1.5
1.0
.5 | 4.0
4.0
5.5
4.5
3.5 | 1.5
1.0
.5
1.0 | 2.5
2.5
2.0
2.0 |

 | |

 | 8.5
8.0
9.5
9.5 | 3.5
3.5
4.0
5.0
6.0 | 5.5
6.0
6.0
7.0
7.5 | | 16
17
18
19
20 | 1.5
2.0
1.5
2.5 | .0
1.0
.5
1.5 | 1.0
1.0
1.0
1.5
2.0 |
6.5
5.5

 | .5
.0

 | 2.5
1.5
 |

 | |

 | 8.0
8.5
7.5
7.5
9.5 | 6.0
4.5
5.0
4.0
5.0 | 6.5
6.0
6.0
6.0
7.0 | | 21
22
23
24
25 | 2.5
2.5
2.5
2.5
1.0 | 1.5
1.5
.5
.0 | 2.0
1.5
1.5
1.0 |

 | | |

 |

 | | 7.0
6.5
6.0
6.5
5.5 | 5.5
4.5
4.0
4.0 | 6.0
5.0
5.0
5.0
5.0 | | 26
27
28
29 | 1.5
2.5
2.5 | .0
.5
.0 | .5
1.5
1.0 | |
 | |

 | |

 | 5.5
7.5
8.0
8.0 | 4.0
3.5
4.5
5.0 | 4.5
5.5
6.0
6.0 | | 30
31 | | | | | | | | | | 7.0
7.5 | 4.5
4.0 | 5.5
5.5 | # 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 8.0
8.5
10.5
9.0
8.5 | 4.0
4.0
7.0
7.5 | 6.0
6.5
9.0
8.0 | 12.0
12.0
10.5
10.5 | 9.5
9.5
9.5
9.5
10.0 | 11.0
11.0
10.0
10.0 | 12.5
13.0
11.5
11.5 | 11.5
11.0
10.0
10.0 | 11.5
12.0
10.5
11.0
11.5 | 11.5
11.0
11.5
12.0
11.0 | 11.0
11.0
11.0
11.0
8.5 | 11.0
11.0
11.0
11.5
10.0 | | 6
7
8
9
10 | 7.5
7.5
9.0
10.0 | 5.5
5.0
6.0
6.5
6.5 | 6.5
6.0
7.5
8.0 | 12.0
13.0
14.0
14.0
14.0 | 10.5
12.0
13.0
13.0 | 11.0
12.5
13.5
13.5 | 14.0
15.0
14.5
14.0
14.5 | 12.0
12.5
13.0
13.0 | 13.0
14.0
13.5
13.5 | 9.5
10.0
10.0
10.0 | 8.0
9.5
9.0
9.0 | 8.5
9.5
9.5
9.5
10.0 | | 11
12
13
14
15 | 9.5
10.5
11.5
11.5 | 6.0
9.0
9.0
8.5
7.0 | 7.5
10.0
10.0
10.0
9.0 | 13.0
11.5
11.5
12.0
11.5 | 11.5
10.5
11.0
10.5
11.0 | 13.0
11.0
11.0
11.5 | 14.5
14.5
14.5
15.0
14.5 | 13.0
13.0
13.0
12.5
12.5 | 13.5
13.5
13.5
14.0
13.5 | 11.0
10.5
10.0
9.5
10.0 | 10.0
10.0
9.5
9.0 | 10.5
10.0
9.5
9.5
9.5 | | 16
17
18
19
20 | 12.0
12.5
12.0
12.0
13.0 | 8.0
8.0
10.5
10.5
9.5 | 10.0
10.5
11.5
11.5 | 13.0
12.5
14.0
14.0 | 11.0
11.0
11.0
12.0
11.5 | 11.5
12.0
12.0
13.5
12.0 | 13.0
13.5
13.0
13.0 | 12.0
12.5
12.5
12.0
11.0 | 12.5
13.0
12.5
12.5
11.5 | 10.0
10.0
9.5
9.5 | 9.5
9.5
9.0
9.0 | 9.5
9.5
9.5
9.5 | | 21
22
23
24
25 | 14.0
13.5
14.0
13.5
14.5 | 11.0
10.0
11.0
9.0
9.0 | 12.5
12.0
12.5
11.0
12.0 | 11.5
13.0
12.5
12.0
12.0 | 10.5
10.5
12.0
11.5
11.5 | 11.0
11.5
12.0
12.0 | 11.5
12.5
12.5
12.5
12.5 | 10.5
11.0
11.5
12.0
12.0 | 11.0
11.5
11.5
12.5
12.0 | 9.5
9.0
9.0
9.0 | 9.0
9.0
8.5
8.5 | 9.5
9.0
9.0
8.5
8.5 | | 26
27
28
29
30
31 | 14.0
14.0
12.5
14.0
11.5 | 10.5
11.0
8.5
10.0
9.5 | 12.5
12.5
10.5
12.0
10.0 | 12.5
13.5
12.5
13.0
13.0 | 11.5
12.0
11.5
11.5
12.0
11.5 | 12.0
12.5
12.0
12.0
12.5
12.0 | 13.0
13.0
12.0
11.5
12.0
11.5 | 12.5
11.5
11.5
11.5
11.0 | 12.5
12.0
11.5
11.5
11.5 | 9.0
9.0
8.5
9.0
8.5 | 8.5
8.5
8.0
8.0 | 8.5
8.5
8.5
8.5 | | MONTH | 14.5 | 4.0 | 9.7 | 14.0 | 9.5 | 11.8 | 15.0 | 10.0 | 12.4 | 12.0 | 8.0 | 9.5 | #### 15266150 KENAI RIVER BELOW MOUTH OF KILLEY RIVER NEAR STERLING LOCATION.--Lat $60^{\circ}29'28''$, long $150^{\circ}37'50''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 26, T. 5 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 1.5 mi downstream from Killey River, 4.5 mi southeast of Sterling. DRAINAGE AREA. -- 1,496 mi². PERIOD OF RECORD. -- June 1997 to current year. GAGE.--Water stage recorder. Elevation of gage is 230 ft above sea level, from topographic map. REMARKS.--Records good except for February 15 which is fair. GOES satellite telemetry and phone modem at station. | CAMMITA | Kecord | is good ex | cept IOI | repruary | TO WILLCII IS | s lail. | GOES SALE. | TITCE CETE | шесту ат | ia piione iii | Jueili at s | tation. | |--|--|--|---|---|---|--|--|---|--|---|--|--| | | | DISCHA | RGE, CUB | IC FEET P | ER SECOND,
DAILY | WATER Y | | ER 2000 TC | SEPTEME | ER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5520
5390
5280
5190
5080 | 3060
2970
2890
2780
2720 | 2750
2620
2590
2580
2660 | 2130
2100
2050
2010
2000 | 3530
3380
3210
3070
3000 | 1650
1630
1590
1610
1580 | 1180
1220
1290
1180
1180 | 1590
1630
1640
1660
1700 | 5190
5660
6080
6610
7000 | 18900
18700
18700
18700
18800 | 17900
17500
17100
17000
16700 | 19000
18900
18900
18700
18200 | | 6
7
8
9
10 | 5030
4980
4930
4830
4690 | 2670
2580
2480
2520
2620 | 2660
2650
2580
2530
2470 | 1970
2190
2300
2400
2390 | 2980
2810
2690
2620
2510 | 1560
1540
1560
1510
1500 | 1170
1180
1180
1180
1330 | 1720
1730
1760
1800
1800 | 7340
7680
7940
8200
8490 | 18900
18700
18700
18600
18300 | 16100
16000
15900
15700
15500 | 17400
16500
15700
14600
13700 | | 11
12
13
14
15 | 4600
4490
4460
4570
4510 | 2490
2400
2510
2460
2370 | 2470
2380
2310
2300
2200 | 2350
2410
2470
2650
2890 | 2430
2410
2340
2250
e2250 | 1540
1480
1470
1480
1420 | 1320
1300
1310
1300
1290 | 1830
1870
1920
1980
2070 | 8750
8990
9220
9380
9640 | 18000
17800
17400
16900
16500 | 15000
14600
14400
14400
14400 | 12800
12000
11700
11200
10900 | | 16
17
18
19
20 | 4380
4290
4150
4060
3970 | 2420
2490
2430
2500
2500 | 2160
2140
2160
2240
2150 | 3190
3280
3510
3980
4050 | 2240
2150
1980
1950
1890 | 1410
1390
1370
1330
1300 | 1300
1310
1320
1330
1360 | 2170
2270
2380
2470
2620 | 10100
10700
11300
11700
12000 | 16600
16400
16400
16600
17500 | 14700
14900
15100
15300
15500 | 10700
10600
10800
11100
11500 | | 21
22
23
24
25 | 3850
3810
3770
3740
3690 | 2630
2670
2700
2700
2660 | 2130
2030
1970
1950
1930 | 4140
4250
4310
4410
4320 | 1850
1800
1740
1680
1640 | 1280
1260
1250
1260
1230 | 1420
1400
1430
1430
1450 | 2790
2930
3070
3220
3380 | 12400
13000
13600
14300
15100 | 18500
18900
19100
19300
19400 | 16000
16000
16100
16100
16000 | 12000
12800
14200
15800
16000 | | 26
27
28
29
30
31 | 3540
3430
3280
3190
3180
3130 | 2590
2560
2680
2860
2850 | 1930
1920
1880
1970
2090
2170 | 4300
4130
3970
3810
3740
3650 | 1660
1710
1670
 | 1210
1200
1190
1170
1190
1200 | 1460
1480
1540
1530
1570 | 3550
3730
3890
4160
4470
4730 | 15800
16600
17500
18300
18800 | 19400
19300
19100
18900
18400
18100 | 15700
15300
15100
17200
18000
18500 | 15700
15300
14400
13500
12700 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 133010
4291
5520
3130
263800
2.87
3.31 | 78760
2625
3060
2370
156200
1.75
1.96 | 70570
2276
2750
1880
140000
1.52
1.75 | 97350
3140
4410
1970
193100
2.10
2.42 | 65440
2337
3530
1640
129800
1.56
1.63 | 43360
1399
1650
1170
86000
.93
1.08 | 39940
1331
1570
1170
79220
.89
.99 | 78530
2533
4730
1590
155800
1.69
1.95 | 327370
10910
18800
5190
649300
7.29
8.14 | 565500
18240
19400
16400
1122000
12.2
14.06 | 493700
15930
18500
14400
979300
10.6
12.28 |
427300
14240
19000
10600
847500
9.52
10.63 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER YE | ARS 1997 | - 2001, B | Y WATER | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 6076
7859
1998
4291
2001 | 3393
4451
2000
2625
2001 | 1952
2276
2001
1646
1999 | 1850
3140
2001
1126
1999 | 1469
2337
2001
989
1998 | 1130
1399
2001
926
1999 | 1276
1490
1998
1010
1999 | 2660
2962
1998
2456
1999 | 9240
11080
1998
7701
1997 | 14710
18240
2001
12580
1999 | 12910
15930
2001
11020
1998 | 10710
14240
2001
6196
2000 | | SUMMAR | Y STATIST | rics | FOR | 2000 CALE | NDAR YEAR | F | OR 2001 W | ATER YEAR | | WATER Y | EARS 1997 | - 2001# | | TOTTE | MEAN
T ANNUAL | 4TT 7 3 7 | | 1743040
4762 | - 1 1- | | 2420830
6632 | * 3 0= | | 5635
6632
5010 | | 2001 | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) | | | | Jul 17
Mar 27
Mar 22 | | a19400
b1170
1190
d19600
12.2
1150
4802000 | Jul 25
Mar 29
Mar 26
Jul 24
S Sep 1
Apr 8 | | WATER YI
5635
6632
5010
a19400
c800
836
d19600
12.2
4083000
3.7
51.1
14200
3730 | Jul
Apr
Apr
Jul
25 Sep | 25 2001
19 1997
1 1999
24 2001
1 2001 | | | ANNUAL
10 PER
50 PER | RUNOFF
CENT EXCI
CENT EXCI | F (AC-FT) 3457000
F (CFSM) 3.18
F (INCHES) 43.34
XCEEDS 12500 | | | | | 4.4
60.2
17400
3060 | 13 | | 3.7
51.1
14200
3730 | -8 | | 1410 1100 90 PERCENT EXCEEDS See Period of Record, partial year used in monthly statistics Jul. 25 and 26 Mar. 29 and Apr. 6 Apr 19, 1997 and Apr. 6-7, 1999 Jul. 24 and 25 Estimated b Not determined, see lowest daily mean #### 15266300 KENAI RIVER AT SOLDOTNA LOCATION.--Lat $60^{\circ}28'39''$, long $151^{\circ}04'46''$, in $W^{1}/_{2}$ SW $^{1}/_{4}$ sec. 32, T. 5 N., R. 10 W. (Kenai B-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, near center of span on downstream side of bridge on Sterling Highway, 1.0 mi southwest of Soldotna. DRAINAGE AREA.--1,951 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1965 to current year. REVISED RECORDS.--WRD AK-00-1 drainage area. GAGE.--Water-stage recorder. Datum of gage is 35.34 ft above sea level. Prior to May 1, 1997, non-recording gage at same site and datum. REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station. | | | DISCHA | RGE, CUB | C FEET PE | | WATER Y | YEAR OCTOBER
VALUES | R 2000 TO | SEPTEMB | ER 2001 | | | |--|--|--|--|---|----------------------------|--|--|--|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5640 | 3260 | 2910 | 2210 | 3780 | 1840 | 1340 | 2330 | 5850 | 18400 | 18100 | 19300 | | 2 | 5550 | 3170 | 2880 | 2180 | 3580 | 1820 | 1350 | 2330 | 6370 | 18300 | 17800 | 19500 | | 3 | 5490 | 3100 | 2660 | 2210 | 3460 | 1870 | 1670 | 2300 | 6770 | 18100 | 17500 | 19800 | | 4 | 5470 | 2990 | 2700 | 2120 | 3300 | 1890 | 1530 | 2290 | 7320 | 18300 | 17300 | 19600 | | 5 | 5550 | 2950 | 2890 | 2110 | 3190 | 1790 | 1430 | 2310 | 7700 | 18400 | 17000 | 19300 | | 6 | 5570 | 2920 | 2740 | 2160 | 3240 | 1750 | 1450 | 2350 | 8050 | 18600 | 16700 | 18600 | | 7 | 5480 | 2850 | 2780 | 2430 | 3030 | 1710 | 1480 | 2390 | 8420 | 18200 | 16200 | 17800 | | 8 | 5160 | 2660 | 2710 | 2540 | 2960 | 1730 | 1540 | 2390 | 8660 | 17800 | 16000 | 17000 | | 9 | 5050 | 2700 | 2660 | 2510 | 2840 | 1730 | 1560 | 2460 | 8900 | 17700 | 15900 | 16200 | | 10 | 4950 | 3030 | 2620 | 2550 | 2810 | 1770 | 1810 | 2500 | 9120 | 17300 | 15800 | 15400 | | 11 | 4830 | 2970 | 2590 | e2500 | 2690 | 1960 | 2220 | 2550 | 9340 | 17200 | 15500 | 14500 | | 12 | 4750 | 2760 | 2510 | e2500 | 2670 | 1790 | 2170 | 2630 | 9590 | 17000 | 15300 | 13800 | | 13 | 4700 | 2880 | 2440 | 2550 | 2580 | 1690 | 2140 | 2730 | 9810 | 16800 | 15000 | 13200 | | 14 | 4960 | 2870 | 2390 | 2770 | e2500 | 1760 | 2140 | 2800 | 9970 | 16400 | 15000 | 12500 | | 15 | 4910 | 2660 | 2290 | 3020 | e2400 | 1740 | 2170 | 2980 | 10200 | 16200 | 15000 | 12100 | | 16 | 4800 | 2740 | 2270 | 3300 | 2450 | 1700 | 2170 | 2970 | 10500 | 16300 | 15100 | 12000 | | 17 | 4590 | 2810 | 2300 | 3370 | 2500 | 1640 | 2170 | 3010 | 11100 | 16200 | 15300 | 12100 | | 18 | 4390 | 2730 | 2330 | 3620 | 2250 | 1620 | 2140 | 3070 | 11600 | 15900 | 15500 | 12200 | | 19 | 4290 | 2850 | 2400 | 4000 | 2300 | 1650 | 2140 | 3170 | 12000 | 16200 | 15900 | 12500 | | 20 | 4210 | 2880 | 2370 | 4160 | 2220 | 1630 | 2210 | 3330 | 12300 | 16800 | 16200 | 13000 | | 21 | 4120 | 3020 | 2270 | 4230 | 2120 | 1590 | 2400 | 3540 | 12600 | 17600 | 16700 | 13500 | | 22 | 4140 | 3100 | 2290 | 4340 | 2030 | 1560 | 2450 | 3660 | 13000 | 18100 | 16600 | 14100 | | 23 | 4000 | 3060 | 2140 | 4410 | 1970 | 1530 | 2500 | 3790 | 13600 | 18400 | 16700 | 15200 | | 24 | 3930 | 3100 | 2150 | 4510 | e1900 | 1580 | 2480 | 3940 | 14200 | 18700 | 16600 | 16700 | | 25 | 4030 | 2880 | 2170 | 4460 | e1900 | 1570 | 2460 | 4110 | 15000 | 18900 | 16600 | 17000 | | 26
27
28
29
30
31 | 3840
3660
3500
3380
3480
3430 | 2690
2640
2730
2980
3020 | 2110
1960
2090
2190
2280
2370 | 4480
4300
4160
4010
3920
3940 | e1800
e1800
1840
 | 1510
1490
1440
1350
1360
1370 | 2450
2490
2550
2500
2450 | 4290
4510
4770
4930
5280
5570 | 15600
16300
16900
17600
18200 | 19200
19500
19200
19000
18800
18300 | 16400
15900
15700
17200
18300
18800 | 16800
16200
15400
14600
13600 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 141850 | 87000 | 75460 | 101570 | 72110 | 51430 | 61560 | 101280 | 336570 | 551800 | 507600 | 463500 | | | 4576 | 2900 | 2434 | 3276 | 2575 | 1659 | 2052 | 3267 | 11220 | 17800 | 16370 | 15450 | | | 5640 | 3260 | 2910 | 4510 | 3780 | 1960 | 2550 | 5570 | 18200 | 19500 | 18800 | 19800 | | | 3380 | 2640 | 1960 | 2110 | 1800 | 1350 | 1340 | 2290 | 5850 | 15900 | 15000 | 12000 | | | 281400 | 172600 | 149700 | 201500 | 143000 | 102000 | 122100 | 200900 | 667600 | 1094000 | 1007000 | 919400 | | | 2.35 | 1.49 | 1.25 | 1.68 | 1.32 | .85 | 1.05 | 1.67 | 5.75 | 9.12 | 8.39 | 7.92 | | | 2.70 | 1.66 | 1.44 | 1.94 | 1.37 | .98 | 1.17 | 1.93 | 6.42 | 10.52 | 9.68 | 8.84 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER Y | EARS 1965 - | 2001, BY | WATER Y | EAR (WY)# | : | | | MEAN | 7156 | 3447 | 2223 | 1864 | 1634 | 1341 | 1563 | 3141 | 8496 | 13480 | 14440 | 11770 | | MAX | 14370 | 7335 | 5469 | 4290 | 4575 | 2696 | 2836 | 5645 | 12570 | 18740 | 24890 | 21280 | | (WY) | 1970 | 1980 | 1977 | 1981 | 1981 | 1981 | 1980 | 1990 | 1980 | 1977 | 1977 | 1995 | | MIN | 2852 | 1631 | 1132 | 823 | 822 | 800 | 812 | 1950 | 4940 | 9696 | 8706 | 5873 | | (WY) | 1993 | 1974 | 1976 | 1976 | 1976 | 1976 | 1972 | 1973 | 1972 | 1973 | 1969 | 1969 | | SUMMAR | Y STATIST | rics | FOR | 2000 CALE | NDAR YEAR | | FOR 2001 WA | TER YEAR | | WATER Y | EARS 1965 | - 2001# | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
MAXIMU | MEAN T ANNUAL ANNUAL N T DAILY M DAILY ME | MEAN
MEAN
EAN
AY MINIMUM
LOW
PAGE | | 1839650
5026
15500
a1300
1300 | Jul 22
Mar 1
Mar 1 | | 2551730
6991
19800
1340
1390
20000
10.84 | Sep 3
Apr 1
Mar 27
Sep 3
4 Sep 3 | | 5926
8810
4002
41400
b770
774
42200
14.1
c222 | Apr
Apr
Sep
50 Sep
62 Jan | 1977
1973
24 1995
1 1966
1 1966
24 1995
24 1995
18 1969
1 1966 | | ANNUAL
ANNUAL
ANNUAL
10 PER
50 PER | RUNOFF (RUNOFF (RUNOFF (CENT EXCE CENT EXCE | (AC-FT)
(CFSM)
(INCHES)
EEDS
EEDS | | 3649000
2.5
35.0
13100
2950
1400 | | | 5061000
3.58
48.65
17200
3330
1800 | 3 | | 4293000
3.0
41.2
14200
3250
1200 | 04 | 1 1300 | See Period of Record; partial years used in monthly statistics Mar. 1 to Mar. 29 Apr. 1 to Apr. 4, 1996 Backwater from ice Estimated #### 15266300 KENAI RIVER AT SOLDOTNA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1952-53, 1955-56, 1958, 1967-74, 1977, 1979-81, 1998- September 2001 (discontinued). #### PERIOD OF DAILY RECORD - SUSPENDED-SEDIMENT DISCHARGE: August 1979 to December 1979, August to November 1999, May to September 2001. WATER TEMPERATURE: October 1998 to September 2001. INSTRUMENTATION:--Electronic water-temperature recorder set at 15-minute recording interval. REMARKS:--Sediment sampler for daily sediment samples is on upstream side of bridge. Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature at the sensor was compared with the river average by cross section on October 4, February 7, and September 5. No variation was found within the cross-section, No variation was found between mean stream temperature and sensor temperature. #### EXTREMES FOR PERIOD OF DAILY RECORD: -- SEDIMENT CONCENTRATIONS: Maximum daily mean observed, 83 mg/L June 27, 29, 2001; minimum daily mean observed, 1 mg/L September 7, 9, and October
23, 1979. SEDIMENT LOADS: Maximum daily observed, 3,940 tons (3,570 tonnes) June 29, 2001; minimum daily observed, 14 tons (13 tonnes) March 7, 2001. WATER TEMPERATURE: Maximum 15.0°C, August 14, 2000, and August 7, 2001; minimum 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR:-SEDIMENT CONCENTRATIONS: Maximum observed, 83 mg/L June 27, 29, 2001; minimum observed 2 mg/L February 7, May 14-15 2001. SEDIMENT LOADS: Maximum daily observed, 3,940 tons (3,570 tonnes) June 29, 2001; minimum daily observed, 14 tons (13 tonnes) March 7, 2001. WATER TEMPERATURE: Maximum 15.0°C, August 7; minimum 0.0°C on many days in winter. #### EXTREMES OUTSIDE PERIOD OF DAILY RECORD: -- SEDIMENT CONCENTRATIONS: Maximum observed, 151 mg/L July 14, 1979; minimum observed 1 mg/L March 24, 1971. SEDIMENT LOADS: Maximum daily observed, 9,290 tons (8,430 tonnes) September 9, 1977; minimum daily observed, 3.1 tons (2.8 tonnes) March 24, 1971. | | | SAMPLE | | PH | | BARO- | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------|---------| | | | LOC- | SPE- | WATER | | METRIC | | DIS- | | | | ATION, | CIFIC | WHOLE | | PRES- | | SOLVED | | | | CROSS | CON- | FIELD | TEMPER- | | OXYGEN, | | | | | SECTION | DUCT- | (STAND- | ATURE | (MM) | DIS- | CENT | | DATE | TIME | (FT FM | ANCE | ARD | WATER | OF | | | | | | L BANK) | | UNITS) | | | | | | | | (00009) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | OCT | | | | | | | | | | 04 | 1809 | 40.0 | 70 | 7.7 | 7.0 | 763 | 12.2 | 100 | | 04 | 1810 | 100 | 68 | 7.7 | | 763 | 12.3 | 101 | | 04 | 1811 | 160 | 67 | 7.6 | 7.0 | 763 | 12.1 | 99.5 | | 04 | 1812 | 220 | 66 | 7.6 | 7.0 | 763 | 12.2 | 100 | | 04 | 1814 | 280 | 67 | 7.6 | 7.0 | 763 | 12.2 | 100 | | FEB | | | | | | | | | | 07 | 1135 | 118 | 69 | 8.2 | 1.0 | 768 | 13.6 | 94.9 | | 07 | 1137 | 173 | 66 | 8.2 | 1.0 | 768 | 13.4 | 93.5 | | 07 | 1139 | 228 | 66 | 8.1 | 1.0 | 768 | 13.3 | 92.8 | | 07 | 1141 | 283 | 66 | 8.1 | 1.0 | 768 | 13.3 | 92.8 | | SEP | | | | | | | | | | 05 | 1120 | 35.0 | 62 | 7.5 | 10.0 | 748 | 11.0 | 99.3 | | 05 | 1121 | 104 | 62 | 7.5 | 10.0 | 748 | 11.0 | 99.3 | | 05 | 1122 | 172 | 62 | 7.5 | 10.0 | 748 | 10.9 | 98.3 | | 05 | 1123 | 241 | 62 | 7.5 | 10.0 | 748 | 10.9 | 98.3 | | 05 | 1124 | 310 | 63 | 7.5 | 10.0 | 748 | 11.0 | 99.3 | | | | | | | | DIS- | | | | | PH | | | |-----------|------|--------|--------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------| | | | | | | | CHARGE, | | | | SPE- | WATER | | | | | | | | | | INST. | | | | CIFIC | WHOLE | | | | | | | | | | CUBIC | SAM- | | PURPOSE | CON- | FIELD | TEMPER- | TEMPER- | | | | | | STREAM | GAGE | FEET | PLING | SAMPLER | SITE | DUCT- | (STAND- | ATURE | ATURE | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | VISIT | ANCE | ARD | AIR | WATER | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | (CODE) | (US/CM) | UNITS) | (DEG C) | (DEG C) | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (50280) | (00095) | (00400) | (00020) | (00010) | | | | | | (, | (, | (, | (, | (, | (00-00) | (, | (, | (, | (, | | OCT | | | | | | | | | | | | | | | 04 | 1800 | 9 | 9 | 322 | 7.49 | 5590 | 10 | 3053 | 1001 | 67 | 7.6 | | 7.0 | | NOV | | | | | | | | | | | | | | | 22 | 1320 | 9 | 9 | 222 | 6.53 | 3030 | 10 | 3039 | 1001 | 67 | 7.6 | | 3.0 | | JAN | | | | | | | | | | | | | | | 04 | 1220 | 9 | 9 | 221 | 7.02 | 2100 | 10 | 3053 | 1001 | . 72 | 7.8 | | .5 | | FEB | 1100 | 0 | 0 | 000 | 6 50 | 2000 | 1.0 | 2052 | 1001 | 6.77 | 0 1 | 1 0 | 1 0 | | 07
MAR | 1120 | 9 | 9 | 220 | 6.50 | 3000 | 10 | 3053 | 1001 | 67 | 8.1 | -1.0 | 1.0 | | 07 | 1150 | 9 | 9 | 208 | 5.77 | 1740 | 10 | 3053 | 1001 | 70 | 7.5 | 5.5 | 1.5 | | MAY | 1130 | | | 200 | 3.77 | 1710 | 10 | 3033 | 1001 | , , , | ,.5 | 3.3 | 1.5 | | 10 | 1210 | 9 | 9 | 225 | 6.10 | 2490 | 10 | 3053 | 1001 | 72 | 8.0 | . 5 | 5.5 | | 10 | 1211 | D | 9 | | | | | | 1099 | | | | | | JUN | | | | | | | | | | | | | | | 07 | 1020 | 9 | 9 | 233 | 8.22 | 8450 | 10 | 3053 | 1001 | 63 | 8.1 | 15.5 | 6.5 | | 21 | 1320 | 9 | 9 | 335 | 9.45 | 12600 | 10 | 3053 | 1001 | | 7.7 | | 11.0 | | 28 | 1050 | 9 | 9 | 276 | 10.36 | 16900 | 10 | 3053 | 1001 | 62 | 7.9 | 22.5 | 9.5 | | JUL | 1040 | | • | 260 | 10 05 | 1.5.4.0.0 | 1.0 | 2052 | 1001 | - 1 | | 1 | | | 13 | 1240 | 9 | 9
9 | 360 | 10.35 | 16400 | 10 | 3053 | 1001 | | 7.6 | 16.0 | | | 24
AUG | 1140 | 9 | 9 | 350 | 10.67 | 18700 | 10 | 3053 | 1002 | 62 | 7.6 | 16.0 | 12.0 | | 08 | 1130 | 9 | 9 | 365 | 9.94 | 16000 | 10 | 3053 | 1001 | 68 | 7.6 | | 14.0 | | SEP | 1100 | , | , | 303 | J.J4 | 10000 | 10 | 5055 | 1001 | . 00 | ,.0 | | 14.0 | | 05 | 1130 | 9 | 9 | 345 | 10.63 | 19400 | 10 | 3053 | 1001 | 62 | 7.5 | - | 10.0 | # 15266300 KENAI RIVER AT SOLDOTNA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/S AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |---|--|---|--|--|---|---|--|---|--|--|---|---|---| | OCT
04 | 763 | 12.2 | 100 | 28 | 9.82 | .824 | 1.3 | 24 | .85 | 29 | 23 | 6.2 | .8 | | NOV
22 | 744 | 13.2 | 100 | | | .024 | | 26 | | 30 | 25 | | | | JAN
04 | 750 | 14.3 | 101 | 29 | 10.1 | .991 | 1.4 | 27 | .85 | 31 | 26 | 5.6 | 1.0 | | FEB
07 | 768 | 13.5 | 94 | 31 | 10.8 | .923 | 1.4 | 28 | .83 | 34 | 28 | 6.0 | .9 | | MAR
07 | 758 | | | 31 | 10.7 | 1.11 | 1.5 | 28 | .97 | 31 | 26 | 6.0 | 1.1 | | MAY
10 | 765 | 12.4 | 98 | 31 | 10.3 | 1.24 | 1.8 | 30 | .85 | 36 | 30 | 5.0 | 1.1 | | 10
JUN | | | | | | | | | | | | | | | 07
21 | 765
765 | 12.5
10.4 | 101
94 | 27
26 | 9.53
9.04 | .838
.741 | 1.3
1.1 | 24
22 | .75
.78 | 28
26 | 23
21 | 6.1
5.7 | .9
1.1 | | 28
JUL | 766 | 12.2 | 106 | 26 | 9.27 | .757 | 1.1 | 22 | .78 | 25 | 20 | 6.2 | . 8 | | 13 | 764
768 | 11.6
10.4 | 106
96 | 28
28 | 9.87
9.99 | .790
.807 | 1.2 | 24
26 | .70
.70 | 29
30 | 24
25 | 6.1
6.4 | 1.1 | | AUG
08 | 777 | 10.5 | 100 | 29 | 10.2 | .812 | 1.2 | 23 | .66 | 27 | 22 | 6.3 | .8 | | SEP
05 | 748 | 11.0 | 99 | 28 | 9.96 | .783 | 1.3 | 22 | .70 | 25 | 21 | 6.3 | .7 | | | | | SOL-
IDS, | SOL-
IDS, | | | NITRO- | NITRO- | NITRO- | | | | | | DATE | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILCA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | OCT
04 | RIDE
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L) | CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L) | GEN NITRITE DIS- SOLVED (MG/L AS N) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N) | AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N) | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) |
DIS-
SOLVED
(UG/L
AS FE) | | OCT
04
NOV
22 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | | OCT
04
NOV
22
JAN
04 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS DIS- SOLVED (MG/L AS P) (00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | | OCT 04 NOV 22 JAN 04 FEB 07 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.165 | AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.06 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | | OCT
04
NOV
22
JAN
04
FEB
07 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
3.6

4.4 | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
42

47 | CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L) (70301)
38 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 | AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.045
.017 | AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.06
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.029
.013 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.008
E.004 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
E.005
<.007 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
20

20 | | OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MAY 10 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2

<.2
<.2
<.2
<.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
3.6

4.4
3.9
4.4
4.7 | DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47 41 47 53 | CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L) (70301)
38

40
42
42
43 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084 | AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002 | AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04 | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.06
<.10
E.06
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.029
.013
.009
.006 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.008
E.004
E.004
E.003
E.003 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
E.005
<.007
<.007 | DIS-
SOLVED (UG/L
AS FE) (01046)
20
20 20
40 110 | | OCT
04
NOV
22
JAN
04
FEB
07
MAR
07 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2

<.2
<.2
<.2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.6

4.4
3.9
4.4 | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
42

47
41 | CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L) (70301)
38

40
42
42 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 | AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 | AMMO-
NIA +
ORGANIC
TOTAIL
(MG/L
AS N)
(00625)
.17
<.08
E.05
E.04 | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.06
<.10
E.06
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.029
.013
.009
.006 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.008
E.004
E.004
E.003 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
E.005
<.007
<.007 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
20

20
20
40 | | OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MJUN 10 JUN 07 21 28 JUL 13 24 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2

<.2
<.2
<.2
<.2
<.2
<.2 | DIS-
SOLVED (MG/L
AS SIO2) (00955)
3.6

4.4
3.9
4.4
4.7

3.9
3.4 | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
42

47
41
47
53

36
38 | CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L) (70301)
38

40
42
42
42
43

38
35 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001 .001001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084207 .158 | AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002003 .002 | AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04 .12 E.08 .11 | AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.06
<.10
E.06
<.10
<.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.029
.013
.009
.006
.009 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.008
E.004
E.004
E.003
C.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
E.005
<.007
<.007
<.007
 | DIS-
SOLVED (UG/L
AS FE) (01046)
20

20
20
40
110

20
10 | | OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MAY 10 10 JUN 077 21 28 JUL 13 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2

<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
3.6

4.4
3.9
4.4
4.7

3.9
3.4
3.4 | DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
42

47
41
47
53

36
38
38
42 | CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L) (70301)
38
40 42 42 43
38 35 35 35 38 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .002 .002 .001 .001001 .001 .001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084207 .158 .173 .139 | AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002003 .002 .007 | AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04 .12 E.08 .11 E.08 E.06 | AMMO-NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10 E.06 <.10 <.10 <.10 E.09 <.10 <.10 <.10 <.10 <.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.029
.013
.009
.006
.009
.011

.030
.042
.036 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.008
E.004
E.004
E.003
E.003
<.006

E.003
<.006
<.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
E.005
<.007
<.007
<.007
<.007
<.007
<.007
<.007 | DIS-
SOLVED (UG/L
AS FE) (01046)
20
20 20
40 110
20 10 M | | | | | CAR- | | CAR- | | | | | | | | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | BON, | CAR- | BON, | NITRO- | CHLOR-A | | PERIPH- | | | | | | | | CAR- | INOR- | BON, | INORG + | GEN, | PERIPH- | PERIPH- | YTON | | | SEDI- | SED. | | | MANGA- | BON, | GANIC, | ORGANIC | ORGANIC | PARTIC- | YTON | YTON | BIO- | PHEO- | | MENT, | SUSP. | | | NESE, | ORGANIC | PAR- | PARTIC- | PAR- | ULATE | CHROMO- | BIO- | MASS | PHYTIN | SEDI- | DIS- | SIEVE | | | DIS- | DIS- | TIC. | ULATE | TIC. | WAT FLT | GRAPHIC | MASS | TOTAL | Α, | MENT, | CHARGE, | DIAM. % | | | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SUSP | FLUO- | ASH | DRY | PERI- | SUS- | SUS- | FINER | | | | | | | | | | | | | | | | | | (UG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | ROM | WEIGHT | WEIGHT | PHYTON | PENDED | PENDED | THAN | | | AS MN) | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | G/SQ M | (MG/M2) | (MG/L) | (T/DAY) | .062 MM | | DATE | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | (62359) | (80154) | (80155) | (70331) | | OCT | | | | | | | | | | | | | | | 04 | 4.7 | .74 | < .1 | . 2 | . 2 | .025 | | | | | 7 | 106 | | | NOV | | | | | | | | | | | | | | | 22 | | .91 | <.1 | . 2 | . 2 | <.022 | | | | | 7 | 57 | 80 | | JAN | | | | | | | | | | | | | | | 04 | 9.7 | .66 | <.1 | <.1 | <.1 | <.022 | | | | | 3 | 17 | 98 | | FEB | | | | | | | | | | | | | | | 07 | 6.5 | .65 | <.1 | . 2 | .
2 | .034 | | | | | 2 | 16 | 100 | | MAR | | | | | | | | | | | | | | | 07 | 12.2 | .76 | < .1 | .1 | . 2 | .030 | | | | | 3 | 14 | | | MAY | - 4 | | | | 2 | 005 | | | | | | | | | 10 | 7.4 | 2.0 | | | . 3 | .035 | | | | | | | | | 10 | | | | | | | 48.4 | 299.0 | 336.9 | 48 | | | | | JUN
07 | 5.3 | 1.1 | | | .6 | .035 | | | | | 33 | 753 | 66 | | 21 | E2.5 | 1.1 | | | .5 | .055 | | | | | 44 | 1500 | | | 28 | E1.9 | .82 | | | E.6 | .050 | | | | | 88 | 4020 | | | JUL | B1.7 | .02 | | | ь.о | .050 | | | | | 00 | 4020 | | | 13 | E1.8 | 1.5 | | | .3 | <.022 | | | | | 27 | 1200 | | | 24 | <3.0 | .68 | | | .3 | .028 | | | | | 34 | 1720 | 74 | | AUG | .5.5 | | | | • • | .020 | | | | | 5. | 1.20 | | | 08 | <3.0 | .77 | | | E.2 | E.027 | | | | | 8 | 346 | | | SEP | | | | | | | | | | | - | | | | 05 | <3.0 | .59 | | | . 2 | .040 | | | | | 19 | 995 | 59 | SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |---|--|---|-------------------------------------|---|--|-------------------------------------|--|---|-------------------------------------| | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | 1 | 5640 | | | 3260 | | | 2910 | | | | 2 | 5550 | | | 3170 | | | 2880 | | | | 3 | 5490 | | | 3100 | | | 2660 | | | | 4 | 5470 | 7 | 103 | 2990 | | | 2700 | | | | 5 | 5550 | | | 2950 | | | 2890 | | | | 6 | 5570 | | | 2920 | | | 2740 | | | | 7 | 5480 | | | 2850 | | | 2780 | | | | 8 | 5160 | | | 2660 | | | 2710 | | | | 9 | 5050 | | | 2700 | | | 2660 | | | | 10 | 4950 | | | 3030 | | | 2620 | | | | 11 | 4830 | | | 2970 | | | 2590 | | | | 12 | 4750 | | | 2760 | | | 2510 | | | | 13 | 4700 | | | 2880 | | | 2440 | | | | 14 | 4960 | | | 2870 | | | 2390 | | | | 15 | 4910 | | | 2660 | | | 2290 | | | | 16 | 4800 | | | 2740 | | | 2270 | | | | 17 | 4590 | | | 2810 | | | 2300 | | | | 18 | 4390 | | | 2730 | | | 2330 | | | | 19
20 | 4290
4210 | | | 2850
2880 | | | 2400
2370 | | | | | | | | | | | | | | | 21 | 4120 | | | 3020 | | | 2270 | | | | 22 | 4140 | | | 3100 | 7 | 59 | 2290 | | | | 23
24 | 4000
3930 | | | 3060
3100 | | | 2140
2150 | | | | 25 | 4030 | | | 2880 | | | 2170 | | | | | | | | | | | | | | | 26 | 3840 | | | 2690 | | | 2110 | | | | 27
28 | 3660
3500 | | | 2640
2730 | | | 1960
2090 | | | | 29 | 3380 | | | 2980 | | | 2190 | | | | 30 | 3480 | | | 3020 | | | 2280 | | | | 31 | 3430 | | | | | | 2370 | | | | TOTAL | 141850 | | | 87000 | | | 75460 | MEAN | | | MEAN | | | MEAN | | | | MEAN | MEAN
CONCEN- | SEDIMENT | MEAN | MEAN
CONCEN- | SEDIMENT | MEAN | MEAN
CONCEN- | SEDIMENT | | | DISCHARGE | CONCEN-
TRATION | DISCHARGE | DISCHARGE | CONCEN-
TRATION | SEDIMENT
DISCHARGE | DISCHARGE | CONCEN-
TRATION | DISCHARGE | | DAY | | CONCEN- | | | CONCEN- | | | CONCEN- | | | DAY | DISCHARGE | CONCEN-
TRATION | DISCHARGE | DISCHARGE | CONCEN-
TRATION | DISCHARGE | DISCHARGE | CONCEN-
TRATION | DISCHARGE | | | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L) | DISCHARGE
(TONS/DAY) | | 1 | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2 | DISCHARGE
(CFS)
2210
2180 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
1840
1820 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3 | DISCHARGE
(CFS)
2210
2180
2210 | CONCENTRATION (MG/L) JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
1840
1820
1870 | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2 | DISCHARGE
(CFS)
2210
2180 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
1840
1820 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 2430 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190
3240
3030 | CONCENTRATION (MG/L) FEBRUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 1750 1710 | CONCENTRATION (MG/L) MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190 | CONCENTRATION (MG/L) FEBRUARY 2 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 | CONCENTRATION (MG/L) MARCH 3 | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 2430 2540 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3390
3190
3240
3030
2960 | CONCENTRATION (MG/L) FEBRUARY 2 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 1750 1710 1730 | CONCENTRATION (MG/L) MARCH 3 | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190
3240
3030
2960
2840
2810 | CONCENTRATION (MG/L) FEBRUARY 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 | CONCENTRATION (MG/L) MARCH 3 3 | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS)
3780
3580
3460
3300
3190
3240
3030
2960
2840 | CONCENTRATION (MG/L) FEBRUARY 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 | CONCENTRATION (MG/L) MARCH 3 | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE
(CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2670 2580 | CONCENTRATION (MG/L) FEBRUARY 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE
(TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 2210
2180
2210
2120
2110
2120
2110
2510
2550
255 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | 3780
3580
3460
3300
3190
3240
3030
2960
2840
2810
2690
2670
2580
e2500 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2430 2540 2550 e2500 e2500 2550 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE
(CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2670 2580 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 | CONCENTRATION (MG/L) MARCH 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |
2210
2180
2210
2120
2110
2120
2110
2510
2550
255 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | 3780
3580
3460
3300
3190
3240
3030
2960
2840
2810
2690
2670
2580
e2500 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | DISCHARGE (CFS) 2210 2180 2210 2110 2120 2110 2150 2550 e2500 e2500 e2570 3770 3020 3300 3370 | CONCEN-
TRATION
(MG/L)
JANUARY | DISCHARGE (TONS/DAY) | 3780
3780
3580
3460
3300
3190
3240
2840
2840
2670
2580
e2500
2450 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 | CONCEN-
TRATION (MG/L) MARCH 3 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620 | CONCEN-
TRATION (MG/L) JANUARY 3 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2500 2250 | CONCENTRATION (MG/L) FEBRUARY 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1760 1740 1700 1640 1620 | CONCEN-
TRATION (MG/L) MARCH 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 e2500 e2500 e2500 2550 3300 3370 3370 3620 4000 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 22500 22500 22500 2300 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 | CONCEN-
TRATION (MG/L) MARCH 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620 | CONCEN-
TRATION (MG/L) JANUARY 3 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2500 2250 | CONCENTRATION (MG/L) FEBRUARY 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1760 1740 1700 1640 1620 | CONCEN-
TRATION (MG/L) MARCH 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 2550 2550 2770 3020 3370 3620 4000 4160 4230 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2250 2300 2220 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1620 1650 1630 | CONCEN-
TRATION (MG/L) MARCH 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2510 2550 e2500 e2500 2550 3370 370 3620 4000 4160 4230 4340 | CONCEN-
TRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 e2400 2450 2250 2300 2220 2120 2030 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 | CONCEN-
TRATION (MG/L) MARCH 3 3 3 | DISCHARGE (TONS/DAY) | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 2770 3020 3370 3370 33620 4000 4160 4230 4230 4240 4410 | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2690 2670 2580 e2500 e2400 2250 2250 2300 2220 2120 2030 1970 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1760 1760 1740 1620 1650 1630 1590 1560 1530 | CONCEN-
TRATION (MG/L) MARCH 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 4510 | CONCEN-
TRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1620 1650 1630 1590 1560 1580 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2550 2770 3020 3300 3370 3620 4000 4160 4230 4240 4340 4410 4510 4460 | CONCEN-
TRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2250 2250 2300 2220 2120 2030 1970 e1900 e1900 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1770 1960 1760 1740 1700 1640 1620 1650 1630 1590 1580 1570 | CONCEN-
TRATION (MG/L) MARCH 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 2550 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 4410 4460 4480 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 e1900 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1530 1570 1510 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2550 e2500 e2500 2750 2770 3020 3370 3620 4000 4160 4230 4410 4510 4510 4460 4480 4430 | CONCEN-
TRATION (MG/L) JANUARY | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 2250 2300 2220 2120 2030 1970 e1900 e1900 e1800 e1800 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1530 1580 1570 1510 1490 | CONCEN-
TRATION (MG/L) MARCH 3 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2770 3020 3370 3620 4000 4160 4230 4240 4410 44510 4460 4480 4480 4480 4410 | CONCENTRATION (MG/L) JANUARY 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 e1900 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1590 1580 1570 1510 1490 1440 | CONCEN-
TRATION
(MG/L)
MARCH | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2550 e2500 e2500 2550 2770 3020 3300 3370 3620 4000 4160 4230 4410 4510 4510 4460 4480 4480 4410 4510 4160 43920 | CONCEN-
TRATION (MG/L) JANUARY 3 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 e2400 2250 2300 2250 2300 2250 2300 61900 e1900 e1800 e1800 1840 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1760 1640 1620 1650 1630 1530 1580 1570 1510 1490 1440 1350 1360 | CONCEN-
TRATION (MG/L) MARCH 3 3 | DISCHARGE (TONS/DAY) | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 44510 4460 4480 4300 4160 4010 | CONCENTRATION (MG/L) JANUARY 3 3 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2690 2580 e2500 e2400 2450 2500
2250 2300 2220 2120 2030 1970 e1900 e1900 e1800 e1800 | CONCENTRATION (MG/L) FEBRUARY 2 2 2 | DISCHARGE (TONS/DAY) | DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1650 1630 1550 1550 1550 1550 1570 1510 1490 1440 1350 | CONCEN-
TRATION
(MG/L) MARCH 3 | DISCHARGE (TONS/DAY) | SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MEAN
DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | |---|--|--|---|--|--|--|--|---|---| | | | APRIL | | | MAY | | | JUNE | | | 1
2
3
4
5 | 1340
1350
1670
1530
1430 | |

 | 2330
2330
2300
2290
2310 |

 |

 | 5850
6370
6770
7320
7700 | 67
57
71
79
51 | 1060
980
1300
1560
1060 | | 6
7
8
9 | 1450
1480
1540
1560
1810 |

 |

 | 2350
2390
2390
2460
2500 |

 |

 | 8050
8420
8660
8900
9120 | 47
41
31
35
28 | 1020
932
725
841
689 | | 11
12
13
14
15 | 2220
2170
2140
2140
2170 |

 |

 | 2550
2630
2730
2800
2980 |

2
2 |

15
16 | 9340
9590
9810
9970
10200 | 40
48
31
32 | 1010
1240
821
861 | | 16
17
18
19
20 | 2170
2170
2140
2140
2210 |

 |

 | 2970
3010
3070
3170
3330 | 10
23
7
11
9 | 80
187
58
94
81 | 10500
11100
11600
12000
12300 | 42
63
81

56 | 1190
1890
2540

1860 | | 21
22
23
24
25 | 2400
2450
2500
2480
2460 | |

 | 3540
3660
3790
3940
4110 | 14
18
17
10
25 | 134
178
174
106
277 | 12600
13000
13600
14200
15000 | 56
58
39
 | 1910
2040
1430
 | | 26
27
28
29
30
31 | 2450
2490
2550
2500
2450 |

 |

 | 4290
4510
4770
4930
5280
5570 | 15
22
12
23
49
48 | 174
268
155
306
699
722 | 15600
16300
16900
17600
18200 | 74
83
82
83
77 | 3120
3650
3740
3940
3780 | | TOTAL | 61560 | | | 101280 | | | 336570 | | | | | | | | | | | | | | | DAY | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | | DAY | DISCHARGE | CONCEN-
TRATION | SEDIMENT
DISCHARGE | DISCHARGE | CONCEN-
TRATION | SEDIMENT
DISCHARGE | DISCHARGE
(CFS) | CONCEN-
TRATION | SEDIMENT
DISCHARGE | | DAY 1 2 3 4 5 | DISCHARGE | CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE | DISCHARGE | CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE | DISCHARGE
(CFS) | CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE | | 1
2
3
4 | DISCHARGE
(CFS)
18400
18300
18100
18300 | CONCENTRATION (MG/L) JULY 56 43 40 | SEDIMENT
DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS)
18100
17800
17500
17300 | CONCENTRATION (MG/L) AUGUST 19 22 17 24 | SEDIMENT
DISCHARGE
(TONS/DAY)
929
1060
803
1120 | DISCHARGE
(CFS)
S
19300
19500
19800
19600 | CONCENTRATION (MG/L) EPTEMBER 44 25 35 | SEDIMENT
DISCHARGE
(TONS/DAY)
2290
1320

1850 | | 1
2
3
4
5
6
7
8
9 | DISCHARGE (CFS) 18400 18300 18100 18300 18400 18600 18200 17800 17700 | CONCEN-
TRATION
(MG/L)
JULY

56
43
40
46
42
34
38
35 | SEDIMENT
DISCHARGE
(TONS/DAY) | DISCHARGE
(CFS) 18100 17800 17500 17300 17000 16700 16200 16000 15900 | CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18 | SEDIMENT
DISCHARGE
(TONS/DAY)
929
1060
803
1120
367
541
1010
173
773 | DISCHARGE (CFS) S 19300 19500 19800 19600 19300 18600 17800 17000 16200 | CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 | SEDIMENT
DISCHARGE
(TONS/DAY) 2290 1320 1850 1410 1510 2020 643 569 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | DISCHARGE (CFS) 18400 18300 18100 18300 18400 18600 17800 17700 17300 17200 17000 16800 16400 | CONCEN-
TRATION
(MG/L)
JULY

56
43
40
46
42
34
38
35
44
26
24
20
30 | SEDIMENT
DISCHARGE
(TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330 | DISCHARGE (CFS) 18100 17800 17500 17300 17000 16700 16200 15900 15800 15500 15300 15000 | CONCEN-
TRATION
(MG/L)
AUGUST
19
22
17
24
8
12
23
3
4
18
19
15
9
15 | SEDIMENT
DISCHARGE
(TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284 | DISCHARGE (CFS) S 19300 19500 19800 19600 19300 18600 17000 16200 15400 14500 13800 13200 12500 | CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12 | SEDIMENT
DISCHARGE
(TONS/DAY) 2290 1320 1850 1410 1510 2020 643 569 374 431 633 214 405 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | DISCHARGE (CFS) 18400 18300 18100 18300 18400 18200 17800 17700 17300 17200 16800 16400 16200 16300 16200 | CONCEN-
TRATION
(MG/L)
JULY

56
43
40
46
42
34
38
35
44
26
24
20
30
25
21
24
11 | SEDIMENT
DISCHARGE
(TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330 1090 924 1050 472 437 | DISCHARGE (CFS) 18100 17800 17500 17300 17000 16200 16000 15900 15800 15500 15300 15000 15100 15300 15300 15500 | CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18 19 15 9 15 7 9 17 13 18 18 | SEDIMENT
DISCHARGE
(TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284 364 693 537 753 558 | DISCHARGE (CFS) S 19300 19500 19800 19600 19300 17800 17800 15400 15400 14500 13800 13200 12100 12100 12100 12200 | CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12 8 8 6 6 8 | SEDIMENT
DISCHARGE
(TONS/DAY) 2290 1320 1320 1850 1410 1510 2020 643 569 374 431 633 214 405 261 261 198 270 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | DISCHARGE (CFS) 18400 18300 18100 18300 18400 17000 17300 17300 17200 17000 16800 16200 16300 16200 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 18100 18400 18400 18700 | CONCEN-
TRATION
(MG/L) JULY 56 43 40 46 42 34 38 35 44 26 24 20 30 25 21 24 11 10 61 45 40 36 | SEDIMENT DISCHARGE (TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330 1090 924 1050 472 437 2900 2200 1990 1820 | DISCHARGE (CFS) 18100 17800 17500 17300 17300 16200 16200 15900 15800 15500 15500 15000 15000 15000 15000 16000 16000 16000 | CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18 19 15 9 17 13 18 13 15 26 11 15 8 | SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284 364 693 537 753 558 656 | DISCHARGE (CFS) S 19300 19500 19800 19600 19600 17800 17800 15400 14500 13200 12500 12100 12200 12500 13000 13500 14100 13500 14100 15200 16700 | CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12 8 8 6 8 10 12 8 23 33 | SEDIMENT
DISCHARGE
(TONS/DAY) 2290 1320 1320 1410 1510 2020 6433 569 374 431 6333 214 405 261 261 198 270 351 437 305 944 1490 | # 15266300 KENAI RIVER AT SOLDOTNA--Continued | DAY | MAX | MIN | MEAN | |--|--|--|--|---|---|--|---|--
---|---|--|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 7.0
7.0 | 6.0
6.0
6.5
6.5 | 6.5
6.5
6.5
7.0
6.5 | 4.0
3.0
3.0
3.0
3.5 | | | 2.0
.5
1.0
1.5
3.0 | | | | .0 | | | 6
7
8
9
10 | 7.5
7.5
7.0
7.0
6.0 | 6.5
6.0
6.5
6.0
6.0
5.0 | 7.0
7.0
6.5
6.5
5.5 | 3.0
3.0
3.0
3.5
4.0 | 2.0
2.0
1.5
2.5
3.0 | 2.5
2.5
2.5
3.0
3.5 | 2.5
3.0
2.5
2.5
2.0 | 2.0
2.0
1.5
1.5 | 2.5
2.5
2.0
2.0 | .5
1.0
2.0
1.5 | .0
.0
1.0
1.0 | .0
.5
1.5
1.5 | | 1 2 | 6.5 | 5.0
5.5
5.0
5.5
5.0 | 5.5
6.0
6.0
6.0
5.5 | 4.0
2.5
3.5
3.0
2.5 | 2.5
2.0
2.5
2.5
1.5 | 3.5
2.5
3.0
3.0
2.0 | 2.5
2.5
2.0
1.5 | 1.5
1.5
1.0
.5 | 2.0
2.0
1.5
1.0 | .5
.5
1.5
2.5
2.5 | .0
.5
1.0 | .0
.0
1.0
1.5
2.0 | | 16
17
18
19
20 | 6.0
6.0
5.5
5.5 | 5.5
5.0
5.0
4.0
4.5 | 5.5
5.5
5.5
5.0
5.0 | 3.0
3.0
3.0
3.5
3.5 | 2.0
2.0
2.0
2.5
3.0 | 2.5
2.5
2.5
3.0
3.5 | 1.0
.5
2.0
2.5
2.0 | .0
.0
.0
1.5 | .5
.0
1.0
2.0
2.0 | 2.0
1.5
2.5
2.5
2.0 | 1.0
.5
1.5
2.0
1.5 | 1.0
1.0
2.0
2.0
2.0 | | 21
22
23
24
25 | 5.0
4.5
5.0
5.0 | 3.5
3.5
4.0
4.0 | 4.5
4.0
4.5
4.5 | 3.5
3.0
3.0
2.5 | 3.0
2.5
2.0
1.5 | 3.0
3.0
2.5
2.0 | 2.0
.5
.5 | | | 2.0
2.5
2.0
2.0
2.0 | | 2.0
2.0
2.0
2.0
1.5 | | 26
27
28
29
30
31 | 4.5
4.0
3.5
4.0
3.5
4.0 | 4.0
3.0
2.5
3.0
2.5
2.5 | 4.5
3.5
3.0
3.5
3.0
3.5 | 2.0
2.0
3.0
3.5
3.0 | .5
1.5
2.0
2.5
2.0 | 1.0
2.0
2.5
3.0
3.0 | 1.5
1.5
2.0
2.5
2.5 | 1.0
.5
1.0
1.5
1.5 | 1.0
1.5
2.0
2.0 | 2.0
2.0
1.5
1.5
1.0 | 1.5
1.5
.5
.5 | 2.0
2.0
1.0
1.0
1.0 | | MONTH | 7.5 | 2.5 | 5.3 | 4.0 | .5 | 2.7 | 3.0 | .0 | 1.3 | 2.5 | .0 | 1.2 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2
3
4
5 | 1.0
1.0
1.0
1.0 | .0
.0
.0
.0 | 1.0
.5
.5
.5 | 1.0
1.0
.5
1.0
2.0 | .0
.0
.0
.0 | .5
.5
.0
.0 | 3.0
3.5
3.0
3.0 | .0
1.0
2.0
2.0 | 1.5
2.5
2.5
2.5
2.0 | 6.0
5.0
4.5
4.0
5.0 | 4.0
3.0
3.0
2.0
1.5 | 5.0
4.0
3.5
3.0
3.5 | | | | .0
.0
.0
.5
.5
.5 | | 1.0
1.0
.5
1.0
2.0
2.5
1.5
2.0
3.0 | | | 3.0
3.5
3.0
3.0
3.5
3.0
4.5
3.5 | | | 6.0
5.0
4.5
4.0
5.0
5.5
6.5
6.5
7.0 | | 4.0
3.5
3.0
3.5 | | 6
7
8
9
10 | | .5
.5
.0
.0 | 1.0
1.5
.0
.0 | 2.0
2.5
1.5
2.0
3.0 | 1.0
1.0
.5
.5 | 1.5
1.5
1.0
1.5
2.0 | 3.0
3.0
4.5
3.5
3.5 | .5
1.0
1.5
1.5 | 2.0
2.0
3.0
2.5
3.0 | | 3.5
4.0
4.0
4.5
4.5 | 4.0
3.5
3.0
3.5
4.5
5.0
5.0
5.5
6.0 | | 6
7
8
9
10
11
12
13
14 | 1.5
2.0
1.0
.5
.5 | .5 .5 .0 .0 .0 .0 .0 .0 .0 | 1.0
1.5
.0
.0
.0 | 2.0
2.5
1.5
2.0
3.0
3.0
2.5
2.5 | 1.0
1.0
.5
.5
1.5
2.0
2.0
.5 | 1.5
1.5
1.0
1.5
2.0
2.5
2.5
1.5
2.0 | 3.0
3.0
4.5
3.5
3.5
4.5
4.0
4.0
5.0 | .5
1.0
1.5
1.5
1.5
2.0
2.0
1.5 | 2.0
2.0
3.0
2.5
3.0
3.0
2.5
3.0 | 5.5
6.5
6.5
7.0
8.0
9.0
9.5 | 3.5
4.0
4.5
4.5
4.5
5.0
5.5
6.0 | 4.0
3.5
3.0
3.5
4.5
5.0
5.5
6.0
6.0
7.5
8.0 | | 6
7
8
9
10
11
12
13
14
15
16
17
18 | 1.5
2.0
1.0
.5
.5
.5
1.0
1.0
.5
.5
.5 | .5
.5
.0
.0
.0
.0
.0
.0
.0 | 1.0
1.5
.0
.0
.0
.0
.0
.0
.0
.0 | 2.0
2.5
1.5
2.0
3.0
3.0
3.0
2.5
2.5
2.5
1.5 | 1.0
1.0
.5
.5
1.5
2.0
2.0
.5
1.0
1.0 | 1.5
1.5
1.0
1.5
2.0
2.5
2.5
1.5
2.0
1.5
2.0 | 3.0
4.5
3.5
4.5
4.0
4.0
5.0
4.5
4.5 | .5
1.0
1.5
1.5
1.5
2.0
2.0
1.5
1.5
2.0
2.0
2.0 | 2.0
2.0
3.0
2.5
3.0
3.0
2.5
3.0
3.0
3.0
3.0
3.0 | 5.5
6.5
6.5
7.0
8.0
9.0
9.5
10.0
10.5
9.5
8.5 | 3.5
4.0
4.0
4.5
4.5
4.5
5.0
5.5
6.0
7.5
7.5
6.0
6.5
6.0 | 4.0
3.5
3.0
3.5
4.5
5.0
5.0
5.5
6.0
7.5
8.0
9.0
8.0
7.5
8.0
7.5 | | 6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1.5
2.0
1.0
.5
.5
.5
1.0
1.0
.5
.5
.5
2.0
2.0
2.0 | .5
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | 1.0
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | 2.0
2.5
1.5
2.0
3.0
3.0
2.5
2.5
2.0
3.0
1.5
1.0
1.0 | 1.0
1.0
.5
.5
1.5
2.0
2.0
.5
1.0
1.0
.5
.0
.0
.0 | 1.5
1.5
1.0
1.5
2.0
2.5
2.5
1.5
2.0
1.5
2.0
1.5
2.0
1.5 | 3.0
4.5
3.5
3.5
4.0
4.0
5.0
4.5
4.5
5.0
5.0
5.0
5.0 | .5
1.0
1.5
1.5
2.0
2.0
1.5
1.5
2.0
2.0
2.0
2.0
2.0
3.5
3.0
3.0
2.5 | 2.0
2.0
3.0
2.5
3.0
3.0
2.5
3.0
3.0
3.0
3.0
3.5
4.0 | 5.5
6.5
6.5
7.0
8.0
9.0
9.5
10.0
10.5
9.5
8.5
9.0
8.5
7.5
7.5 | 3.5
4.0
4.0
4.5
4.5
4.5
5.5
6.0
7.5
6.0
6.5
6.0
6.5
5.5
6.0
5.5 | 4.0
3.5
3.5
4.5
5.0
5.0
5.5
6.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
8.0
8.0
7.5
8.0
8.0
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR. | | 1
2
3
4
5 | 9.0
10.0
11.5
10.5
9.5 | 6.5
7.0
8.0
8.0 | 8.0
8.5
9.5
9.0
8.5 | 11.5
12.5
11.5
11.0
10.5 | 9.0
9.0
9.0
8.5
9.0 | 10.5
11.0
10.0
10.0 | 12.5
13.0
12.5
11.5
12.5 | 10.5
11.0
10.5
10.0 | 11.5
12.0
11.0
10.5
11.0 | 11.5
11.5
11.5
11.5
11.0 | 10.0
10.5
10.5
11.0
9.5 | 11.0
11.0
11.0
11.0 | | 6
7
8
9
10 | 9.0
8.0
9.5
10.5
10.0 | 7.0
6.0
6.5
7.5
8.0 | 8.0
7.0
8.0
8.5
9.0 | 11.5
12.5
13.5
13.5
13.5 | 10.0
11.0
11.5
12.0
12.5 | 11.0
12.0
12.5
13.0
13.0 |
13.5
15.0
14.5
14.0
14.0 | 11.0
12.0
13.0
12.5
13.0 | 12.5
13.5
14.0
13.0
13.5 | 9.5
10.0
10.0
10.5
10.5 | 8.0
9.0
9.0
8.5
9.0 | 8.5
9.5
9.5
9.5
10.0 | | 11
12
13
14
15 | 9.5
10.0
11.0
11.5
11.0 | 7.0
7.5
9.0
9.0
7.5 | 8.0
9.0
10.0
10.0
9.5 | 13.0
12.5
11.5
12.0
11.5 | 12.0
10.5
10.0
10.0 | 12.5
11.0
11.0
11.0 | 14.0
14.0
14.5
14.5 | 12.5
12.5
12.5
12.0
13.5 | 13.5
13.5
13.5
13.5
14.0 | 10.5
10.5
10.0
9.5
10.0 | 9.5
9.5
9.0
9.0 | 10.0
10.0
9.5
9.5
9.5 | | 16
17
18
19
20 | 12.5
12.0
12.0
12.0 | 8.0
8.5
9.5
10.0 | 10.0
10.5
11.0
11.0 | 11.5
12.5
12.0
14.0
13.0 | 10.0
10.5
10.5
11.5
11.0 | 11.0
11.5
11.5
13.0
11.5 | 13.5
13.5
13.0
12.5
12.5 | 12.0
12.0
12.0
11.5
11.0 | 12.5
12.5
12.5
12.0
11.5 | 10.5
10.0
10.0
9.5
10.0 | 9.0
9.0
9.0
9.0 | 9.5
9.5
9.5
9.5 | | 21
22
23
24
25 | 13.0
13.5
13.0
13.0
13.5 | 11.0
9.5
11.0
9.5
8.5 | 12.0
12.0
12.5
11.5
11.0 | 12.0
12.0
12.0
12.0
12.0 | 10.0
10.0
11.5
11.0
11.0 | 11.0
10.5
12.0
11.5
11.5 | 11.5
12.5
12.0
12.5
12.5 | 10.5
10.5
10.5
11.0
11.5 | 11.0
11.5
11.5
12.0
12.0 | 9.5
9.0
9.0
8.5
9.0 | 9.0
8.0
8.5
8.0 | 9.5
8.5
8.5
8.5 | | 26
27
28
29
30
31 | 13.5
13.0
13.0
14.0
12.5 | 10.0
10.0
9.0
9.5
9.5 | 12.0
12.0
11.0
12.0
10.5 | 13.0
13.5
13.0
12.5
12.5 | 10.5
11.5
11.5
10.5
12.0
11.5 | 12.0
12.5
12.5
12.0
12.5
12.0 | 13.0
12.5
12.0
11.5
11.5 | 11.5
12.0
11.0
10.5
10.5 | 12.5
12.0
11.5
11.0
11.0 | 9.0
8.5
8.5
8.5
8.5 | 8.0
8.0
8.0
7.5
7.5 | 8.5
8.5
8.0
8.0 | | MONTH | 14.0 | 6.0 | 10.0 | 14.0 | 8.5 | 11.5 | 15.0 | 10.0 | 12.2 | 11.5 | 7.5 | 9.4 | | YEAR | 15.0 | .0 | 5.5 | | | | | | | | | | #### 15271000 SIXMILE CREEK NEAR HOPE LOCATION.--Lat $60^{\circ}49'15''$, long $149^{\circ}25'31''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 34, T. 8 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on left bank, 6.0 mi upstream from mouth at Turnagain Arm, and 10.6 mi southeast of Hope. DRAINAGE AREA.-- 234 mi² Date PERIOD OF RECORD.--June 1979 to September 1990, August 1997 to current year. Discharge (ft³/s) Time GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map. Prior to November 26, 1979, recording gage at site 0.8 mi downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station. Date Time Discharge Gage Height (ft³/s) EXTREMES FOR CURRENT PERIOD.--Peak discharges greater than base discharge of 3,500 ${\rm ft}^3/{\rm s}$ and maximum (*) Gage Height (ft) | | | | (IL./ | S) | (IL) | | | | (IL') | s) | (IL) | | |------------|-------------|---------------|------------|-------------|-------------|------------|-------------|--------------|--------------|--------------|-----------------|-------------| | | Jun 28 | 01:45 | 6370 | | 12.73 | | Aug 29 | 02:30 | *6930 | | *12.94 | | | | Jul 20 | 10:15 | 4050 | | 11.72 | | _ | | | | | | | | 041 20 | 10-15 | 1030 | | 11.72 | DISCHAR | GE. CUBIC | TEET : | PER SECOND, | WATER | YEAR OCTOBE | R 2000 | TO SEPTEMB | ER 2001 | | | | | | | , | | | | VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 635 | 409 | 296 | 482 | 282 | 174 | 129 | 488 | 2690 | 4150 | 2170 | 2510 | | 2 | 608 | 394 | 294 | 399 | 258 | 167 | 131 | 449 | 2990 | 4170 | 2190 | 2030 | | 3 | 582 | 368 | 399 | 375 | 260 | 161 | 134 | 424 | 3140 | 4180 | 2230 | 1970 | | 4 | 564 | 361 | 352 | 340 | 272 | 178 | 132 | 384 | 2990 | 3890 | 2160 | 1910 | | 5 | 596 | 377 | 347 | 298 | 269 | 166 | 128 | 348 | 2890 | 4150 | 2030 | 1940 | | 6 | 604 | 363 | 341 | 316 | 252 | 163 | 126 | 329 | 2900 | 3990 | 1890 | 1580 | | 7 | 738 | 359 | 318 | 389 | 237 | 160 | 126 | 328 | 2670 | 3790 | 1780 | 1420 | | 8 | 1110 | 346 | 294 | 388 | 226 | 156 | 127 | 355 | 2560 | 3710 | 1720 | 1230 | | 9 | 811 | 347 | 264 | 345 | 222 | 161 | 126 | 399 | 2710 | 3460 | 1640 | 1100 | | 10 | 728 | 376 | 332 | 314 | 217 | 158 | 129 | 426 | 3000 | 3340 | 1550 | 1010 | | 11 | 706 | 405 | 291 | 301 | 234 | 159 | 145 | 480 | 3140 | 3160 | 1470 | 937 | | 12 | 681 | 328 | 277 | 304 | 225 | 158 | 149 | 533 | 3040 | 3070 | 1590 | 1230 | | 13 | 653 | 355 | 262 | 288 | 194 | 154 | 147 | 598 | 3000 | 2890 | 1680 | 1430 | | 14 | 1000 | 359 | 305 | 324 | 190 | 154 | 144 | 702 | 3140 | 2740 | 1780 | 1110 | | 15 | 866 | 320 | 352 | 506 | 222 | 160 | 143 | 870 | 3550 | 2800 | 1700 | 1010 | | 16 | 957 | 346 | 291 | 460 | 214 | 156 | 149 | 1040 | 3900 | 2760 | 1640 | 959 | | 17 | 994 | 338 | 265 | 512 | 194 | 150 | 154 | 1110 | 4370 | 2860 | 1520 | 1010 | | 18 | 843 | 338 | 276 | 777 | 185 | 142 | 163 | 1130 | 4540 | 2910 | 1570 | 1070 | | 19 | 747 | 350 | 281 | 1230 | 204 | 137 | 179 | 1170 | 4430 | 3100 | 1410 | 1130 | | 20 | 682 | 409 | 276 | 811 | 187 | 141 | 199 | 1410 | 4240 | 3780 | 2200 | 996 | | 21 | 628 | 624 | 284 | 660 | 182 | 142 | 216 | 1530 | 4470 | 3500 | 1900 | 1100 | | 22 | 638 | 579 | 255 | 587 | 177 | 141 | 232 | 1530 | 4750 | 3400 | 1610 | 1090 | | 23 | 601 | 489 | 302 | 516 | e175 | 156 | 258 | 1460 | 5260 | 3060 | 1330 | 1350 | | 24 | 557 | 472 | 274 | 446 | e180 | 146 | 263 | 1480 | 5600 | 2750 | 1210 | 3110 | | 25 | 554 | 429 | 308 | 398 | 199 | 148 | 292 | 1480 | 5290 | 2690 | 1110 | 2280 | | 26 | 515 | 362 | 288 | 369 | 186 | 148 | 330 | 1420 | 5570 | 2670 | 1020 | 1730 | | 27 | 459 | 321 | 276 | 350 | 194 | 147 | 374 | 1400 | 5850 | 2640 | 1010 | 1430 | | 28 | 403 | 398 | 282 | 306 | 186 | 138 | 460 | 1640 | 5890 | 2520 | 2870 | 1350 | | 29 | 424 | 369 | 396 | 322 | | 135 | 472 | 1960 | 5480 | 2300 | 4710 | 1220 | | 30 | 466 | 339 | 595 | 309 | | 135 | 487 | 2290 | 4670 | 2190 | 3550 | 1060 | | 31 | 446 | | 619 | 295 | | 132 | | 2560 | | 2230 | 3360 | | | | | | | | | | | | | | | | | TOTAL | 20796 | 11630 | 9992 | 13717 | 6023 | 4723 | 6244 | 31723 | 118720 | 98850 | 59600 | 43302 | | MEAN | 671
1110 | 388 | 322 | 442
1230 | 215 | 152 | 208 | 1023
2560 | 3957
5890 | 3189
4180 | 1923 | 1443 | | MAX
MIN | 403 | 624
320 | 619
255 | 288 | 282
175 | 178
132 | 487
126 | 328 | 2560 | 2190 | 4710
1010 | 3110
937 | | AC-FT | 41250 | | 19820 | 27210 | 11950 | 9370 | 12380 | 62920 | | 196100 | 118200 | 85890 | | CFSM | 2.87 | 1.66 | 1.38 | 1.89 | .92 | .65 | .89 | 4.37 | 16.9 | 13.6 | 8.22 | 6.17 | | IN. | 3.31 | 1.85 | 1.59 | 2.18 | .96 | .75 | .99 | 5.04 | 18.87 | 15.71 | 9.47 | 6.88 | | | | CMA MT CMT CC | OF MONTH | MI | AN DAMA HOD | MADED | VENDO 1070 | 2001 | DV WAMED I | TEAD (MI | .) 4 | | | | | STATISTICS | OF MONT | нга МЕ | AN DATA FOR | WATER | TEARS 19/9 | - 2001, | BI WATER Y | EAR (WY |) | | | MEAN | 888 | 420 | 267 | 231 | 175 | 155 | 250 | 1237 | 2729 | 2289 | 1331 | 1046 | | MAX | 1777 | 654 | 353 | 528 | 306 | 240 | 397 | 1811 | 3957 | 3986 | 2699 | 1556 | | (WY) | 1981 | 1980 | 2000 | 1981 | 1981 | 1984 | 1990 | 1981 | 2001 | 1980 | 1981 | 1999 | | MIN | 500 | 221 | 198 | 133 | 113 | 106 | 119 | 748 | 1736 | 1166 | 760 | 607 | | (WY) | 1998 | 1986 | 1999 | 1999 | 1999 | 1999 | 1985 | 1985 | 1989 | 1990 | 1990 | 1983 | [#] See Period of Record; partial years used in monthly statistics #### 15271000 SIXMILE CREEK NEAR HOPE--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1979 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 337082 | 425320 | | | ANNUAL MEAN | 921 | 1165 | 930 | | HIGHEST ANNUAL MEAN | | | 1335 1980 | | LOWEST ANNUAL MEAN | | | 675 1986 | | HIGHEST DAILY MEAN | 4520 Jun 8 | 5890 Jun 28 | 7570 Jul 12 1980 | | LOWEST DAILY MEAN | a137 Apr 1 | b126 Apr 6 | 80 cApr 1 1986 | | ANNUAL SEVEN-DAY MINIMUM | 140 Mar 22 | 128 Apr 4 | 80 Apr 1 1986 | | MAXIMUM PEAK FLOW | | 6930 Aug 29 | d8070 Jul 2 1980 | | MAXIMUM PEAK STAGE | | 12.94 Aug 29 | 13.22 Jul 2 1980 | | INSTANTANEOUS LOW FLOW | | | f29.0 Nov 26 1979 | | ANNUAL RUNOFF (AC-FT) | 668600 | 843600 | 674100 | | ANNUAL RUNOFF (CFSM) | 3.94 | 4.98 | 3.98 | | ANNUAL RUNOFF (INCHES) | 53.59 | 67.61 | 54.03 | | 10 PERCENT EXCEEDS | 2670 | 3120 | 2450 | | 50 PERCENT EXCEEDS | 526 | 487 | 554 | | 90 PERCENT EXCEEDS | 150 | 157 | 140 | [#] See Period of Record; partial years used in monthly statistics a Apr. 1 and Apr. 2 b Apr. 6, Apr. 7 and Apr. 9 Apr. 1 to Apr. 9, 1986 d Peak discharge was probably greater sometime during the period, Nov. 26, 1979 to Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site f Sometime between Nov. 26, 1979 and Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site, site and datum then in use #### 15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER LOCATION.--Lat $60^{\circ}47'07''$, long $148^{\circ}50'20''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 13, T. 8 N., R. 3 E. (Seward D-5 SW quad), Municipality of Anchorage, Hydrologic Unit 19020302, on left bank at lake outlet, 5.0 mi west of Whittier, 5.8 mi southeast of Portage, and 6.5 mi upstream from mouth. DRAINAGE AREA. -- 40.5 mi². PERIOD OF RECORD. -- March 1989 to current year. GAGE.--Water-stage recorder. Elevation of gage is 95 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges.
Records good except for March 1-4, which are fair. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 12,500 ft³/s, August 19, 1984 (elevation about 97.05 ft above sea level from USFS levels) by contracted-opening measurement of peak flow. EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 4,600 ${\rm ft}^3/{\rm s}$ and maximum (*). | | Date | Time | Discharge
(ft ³ /s | | Height | | Date | Time | Discha
(ft ³ / | rge
s) | Gage Height
(ft) | : | |---|--|---|--|---|--|---|--|--|--|--|--|---| | | Aug 20 | 1415 | 4690 | 7 | 7.18 | | Sep 24 | 0515 | 4620 |) | 7.14 | | | | Aug 29 | 0100 | *9200 | * | 9.23 | DISCHA | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 423
360
315
287
351 | 195
185
169
159 | 231
194
185
219
289 | 560
392
289
232
191 | 222
187
159
143
144 | 179
159
123
128
192 | 103
101
148
141
119 | 238
224
217
207
193 | 584
665
779
814
795 | 1770
1750
1810
1770
2020 | 1630
1730
1830
1820
1770 | 3280
2010
1490
1880
2880 | | 6
7
8
9
10 | 706
1370
1530
990
725 | 150
155
153
160
287 | 296
283
237
199
193 | 184
401
485
415
286 | 152
138
121
108
100 | 248
248
219
254
241 | 104
94
89
87
98 | 206
193
171
162
164 | 788
743
691
694
738 | 2150
1830
1580
1480
1480 | 1700
1630
1540
1440
1350 | 1890
1420
1100
867
720 | | 11
12
13
14
15 | 625
543
527
1280
1150 | 408
346
328
392
319 | 201
175
151
133
127 | 239
252
233
478
843 | 98
101
97
91
84 | 245
224
205
192
226 | 155
184
178
154
136 | 157
147
143
142
155 | 817
860
841
853
944 | 1520
1780
1770
1570
1520 | 1310
1420
1630
1850
1870 | 640
1660
2830
2510
2030 | | 16
17
18
19
20 | 1350
1430
915
627
468 | 329
377
484
621
1060 | 118
136
169
176
189 | 572
652
1150
1530
800 | 81
75
71
71
74 | 240
196
161
138
122 | 121
111
104
100
98 | 183
207
226
253
303 | 1080
1190
1220
1240
1200 | 1470
1470
1550
1680
2560 | 1780
1640
1970
2110
4130 | 1440
1650
1600
1330
1100 | | 21
22
23
24
25 | 378
362
350
307
404 | 1440
1200
740
610
530 | 219
194
172
207
314 | 628
689
613
441
369 | 71
69
67
65
69 | 107
95
96
89
93 | 101
104
109
110
144 | 420
594
514
445
433 | 1210
1280
1490
1740
1750 | 3080
3760
3660
2730
2160 | 3690
2710
2020
1730
1600 | 1290
1460
2660
4170
2580 | | 26
27
28
29
30
31 | 377
312
262
227
226
215 | 398
318
329
348
289 | 402
452
454
717
854
807 | 312
276
215
179
162
180 | 93
192
209
 | 112
134
122
113
120
116 | 187
204
323
327
274 | 422
393
386
412
455
516 | 1870
2060
2210
2220
1980 | 1890
1780
1660
1490
1420
1530 | 1510
1720
4710
7970
6530
5580 | 1750
1240
1270
1130
846 | | TOTAL
MEAN
MAX
MIN
AC-FI
CFSM
IN. | 626
1530
215 | 12630
421
1440
150
25050
10.4
11.60 | 8693
280
854
118
17240
6.92
7.98 | 14248
460
1530
162
28260
11.3
13.09 | 3152
113
222
65
6250
2.78
2.90 | 5137
166
254
89
10190
4.09
4.72 | 4308
144
327
87
8540
3.55
3.96 | 8881
286
594
142
17620
7.07
8.16 | 35346
1178
2220
584
70110
29.1
32.47 | 59690
1925
3760
1420
118400
47.5
54.83 | 75920
2449
7970
1310
150600
60.5
69.73 | 52723
1757
4170
640
104600
43.4
48.43 | | | | STATISTIC | CS OF MONTH | LY MEAN I | DATA FOR | WATER YEA | ARS 1989 - | 2001, BY | WATER YE | AR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 532
1014
1994
136
1997 | 235
553
1998
90.5
1991 | 124
280
2001
26.3
1991 | 126
460
2001
26.0
1991 | 118
277
1997
26.0
1991 | 87.9
189
1998
26.0
1991 | 244
393
1995
111
1999 | 610
1158
1995
286
2001 | 1433
1728
1990
1178
2001 | 2116
2518
1990
1714
1999 | 2047
3164
1989
1409
1998 | 1870
3583
1995
649
1992 | # 15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER--Continued | SUMMARY STATISTICS | FOR 2000 CALEND | AR YEAR | FOR 2001 W | ATER YE | AR | WATER YEARS | 1989 - 2001# | |--------------------------|-----------------|---------|------------|---------|----|-------------|--------------| | ANNUAL TOTAL | 248821 | | 300120 | | | | | | ANNUAL MEAN | 680 | | 822 | | | 786 | | | HIGHEST ANNUAL MEAN | | | | | | 972 | 1995 | | LOWEST ANNUAL MEAN | | | | | | 656 | 2000 | | HIGHEST DAILY MEAN | 4110 | Jul 22 | 7970 | Aug | 29 | 10700 | Sep 20 1995 | | LOWEST DAILY MEAN | a55 | Jan 18 | 65 | Feb | 24 | b26 | Dec 5 1990 | | ANNUAL SEVEN-DAY MINIMUM | 56 | Jan 16 | 69 | Feb | 19 | 26 | Dec 5 1990 | | MAXIMUM PEAK FLOW | | | 9200 | Aug | 29 | 13000 | Sep 20 1995 | | MAXIMUM PEAK STAGE | | | 9.2 | 23 Aug | 29 | 10.66 | Sep 20 1995 | | INSTANTANEOUS LOW FLOW | | | 59 | Feb | 25 | 26 | Dec 5 1990 | | ANNUAL RUNOFF (AC-FT) | 493500 | | 595300 | | | 569500 | | | ANNUAL RUNOFF (CFSM) | 16.8 | | 20.3 | 3 | | 19.4 | | | ANNUAL RUNOFF (INCHES) | 228.55 | | 275.6 | 57 | | 263.73 | | | 10 PERCENT EXCEEDS | 1690 | | 1860 | | | 2040 | | | 50 PERCENT EXCEEDS | 345 | | 386 | | | 329 | | | 90 PERCENT EXCEEDS | 91 | | 110 | | | 55 | | [#] See Period of Record: partial years used in monthly statistics a Jan. 18 to Jan. 22 b From Dec. 5, 1990 to Mar. 31, 1991 #### 15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE LOCATION.--Lat $60^{\circ}53'35''$, long $148^{\circ}55'38''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 9 N., R. 3 E. (Seward D-6 quad), hydrologic unit 19020401, on right bank, 0.1 miles below Glacier River, 4.0 miles upstream from the Seward Highway, and 6.0 miles northeast of Portage. DRAINAGE AREA. -- 141 mi². PERIOD OF RECORD. -- April to September 2001. GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map. REMARKS.--Record is good except for June 16 to July 25, August 2 to 4, 19, 20, September 13 to 15, and estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT PERIOD.-- Maximum discharge, $9,990~{\rm ft}^3/{\rm s}$, August 29, gage height 25.47 ft.; minimum discharge not determined, occurs during winter. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAILI MEAN VALUES | | | | | | | | | | | | | |-------------------|--------------|--------------|-----|-----|-----|-----|-------|-------|--------|--------|--------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | e195 | 547 | 1760 | 3490 | e2900 | 4400 | | 2 | | | | | | | e195 | 520 | 1940 | 3470 | 3010 | 3240 | | 3 | | | | | | | 258 | 533 | 2090 | 3360 | 3170 | 2820 | | 4 | | | | | | | 271 | 468 | 2020 | 3170 | 3170 | 3150 | | 5 | | | | | | | 226 | 416 | 2020 | 3300 | 3060 | 4330 | | 3 | | | | | | | 220 | 110 | 2020 | 3300 | 3000 | 4330 | | 6 | | | | | | | 197 | 483 | 2070 | 3290 | 3000 | 3250 | | 7 | | | | | | | 183 | 490 | 1920 | 3010 | 2890 | 2730 | | 8 | | | | | | | 180 | 439 | 1750 | 2810 | 2710 | 2330 | | 9 | | | | | | | 178 | 438 | 1870 | 2650 | 2600 | 2020 | | 10 | | | | | | | 191 | 433 | 2070 | 2660 | 2440 | 1810 | | | | | | | | | | | | | | | | 11 | | | | | | | 344 | 421 | 2220 | 2630 | 2370 | 1650 | | 12 | | | | | | | 438 | 412 | 2220 | 2800 | 2590 | 2160 | | 13 | ‡ 758 | | | | | | 345 | 432 | 2090 | 2790 | 2900 | 3090 | | 14 | | | | | | | 294 | 505 | 2160 | 2720 | 3190 | 2840 | | 15 | | | | | | | 263 | 603 | 2380 | 2760 | 3250 | 2530 | | | | | | | | | | | | | | | | 16 | | ‡ 552 | | | | | 264 | 681 | 2700 | 2650 | 3140 | 2200 | | 17 | | | | | | | 254 | 730 | 3040 | 2770 | 2970 | 2440 | | 18 | | | | | | | 243 | 788 | 3150 | 2880 | 3070 | 2580 | | 19 | | | | | | | 243 | 866 | 2960 | 3030 | 3100 | 2380 | | 20 | | | | | | | 247 | 1010 | 2850 | 4350 | 5770 | 2110 | | 20 | | | | | | | 21, | 1010 | 2000 | 1330 | 3 | 2110 | | 21 | | | | | | | 267 | 1090 | 3010 | 4700 | 5360 | 2130 | | 22 | | | | | | | 282 | 1170 | 3230 | 4990 | 4070 | 2070 | | 23 | | | | | | | 300 | 1130 | 3700 | 4770 | 3150 | 2640 | | 24 | | | | | | | 295 | 1130 | 3990 | 3980 | 2910 | 4030 | | 25 | | | | | | | 394 | 1100 | 3800 | 3360 | 2760 | 3070 | | | | | | | | | | | | | | | | 26 | | | | | | | 437 | 1060 | 3960 | e3200 | 2580 | 2510 | | 27 | | | | | | | 464 | 1060 | 4390 | e3100 | 2520
| 2080 | | 28 | | | | | | | 733 | 1190 | 4530 | e2900 | 5130 | 1940 | | 29 | | | | | | | 626 | 1390 | 4320 | e2800 | 9230 | 1860 | | 30 | | | | | | | 559 | 1460 | 3840 | e2700 | 8090 | 1600 | | 31 | | | | | | | | 1630 | | e2800 | 6610 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | 9366 | 24625 | 84050 | 99890 | 113710 | 77990 | | MEAN | | | | | | | 312 | 794 | 2802 | 3222 | 3668 | 2600 | | MAX | | | | | | | 733 | 1630 | 4530 | 4990 | 9230 | 4400 | | MIN | | | | | | | 178 | 412 | 1750 | 2630 | 2370 | 1600 | | AC-FT | | | | | | | 18580 | 48840 | 166700 | 198100 | 225500 | 154700 | | CFSM | | | | | | | 2.21 | 5.63 | 19.9 | 22.9 | 26.0 | 18.4 | | IN. | | | | | | | 2.47 | 6.50 | 22.17 | 26.35 | 30.00 | 20.58 | | | | | | | | | | | | | | | Result of discharge measurement Estimated Discharge Gage Height #### 15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE LOCATION.--Lat $61^{\circ}10'02''$, long $149^{\circ}46'14''$, in NW_{4}^{V} sec. 2, T. 12 N., R. 3 W. (Anchorage A-8 quad), Municipality of Anchorage, 0.2 mi downstream from bridge on dog-mushing trail leading to Campbell Airstrip, 2.0 mi upstream from North Fork Campbell Creek, and 5.5 mi southeast of Anchorage. DRAINAGE AREA. -- 29.2 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1947 to September 1971, October 1998 to September 2001, (discontinued) REVISED RECORD. -- WRD AK-00-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 260 ft, from topographic map. Prior to August 20, 1952, water-stage recorder at site 0.2 mi upstream at different datum. August 20, 1952 to July 15, 1958, water-stage recorder at site 70 ft downstream from previous site at different datum; July 16, 1958 to September 30, 1971, water-stage recorder at same site but different datum. October 1, 1971 to September 30, 1972, crest-stage gage at same site but different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $150~{\rm ft}^3/{\rm s}$ and maximums (*). Discharge Gage Height | | Date | Time | (ft ³ | | (ft) | i C | Date | Time | (ft ³ | | (ft) | L | |------------------------------------|--|--|--|--|---|---|--|---|--|---|----------------------------------|--| | | June 15 | 1400 | 162 | | 6.20 | | July 06 | unknown | *243 | | *a6.52 | | | | June 25 | 0130 | 157 | | 6.18 | | July 20 | unknown | unknov | wn | unknown | | | | | DISCHA | RGE, CUBI | C FEET I | | , WATER
LY MEAN | YEAR OCTOE | BER 2000 T | O SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 60
57
54
51
53 | e28
e28
e28
e27
e27 | e21
e20
e20
e20
e21 | e13
e13
e12
e12
e11 | e10
e10
e10
e10
e9.5 | e11
e11
e11
e11 | e8.0
7.6
5.1
5.1
6.8 | 12
9.8
10
10
9.0 | 69
77
107
120
111 | e100
e90
e85
e90
e120 | e48
e46
55
64
56 | 38
37
54
62
96 | | 6
7
8
9
10 | 53
48
45
41
40 | e27
e27
e27
e27
e27 | e21
e21
e21
e20
e20 | e11
e12
e12
e11
e11 | e9.0
e9.0
e9.0
e8.5
e8.5 | e12
12
12
11
12 | 8.1
6.4
6.8
6.6
6.3 | 8.5
8.7
9.5
10 | 117
124
96
96
94 | e160
109
124
110
96 | 50
47
46
45
43 | 78
67
61
52
48 | | 11
12
13
14
15 | 40
39
38
39
37 | 39
29
30
27
e26 | e20
e19
e19
e19
e19 | e11
e12
e12
e12
e12 | e8.5
e8.5
e8.5
e8.5
e8.5 | 9.0
8.2
9.8
9.7
9.7 | 6.6
6.2
6.2
6.3
6.6 | 12
13
16
21
26 | 96
100
100
95
135 | 106
95
87
e80
78 | 41
40
39
39
42 | 45
44
44
43
40 | | 16
17
18
19
20 | 36
35
34
34
33 | e26
e26
25
27
27 | e18
e17
e17
e17
e18 | e12
e12
e12
e12
e12 | e8.5
e9.0
e9.0
e9.0
e9.0 | 9.1
9.6
e9.5
e9.5 | 6.5
6.4
6.6
7.0
7.8 | 29
31
31
31
37 | 121
115
106
112
116 | e70
e65
e65
e75
e150 | 43
42
45
42
46 | 39
39
40
41
39 | | 21
22
23
24
25 | e33
e33
33
33 | 26
24
25
e24
e24 | e17
e17
e16
e15
e15 | e11
e11
e11
e11 | e9.0
e9.5
e9.5
e10
e11 | e9.0
e9.0
e9.0
e9.0 | 8.3
8.2
8.8
8.5
9.6 | 35
32
33
33
34 | 118
121
126
133
138 | e130
e110
e95
e75
e65 | 41
39
37
38
37 | 38
37
36
36
35 | | 26
27
28
29
30
31 | 33
e31
e31
e29
e29
e31 | e24
e24
e24
e23
e22 | e14
e14
e13
e13
e13
e14 | e11
e11
e10
e10
e10 | e12
e12
e11
 | e9.5
e10
e9.5
e9.0
8.3
8.4 | 10
11
11
10
12 | 34
36
41
51
60
65 | e140
e140
e130
e120
e110 | 60
54
51
48
e46
e50 | 35
33
40
58
45
41 | 33
33
32
32
31 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1216
39.2
60
29
2410
1.34
1.55 | 795
26.5
39
22
1580
.91
1.01 | 549
17.7
21
13
1090
.61 | 355
11.5
13
10
704
.39
.45 | 264.5
9.45
12
8.5
525
.32
.34 | 307.3
9.91
12
8.2
610
.34
.39 | 230.4
7.68
12
5.1
457
.26 | 798.5
25.8
65
8.5
1580
.88
1.02 | 3383
113
140
69
6710
3.87
4.31 | 2739
88.4
160
46
5430
3.03
3.49 | | 1350
45.0
96
31
2680
1.54
1.72 | | | | STATISTIC | S OF MON | THLY MEA | N DATA FOR | WATER | YEARS 1947 | - 2001, E | BY WATER | YEAR (W | Y)# | | | MEAN
MAX
(WY)
MIN
(WY) | 44.4
83.7
1962
19.3
1951 | 26.5
56.2
1953
11.5
1951 | 17.1
31.1
1961
10.6
1969 | 12.7
33.3
1961
5.99
1965 | 9.12
17.1
1961
4.02
1969 | 7.46
12.0
1961
3.44
1970 | 8.42
20.3
1964
3.70
1971 | 34.3
62.8
1960
10.5
1971 | 96.6
166
1962
49.2
1954 | 77.1
151
1963
37.8
1954 | | 60.9
122
1960
21.1
1969 | See Period of Record; partial years used in monthly statistics From crest-stage gage Estimated | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1947 - 2001# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 14980.6 | 13350.7 | | | ANNUAL MEAN | 40.9 | 36.6 | 38.2 | | HIGHEST ANNUAL MEAN | | | 50.9 1949 | | LOWEST ANNUAL MEAN | | | 20.5 1969 | | HIGHEST DAILY MEAN | 182 Jul 18 | 160 Jul 6 | 572 Jun 21 1949 | | LOWEST DAILY MEAN | 6.3 Apr 11 | b5.1 Apr 3 | c2.0 Mar 28 1964 | | ANNUAL SEVEN-DAY MINIMUM | 6.7 Apr 7 | 6.4 Apr 10 | 2.6 Mar 24 1964 | | MAXIMUM PEAK FLOW | | 243 Jul 6 | 891 Jun 21 1949 | | MAXIMUM PEAK STAGE | | a6.52 Jul 6 | df6.40 Nov 10 1965 | | INSTANTANEOUS LOW FLOW | | 4.0 Apr 3 | .00 Oct 12 1958 | | ANNUAL RUNOFF (AC-FT) | 29710 | 26480 | 27650 | | ANNUAL RUNOFF (CFSM) | 1.40 | 1.25 | 1.31 | | ANNUAL RUNOFF (INCHES) | 19.10 | 17.03 | 17.78 | | 10 PERCENT EXCEEDS | 111 | 96 | 88 | | 50 PERCENT EXCEEDS | 27 | 27 | 25 | | 90 PERCENT EXCEEDS | 8.4 | 8.8 | 7.0 | [#] See Period of Record; partial years used in monthly statistics a From crest-stage gage b Apr. 3-4 c Mar. 28 to Mar. 30, 1964 d Backwater from ice f Site and datum then in use # 15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1948-49, 1951, 1958-61, 1965-70, 1998 to September 2001 (discontinued). PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: October 1998 to September 2001. INSTRUMENTATION.--Electronic water temperature recorder since October 1998, set for 15-minute recording interval. REMARKS.--No record from January 18-22, May 3-15, and June 27 to July 5 due to missing record and damaged equipment. Partial day of record on January 23, May 2, and 16, June 26, and July 6. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on December 7, and August 2. No variation was found within the cross section. No variation was found between the mean stream temperature and temperature at the sensor. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 14.5°C July 4, 1999; minimum, 0.0°C on many days during the winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 13.5°C August 13, may have been higher during period of missing record; minimum, 0.0°C on many days during winter. | | | SAMPLE
LOCA-
TION,
CROSS
SECTION
(FT FM L
BANK) | SPECIFIC
CONDUC-
TANCE
(US/CM) | PH WATER WHOLE FIELD (STAN- DARD UNITS) | TEMPERA-
TURE
WATER
(DEG C) | BAROMET-
RIC PRES-
SURE (MM
OF HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PERCENT
SATURA-
TION) | |------|------|---|---|---|--------------------------------------|---|-------------------------------------
---| | DATE | TIME | (00009) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | DEC | | | | | | | | | | 07 | 1245 | 4.00 | 89 | 7.5 | 0 | 765 | 14.6 | 99.5 | | 07 | 1246 | 7.00 | 90 | 7.5 | 0 | 765 | 14.6 | 99.5 | | 07 | 1247 | 10.0 | 90 | 7.5 | 0 | 765 | 14.6 | 99.5 | | 07 | 1248 | 13.0 | 90 | 7.5 | 0 | 765 | 14.6 | 99.5 | | 07 | 1249 | 16.0 | 90 | 7.5 | 0 | 765 | 14.6 | 99.5 | | AUG | | | | | | | | | | 02 | 1120 | 7.00 | 78 | 7.7 | 9.5 | 756 | 11.6 | 102 | | 02 | 1121 | 12.0 | 78 | 7.7 | 9.5 | 756 | 11.6 | 102 | | 02 | 1122 | 17.0 | 78 | 7.7 | 9.5 | 756 | 11.6 | 102 | | 02 | 1123 | 22.0 | 78 | 7.7 | 9.5 | 756 | 11.6 | 102 | | 02 | 1124 | 27.0 | 78 | 7.7 | 9.5 | 756 | 11.6 | 102 | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT
(CODE)
(50280) | QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPERA
TURE
AIR
(DEG C)
(00020) | |-----------------|--------------|----------------|----------------|------------------------------------|-------------------------------------|---|--|--------------------------------------|---|---|--|--|--| | OCT
05 | 1520 | 9 | 9 | 29.5 | | 53 | 10 | 3045 | 1001 | | 79 | 7.8 | 4.5 | | NOV
03 | 1240 | 9 | 9 | | | E28 | 10 | 3045 | 1001 | | 93 | 7.8 | -1.0 | | DEC
07 | 1300 | 9 | 7 | 14.8 | | 21 | 10 | 3045 | 1001 | 30 | 90 | 7.5 | | | JAN
18 | 1410 | 9 | 9 | 28.0 | 5.28 | 12 | 10 | 3045 | 1001 | | 98 | 8.2 | | | FEB
09 | 1340 | 9 | 9 | 10.0 | | 8.6 | 10 | 3045 | 1001 | | 96 | 7.5 | -6.5 | | MAR
02 | 1050 | 9 | 9 | 30.0 | | 11 | 10 | 3045 | 1001 | 10 | 108 | 7.7 | -1.0 | | MAY
02
31 | 1320
1640 | 9
9 | 9
9 | 23.5
31.0 | 5.01
5.65 | 9.9
67 | 10
10 | 3045
3045 | 1001
1099 | | 110
69 | 8.2
7.7 | .00
19.0 | | JUN
04
14 | 1410
1410 | 9
9 | 9
9 | 30.0
30.0 | 5.94
5.84 | 115
93 | 10
10 | 3045
3045 | 1099
1001 | | 56
62 | 7.6
7.6 | 19.0
18.0 | | JUL
19 | 1320 | 9 | 9 | 29.5 | 5.76 | 70 | 10 | 3045 | 1001 | | 69 | 7.6 | 16.0 | | AUG
02 | 1140 | 9 | 9 | 25.3 | 5.68 | 53 | 10 | 3045 | 1001 | | 78 | 7.7 | 18.0 | | SEP
09
11 | 1320
1200 | D
9 | 9
9 |
24.9 |
5.64 |
48 |
10 |
3045 | 1099
1001 | | 76
80 | 7.9
7.7 | 9.0
15.5 | # 15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE--Continued | DATE | TEMP-
ERATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |---|--|---|---|---|--|---|---|--|--|--|--|--|--| | OCT | | | | | | | | | | | | | | | 05
NOV | 3.0 | 746 | 12.9 | 98 | 40 | | E1 | 39 | 12.6 | 1.72 | 1.0 | 25 | .24 | | 03
DEC | .00 | 752 | 14.5 | 101 | E12 | E11 | <1 | 43 | 14.0 | 2.07 | 1.4 | 29 | .19 | | 07
JAN | .00 | 765 | 14.6 | 99 | E10 | E7 | <1 | 41 | 13.1 | 1.99 | 1.2 | 29 | .20 | | 18
FEB | .5 | 738 | 13.3 | 95 | E6 | E7 | <1 | 43 | 13.6 | 2.15 | 1.3 | 31 | .22 | | 09
MAR | .00 | 763 | 15.0 | 102 | E2 | E1 | <1 | 36 | 11.4 | 1.81 | 1.1 | 34 | E.18 | | 02
MAY | .5 | | | | E4 | <1 | <1 | 45 | 14.2 | 2.40 | 1.4 | 34 | .21 | | 02
31 | 2.0
7.7 | 742
753 | 12.9
11.3 | 96
96 | | | | 50
31 | 16.0
9.93 | 2.56 | 1.5
1.0 | 39
22 | .24 | | JUN
04
14 | 6.5
7.5 | 753
761 | 12.3
11.7 | 101
98 | | | | 25
29 | 8.15
9.31 | 1.09
1.28 | .3 | 18
20 | .23 | | JUL
19 | 11.0 | 758 | 10.8 | 98 | | | | 31 | 10.3 | 1.34 | .9 | 22 | .09 | | AUG
02 | 9.5 | 756 | 11.6 | 102 | | | | 34 | 11.1 | 1.49 | .9 | 24 | .15 | | SEP
09 | 6.0 | 766 | 12.4 | 99 | | | | | | 1 60 | | | | | 11 | 5.0 | 765 | 11.7 | 91 | | | | 39 | 12.9 | 1.69 | 1.1 | 25 | .13 | | | | | | | | | | | | | | | | | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT
05 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | FATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE
DIS-
SOLVED
(MG/L
AS F) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L) | GEN NITRITE DIS- SOLVED (MG/L AS N) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) | | 05
NOV
03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT
05
NOV
03
DEC
07 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT 05 NOV 03 DEC 07 JAN 18 | BONATE WATER DIS IT
FIELD MG/L AS HCO3 (00453) 28 34 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
13.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
E.06 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | OCT
05
NOV
03
DEC
07
JAN
18
FEB
09 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
23
28
27 | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
13.6
13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.183
.271 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
E.06
.10 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
<.10
<.10 | | OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
13.6
13.5
12.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.5
.5 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6
7.2 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55
57 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57
54 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
<.10
<.10
<.10 | | OCT
05
NOV
03
DEC
07
JAN
18
FEB
09
MAR
02
MAY
02 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38 | FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.5
.5
.5 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6
7.2
7.5
6.3
7.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55
57
63
62
58 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57
54
57

60 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .002 .003 .009 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | | OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 | FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.4 12.6 12.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.5
.5
.5 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6
7.2
7.5
6.3
7.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55
57
63
62
58 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57
54
57

60 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .002 .003 .009 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 | | OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02 MAY 02 JUN 04 14 JUL 19 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45 25 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38 21 | FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9 7.9 6.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.5
.5
.5
.5 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6
7.2
7.5
6.3
7.6
7.8
6.0 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55
57
63
62
58
75
69 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57
54
57

60
66
41 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 .867 .337 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 .002 .002 .003 .009 .005 .002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 .14 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | | OCT
05
NOV
03
DEC
07
JAN
18
FEB
09
MAY
02
MAY
02
MAY
04
JUN
14 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45 25 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38 21 17 18 | FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9 7.9 6.5 8.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.5
.5
.5
.5
.4 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950)
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2
<.2 | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.1
7.6
7.5
6.3
7.6
7.8
6.0
5.0 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
57
55
57
63
62
58
75
69
47
40 | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301)
50
57
54
57

60
66
41
33
37 | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 .867 .337 .224 .144 | GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .003 .009 .005 .002 | GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 .14 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1 | | | | | | | | | CAR- | | CAR- | | | | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | | | | BON, | CAR- | BON, | NITRO- | CHLOR-A | | PERIPH- | | | | | PHOS- | | | CAR- | INOR- | BON, | INORG + | GEN, | PERIPH- | PERIPH- | YTON | | | | PHOS- | PHORUS | | MANGA- | BON, | GANIC, | ORGANIC | ORGANIC | | YTON | YTON | BIO- | | | PHOS- | PHORUS | ORTHO, | IRON, | NESE, | ORGANIC | PAR- | PARTIC- | PAR- | ULATE | CHROMO- | BIO- | MASS | | | PHORUS | DIS- | DIS- | DIS- | DIS- | DIS- | TIC. | ULATE | TIC. | WAT FLT | GRAPHIC | MASS | TOTAL | | | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SUSP | FLUO- | ASH | DRY | | | | | | | | | | | | | | | | | | (MG/L | (MG/L | (MG/L | (UG/L | (UG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | ROM | WEIGHT | WEIGHT | | | AS P) | AS P) | AS P) | AS FE) | AS MN) | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | G/SQ M | | DATE | (00665) | (00666) | (00671) | (01046) | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | | OCT | | | | | | | | | | | | | | | 05 | E.002 | <.006 | .002 | <10 | <2.2 | .79 | <.1 | .1 | .1 | <.022 | | | | | NOV | | | | | | | | | | | | | | | 03 | < .004 | <.006 | <.007 | M | E2.5 | .61 | < . 1 | <.1 | <.1 | <.022 | | | | | DEC | | | | | | | | | | | | | | | 07 | E.003 | <.006 | <.007 | <10 | <3.2 | .63 | < .1 | <.1 | <.1 | .057 | | | | | JAN | - 000 | - 004 | 0.05 | | 2 0 | | - | | | 000 | | | | | 18 | E.003 | E.004 | <.007 | M | <3.2 | .50 | <.1 | . 2 | . 2 | <.022 | | | | | FEB | E 003 | . 000 | E 004 | -10 | -2 2 | .54 | . 1 | . 1 | . 1 | . 000 | | | | | 09
MAR | E.003 | <.006 | E.004 | <10 | <3.2 | .54 | <.1 | <.1 | <.1 | <.022 | | | | | 02 | E.002 | E.003 | <.007 | <10 | <3.2 | .46 | <.1 | .1 | .1 | <.022 | | | | | MAY | D.002 | 1.005 | 1.007 | 110 | 13.2 | . 10 | | • - |
• - | 1.022 | | | | | 02 | .004 | <.006 | < .007 | <10 | <3.2 | 1.2 | | | E.1 | <.022 | | | | | 31 | .016 | E.004 | < .007 | <10 | <3.0 | 1.7 | | | 1.5 | .110 | | | | | JUN | | | | | | | | | | | | | | | 04 | .022 | <.006 | < .007 | <10 | <3.0 | 1.4 | | | 5.9 | .404 | | | | | 14 | .006 | < .006 | < .007 | <10 | <3.0 | .97 | | | . 4 | <.022 | | | | | JUL | | | | | | | | | | | | | | | 19 | .006 | <.006 | <.007 | <10 | <3.0 | .76 | | | . 4 | .049 | | | | | AUG | | | | | | | | | | | | | | | 02 | E.002 | <.006 | <.007 | <10 | <3.0 | .61 | | | .6 | .079 | | | | | SEP | | | | | | | | | | | 2 0 | 20.0 | 40.0 | | 09 |
 | | | | | | | | | | 3.0 | 38.2 | 40.2 | | 11 | E.002 | <.006 | <.007 | M | <3.0 | .78 | | | . 2 | <.022 | | | | | DATE | PHEOPHY-
TIN A,
PERIPHY-
TON (MG/
M2)
(62359) | (MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | FINER
THAN .062
MM | |------------------|--|--------|---|--------------------------| | OCT
05
NOV | | 2 | . 29 | | | 03 | | 1 | | | | 07 | | | | | | JAN
18 | | 2 | .06 | 47 | | FEB
09
MAR | | 1 | .02 | | | 02 | | 1 | .03 | | | MAY
02 | | 1 | .03 | | | 31
JUN | | 8 | 1.5 | 43 | | 04 | | 14 | 4.3 | 20 | | 14
JUL | | 5 | 1.3 | | | 19 | | 3 | .56 | | | AUG
02
SEP | | 3 | .43 | | | 09
11 | 1.6 |
.0 |
.00 | | | | | | | | | DAY | MAX | MIN | MEAN | |---|--|--|--|---|--|--|---|---|---|---|----------------------|---| | | | OCTOBER | | | NOVEMBER | | : | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 1.0
2.0
3.0
3.0
4.0 | .0
.0
1.5
2.0
2.0 | .5
1.0
2.5
2.5
3.0 | . 0
. 0
. 0
. 0 | .0 | .0.0.0.0 | .0 | .0.0 | .0
.0
.0
.0 | . 0
. 0
. 0 | .0 | .0.0.0.0 | | 6
7
8
9
10 | 4.5
4.5
4.0
2.5
1.5 | 3.0
3.0
2.0
.5 | 4.0
3.5
3.0
1.0 | .0 | . 0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0 | .0 | .0.0.0.0 | | 11
12
13
14
15 | 2.5
3.5 | .5
1.5
2.0
2.5
1.5 | 1.5
2.0
2.5
3.0
2.5 | 2.0
1.0
1.5
1.5 | .5
.0
.0
.0 | 1.0
.5
.5
1.0 | .0
.0
.0
.0 | . 0
. 0
. 0 | .0
.0
.0
.0 | .0
.0
.0
.0 | . 0 | .0
.0
.0
.0 | | 16
17
18
19
20 | 3.5
3.0
2.5
2.5
2.0 | 2.0
2.0
1.5
1.0 | 2.5
2.5
2.0
2.0 | .0
1.5
1.5
1.5 | .0
.0
.5 | .0
.5
1.0
1.5 | .0.0.0.0 | .0 | .0
.0
.0
.0 | .5
1.0
 | .0
.0
 | .5
.5
 | | 21
22
23
24
25 | 1.0 | .0
.0
.0
.0 | .0
1.0
.5
1.0
2.0 | 2.0
1.5
.5
.0 | 1.0
.0
.0
.0 | 1.5
1.0
.5
.0 | .0
.0
.0
.0 | . 0
. 0
. 0 | .0
.0
.0
.0 |

.5
.5 | .0
.0 |

.0
.5 | | 26
27
28
29
30
31 | 1.5
.0
.0
.0 | .0 | .5
.0
.0
.0 | .0
.0
.0
.0 | .0 | .0.0.0.0.0 | .0
.0
.0
.0 | .0 | .0 | .5
.5
.0
.0 | .0 | .5
.5
.0
.0 | | MONTH | 4.5 | .0 | 1.5 | 2.5 | .0 | . 4 | .0 | .0 | .0 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | FEBRUARY | MEAN | | MARCH | | | APRIL | | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | FEBRUARY | . 0 | .0
1.0
.0 | MARCH
.0
.0 | .0.0 | .0
1.5
2.5
2.0
1.5 | .0
.0
.5
.5 | .0
.5
1.0
1.0 | 3.5

 | | MEAN 2.5 | | 1
2
3
4 | .0.0 | .0
.0
.0
.0 | . 0 | .0
1.0
.0
.0
.0 | MARCH .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.5
.5 | .0
1.5
2.5
2.0
1.5
1.0
2.0
3.0
2.5
2.0 | APRIL .0 .0 .5 .5 .5 .0 .0 .1 .0 | .0
.5
1.0
1.0
.5
.5
1.0
1.5 | 3.5

 | MAY
1.5
.5
 | 2.5 | | 1
2
3
4
5
6
7
8 | .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
1.0
.0
.0
.0 | MARCH .0 .0 .0 .0 .0 .0 .0 .0 .5 .0 .5 .5 .5 | .0
.0
.0
.0
.0
.5
.5 | .0
1.5
2.5
2.0
1.5 | APRIL .0 .0 .5 .5 .5 .0 .0 .1 .0 | .0
.5
1.0
1.0
.5
.5
1.0
1.5 | 3.5 | MAY 1.5 .5 | 2.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | .0
1.0
.0
.0
.0
1.0
1.0
1.0
1.5
1.5 | MARCH .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 | .0
.0
.0
.0
.0
.5
.5
1.0
1.0 | .0
1.5
2.5
2.0
1.5
1.0
2.0
3.0
2.5
2.0 | APRIL .0 .0 .0 .5 .5 .0 .0 .5 .1 .0 .1 .0 .5 .0 .0 .0 .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.5
1.0
1.0
.5
.5
1.0
1.5
1.5
1.5
1.5 | 3.5 | MAY 1.5 .5 | 2.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | .00
1.00
.00
.00
1.00
1.00
1.55
1.55
1.00
1.00 | MARCH .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.5
.5
1.0
1.0
1.0
.5
.5
1.0 | .0
1.5
2.5
2.0
1.5
1.0
2.0
2.5
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0 | APRIL .0 .0 .0 .5 .5 .0 .0 .5 .5 .0 1.0 1 | .0
.5
1.0
1.0
.5
.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
2.0 | 3.5

5.0
7.0
5.5
8.0 | MAY 1.5 .5 .5 | 2.5

3.5
4.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | 0
1.0
.0
.0
.0
1.0
1.0
1.5
1.5
1.5
1.5
1.0
1.0
1.0 | MARCH .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.5
.5
1.0
1.0
1.0
.5
.5
1.0 | .0
1.5
2.5
2.0
1.5
1.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0
5.0 | APRIL .0 .0 .0 .5 .5 .0 .0 .5 .5 .0 1.0 1 | .0
.5
1.0
1.0
.5
.5
1.5
1.5
1.5
1.5
1.5
1.5
2.0
2.0
2.0
2.0
2.5 | 3.5

5.0
7.0
7.0
6.5
5.5
6.0 | MAY 1.5 .5 .5 | 2.5

3.5
4.0
4.0
3.5
4.0
4.0 | | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|----------------------------------|--------------------------------------|--|---|---|--|--|----------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | i | AUGUST | | S | EPTEMBER | 2 | | 1
2
3
4
5 | 8.0
8.5
8.0
6.5
7.0 | 3.0
3.0
4.0
3.0
4.0 | 5.0
5.5
5.5
5.0 |

 |

 |

 | 11.5
12.5
11.5
11.0
11.0 | 9.0
9.0
9.5
9.0
8.0 | 10.0
10.5
10.0
10.0
9.5 | 8.5
9.0
10.0
9.5
7.5 | 6.5
7.5
8.0
7.0
6.5 | 7.5
8.0
9.0
8.0
7.0 | | 6
7
8
9
10 | 5.5
7.0
7.5
10.0
9.5 | 4.5
3.5
3.5
4.0
4.5 | 5.0
5.0
5.5
6.5
7.0 | 9.5
10.5
9.5
11.0
10.0 | 7.5
8.0
7.5
7.5 | 9.0
8.5
9.0
8.5 | 12.5
12.0
11.5
11.5 | 8.0
9.5
10.0
9.5
9.5 | 10.0
11.0
10.5
10.5 | 8.0
7.5
8.0
8.0
7.5 | 5.5
6.0
5.0
4.5
4.5 | 6.5
7.0
6.5
6.0 | | 11
12
13
14
15 | 7.5
7.0
7.0
10.0 | 5.5
5.0
5.0
5.0 | 6.0
6.0
6.0
7.0
8.0 | 9.0
8.5
9.0
10.0
9.5 | 7.5
7.0
7.0
7.5
8.0 | 8.0
8.0
8.0
8.5
8.5 | 12.0
12.5
13.5
13.0
12.0 | 9.5
9.5
9.5
11.0
10.5 | 10.5
11.0
11.5
11.5 | 7.5
7.0
7.0
7.0
7.5 | 4.5
5.5
5.5
5.5
5.5 | 5.5
6.5
6.5
6.5 | | 16
17
18
19
20 | 11.0
11.0
9.5
10.0
11.0 | 5.5
6.0
6.5
6.0
7.0 | 8.0
8.5
8.0
8.0 | 9.5
11.0
12.0
11.5
11.5 | 8.0
8.0
8.0
10.0
10.0 | 8.5
9.5
10.0
11.0
10.5 | 11.5
11.5
11.5
11.0
11.0 | 10.5
10.0
9.5
9.5
8.5 | 11.0
11.0
10.5
10.0
9.5 | 7.5
8.5
8.0
8.0 | 5.0
6.5
7.5
7.0
6.5 |
6.5
7.5
7.5
7.5
7.0 | | 21
22
23
24
25 | 10.0
11.5
12.5
11.0
11.5 | 7.5
6.5
7.5
8.5
7.0 | 8.5
9.0
10.0
9.0
9.0 | 10.5
10.5
10.0
10.0 | 9.0
9.0
9.0
8.5
8.5 | 10.0
10.0
9.5
9.0
9.5 | 12.0
11.5
11.0
10.0
10.5 | 8.5
8.5
8.5
9.0
8.0 | 10.0
10.0
9.5
9.5
9.5 | 7.0
6.5
6.0
6.0 | 4.5
4.0
5.0
4.5
4.0 | 5.5
5.0
5.5
5.5 | | 26
27
28
29
30
31 |

 | 8.5

 |

 | 11.5
12.0
11.5
12.0
11.0 | 9.0
9.5
8.5
9.0
9.5
8.5 | 10.0
10.5
10.5
10.5
10.0
9.5 | 10.5
10.0
10.0
8.5
9.0
8.5 | 8.0
7.5
8.5
7.5
7.5
6.5 | 9.5
9.0
9.0
8.0
8.0
7.5 | 5.5
5.0
5.5
5.0
5.0 | 4.0
2.5
4.0
3.5
2.5 | 5.0
4.0
5.0
4.5
4.0 | | MONTH | | | | | | | 13.5 | 6.5 | 10.0 | 10.0 | 2.5 | 6.3 | #### 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE LOCATION.--Lat 61°12′19", long 149°53′43", on line between sec. 19, R. 3 W., and sec. 24, R. 4 W., T. 13 N. (Anchorage A-8 quad), Hydrologic Unit 19020401, on left bank 50 ft downstream from bridge on Arctic Boulevard in Anchorage and 0.8 mi upstream from mouth. DRAINAGE AREA. -- 27.4 mi². #### WATER-DISCHARGE RECORD PERIOD OF RECORD.--June 1966 to April 1986, July 1987 to September 1993, and October 1998 to current year. REVISED RECORDS.--WRD Alaska 1972, WRD AK-00-1: Drainage area. WDR AK-82-1: 1979(M), 1981(M). GAGE.--Water-stage-recorder. Auxiliary crest-stage gage since April 2000. Datum of gage is 16.02 ft above sea level (from USGS&CG, datum of 1968). Prior to May 25, 1988, at site 100 ft upstream at same datum. REMARKS.--Records good, except for estimated daily discharges, which are poor. | KEPIAKKO. | RCCOLG | 5 900a, c | ACCPC IOI | CSCIMACCC | a daliy c | irscharg | CS, WILLCII a | ic poor. | | | | | |----------------------|-----------------------------------|------------------|-------------------|-------------------|-------------------|---------------------|------------------------|-------------------|-------------------|----------------------|-------------------|--------------------| | | | DISCHA | RGE, CUBI | C FEET PER | | WATER '
Y MEAN Y | YEAR OCTOBEI
VALUES | R 2000 TO | SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3 | 28
27
27 | 23
22
22 | e17
e16
e16 | e16
e16
e16 | 13
e13
e13 | 12
12
e12 | 18
15
37 | 19
21
28 | 21
22
21 | 19
19
19 | 22
22
31 | 19
24
32 | | 4 5 | 27
27
29 | 21
21 | e16
e16 | 16
e15 | e12
e12 | e12
e12 | 49
28 | 24
20 | 22
22 | 32
70 | 32
24 | 29
32 | | 6
7 | 31
28 | 22
22 | e17
21 | e15
e16 | e12
12 | 12
14 | 23
25 | 20
20 | 25
22 | 51
31 | 22
22 | 23
22 | | 8
9
10 | 27
25
24 | 21
e21
e22 | 19
18
18 | e16
e16
16 | e13
e13
e12 | 13
16
22 | 39
37
30 | 22
23
21 | 22
22
22 | 36
29
27 | 22
22
21 | 23
21
20 | | 11
12 | 25
24 | e30
26 | 18
18 | e16
e15 | 12
13 | 21
37 | 33
28 | 20
20 | 23
25 | 28
24 | 21
20 | 20
20 | | 13
14
15 | 23
24
24 | 23
22
21 | 17
e17
e16 | 15
15
22 | e12
e12
e12 | 28
18
16 | 23
23
23 | 20
19
19 | 22
21
21 | 25
26
24 | 20
21
20 | 20
21
20 | | 16
17 | 23
24 | 20
20 | e17
e17 | 17
15 | e12
e12 | 17
18 | 23
21 | 24
21 | 20
21 | 24
25 | 21
22 | 20
21 | | 18
19
20 | 23
24
26 | 21
20
20 | e17
17
18 | 21
e25
17 | e12
e12
e12 | 17
e16
e15 | 21
21
21 | 20
20
19 | 21
20
21 | 23
25
35 | 29
22
23 | 21
22
21 | | 21
22 | 25
26 | 20
20 | 20
e16 | 15
14 | 12
12 | e15
e14 | 21
21 | 20
19 | 21
20 | 27
35 | 21
21 | 20
19 | | 23
24
25 | 28
24
25 | 19
19
18 | e16
e16
18 | 15
14
14 | e12
e11
e12 | e14
e15
e15 | 21
20
20 | 19
19
19 | 20
20
22 | 25
24
25 | 20
21
21 | 19
19
19 | | 26
27 | 24
22 | e18
17 | 16
16 | 13
14 | e12
16 | 15
25 | 20
20 | 18
18 | 21
20 | 24
23 | 20
20 | 19
18 | | 28
29
30 | 20
21
21 | 17
22
19 | 16
16
17 | 13
e13
e13 | 14
 | 29
22
16 | 20
20
19 | 18
20
21 | 19
20
19 | 22
21
24 | 20
20
20 | 18
18
17 | | 31
TOTAL | 23
772 | 629 | 16
529 | 13
487 | 347 | 16
536 | 740 | 20
631 | 638 | 23
865 | 20
683 | 637 | | MEAN
MAX | 24.9
31 | 21.0
30
17 | 17.1
21 | 15.7
25 | 12.4
16 | 17.3
37 | 24.7
49 | 20.4
28 | 21.3
25 | 27.9
70 | 22.0
32 | 21.2
32 | | MIN
AC-FT
CFSM | 20
1530
.91 | 1250
.77 | 16
1050
.62 | 13
966
.57 | 11
688
.45 | 12
1060
.63 | 15
1470
.90 | 18
1250
.74 | 19
1270
.78 | 19
1720
1.02 | 20
1350
.81 | 17
1260
.78 | | IN. | 1.05 | .86 | .72 | .66 | .47 | .73 | 1.01
EARS 1966 - | .86 | .87 | 1.18 | .93 | .87 | | MEAN | 25.8 | 18.4 | 14.7 | 12.7 | 11.5 | 13.5 | 25.1 | 2001, B | 21.8 | 22.2 | 25.2 | 28.2 | | MAX
(WY) | 52.5
1990 | 45.5
1990 | 33.1
1990 | 26.5
1990 | 20.1 | 25.2
1990 | 58.4
1990 | 55.9
1992 | 44.9
1990 | 34.7
2000 | 61.4
1989 | 59.7
1989 | | MIN
(WY) | 10.7
1971 | 8.27
1993 | 3.84
1993 | 3.27
1971 | 2.99
1971 | 4.18
1971 | 10.6
1970 | 11.0
1970 | 10.1
1970 | 10.1
1976 | 9.59
1976 | 12.5
1970 | | SUMMARY | STATISTI | cs | FOR 2 | 000 CALEND | AR YEAR | 1 | FOR 2001 WAT | ER YEAR | | WATER YEA | ARS 1966 | - 2001# | | | MEAN
ANNUAL M | | | 9192
25.1 | | | 7494
20.5 | | | 20.2
38.4 | | 1990 | | HIGHEST | ANNUAL ME
DAILY ME | AN | | 80 | Sep 26 | | 70 | Jul 5 | | 11.5
345 | | 1970
26 1989 | | ANNUAL | DAILY MEA | MINIMUM | | a13
13 | Jan 1
Jan 1 | | 11
12 | Feb 24
Feb 18 | | b1.6
1.9 | Feb | .2 1975
9 1975 | | MAXIMUM | PEAK FLO
PEAK STA
RUNOFF (A | GE | | 18230 | | | 116
2.97
14860 | Jul 5
Jul 5 | | 421
5.56
14660 | | 26 1989
26 1989 | | ANNUAL | RUNOFF (C
RUNOFF (I | FSM) | | .92
12.50 | | | .75 | | | .74 | | | | 10 PERC | ENT EXCEE | DS | | 35
25 | | | 27
20 | | | 33 | | | | | ENT EXCEE | | | 16 | | | 13 | | | 9.5 | | | See Period of Record; partial years used in monthly statistics Jan. 1 to 14 Feb. 12 to Feb. 14, 1975 Estimated # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1967-73, 1975-1977, 1980 to 1986, and 1998 to September 2001 (discontinued). PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1981 to March 1986, June 2000 to September 2001. WATER TEMPERATURE: October 1981 to March 1986, October 1998 to September 2001. INSTRUMENTATION.--Electronic water-temperature and specific conductance recorder set for 15-minute recording interval. #### REMARKS.- WATER TEMPERATURE: Partial record December 5,6, and January 8. Record represents water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with stream average by cross sections on November 2, March 1, and July 5. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature. SPECIFIC CONDUCTANCE: Partial record December 5,6, and January 8. Records represent specific conductance at the sensor within 5%. Record for Feruary 18 to March 1, March 7 to Arpil 10, May 1 to May 17, and July 3 to August 1 are during periods of probe fouling. During the periods of probe fouling the record represents specific conductance at the sensor within 10 to 20%. conductance at the sensor within 10 to 20%. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 19.5°C, July 6, 1985; minimum, 0.0°C, on many days during winter periods. SPECIFIC CONDUCTANCE: Maximum, 1390 μ S/cm, February 8, 1986; minimum, 48 μ S/cm August 14, 1983. #### EXTREMES FOR CURRENT PERIOD . -- Whiter Temperature: Maximum, 16.5°C, June 26-29; minimum, 0.0°C on many days during winter. Specific Conductance: Maximum, 1240 μ S/cm, January 18; minimum, 63 μ S/cm, July 5. | | | SAMPLE | | PH | | BARO- | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------|---------| | | | LOC- | SPE- | WATER | | METRIC | | DIS- | | | | ATION, | CIFIC | WHOLE | | PRES- | | SOLVED | | | | CROSS | CON- | FIELD | TEMPER- | SURE | OXYGEN, | (PER- | | | | SECTION | DUCT- | (STAND- | ATURE | MM) | DIS- | CENT | | DATE | TIME | (FT FM | ANCE | ARD | WATER | OF | SOLVED | SATUR- | | | | L BANK) | (US/CM) | UNITS) | (DEG C) | HG) | (MG/L) | ATION) | | | | (00009) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | NOV | | | | | | | | | | 02 | 1450 | 2.00 | 254 | 8.1 | 2.5 | 752 | 14.3 | 106 | | 02 | 1451 | 6.00 | 255 | 8.1 | 2.5 | 752 | 14.2 | 106 | | 02 | 1452 | 10.0 | 255 | 8.1 | 2.5 | 752 | 14.2 | 106 | | 02 | 1453 | 14.0 | 255 | 8.1 | 2.5 | 752 | 14.1 | 105 | | 02 | 1454 | 18.0 | 255 | 8.1 | 2.5 | 752 | 14.1 | 105 | | MAR | | | | | | | | | | 01 | 1100 | 5.00 | 272 | 8.0 | 0 | 752 | 14.4 | 99.9 | | 01 | 1101 | 9.00 | 272 | 8.0 | 0 | 752 | 14.5 | 101 | | 01 | 1102 | 14.0 | 273 | 8.0 | 0 | 752 | 14.5 | 101 | | 01 | 1103 | 19.0 | 273 | 8.1 | 0 | 752 | 14.5 | 101 | | JUL | | | | | | | | | | 05 | 1035 | 19.0 | 120 | 7.1 | 13.0 | 756 | 9.2 | 88.0 | | 05 | 1036 | 13.0 | 120 | 7.1 | 13.0 | 756 | 9.2 | 88.0 | | 05 | 1037 | 7.00 | 119 | 7.1 | 13.0 | 756 | 9.2 | 88.0 | | 05 | 1038 | 1.00 | 118 | 7.1 | 13.0 | 756 | 9.2 | 88.0 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT
ANCHORAGE--Continued | | | | | | | DIS- | | | | QUALITY | | PH | | |-----------|--------------|--------|--------|--------------|--------------|----------|----------|--------------|--------------|---------|------------|------------|---------| | | | | | | | CHARGE, | | | | ASSUR- | SPE- | WATER | | | | | | | | | INST. | ~ | | | ANCE | CIFIC | WHOLE | | | | | | | ~ | ~-~- | CUBIC | SAM- | ~ | PURPOSE | DATA | CON- | FIELD | TEMPERA | | | | | | STREAM | GAGE | FEET | PLING | SAMPLER | SITE | INDICA- | DUCT- | (STAND- | TURE | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | VISIT | TOR | ANCE | ARD | AIR | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | (CODE) | CODE | (US/CM) | UNITS) | (DEG C) | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (50280) | (99111) | (00095) | (00400) | (00020) | | OCT | | | | | | | | | | | | | | | 05 | 1210 | 9 | 9 | 18.2 | 1.84 | 26 | 10 | 3045 | 1001 | | 245 | 7.8 | 6.0 | | NOV | 1.4.4.0 | • | • | 10.0 | 1 50 | 0.0 | 1.0 | 2045 | 1001 | | 0.5.5 | 0 1 | 1 0 | | 02
16 | 1440 | 9 | 9
9 | 18.0
15.0 | 1.72
1.67 | 22
19 | 10 | 3045
8010 | 1001
1099 | | 255
267 | 8.1 | -1.0 | | 16 | 1300
1700 | 9
9 | 9 | 15.0 | 1.67 | 19 | 70
70 | 8010 | 1099 | | 267 | 7.8
7.8 | .00 | | 17 | 1130 | 9 | 9 | 15.0 | 1.68 | 19 | 70 | 8010 | 1099 | | 266 | 7.7 | -1.0 | | 17 | 1440 | 9 | 9 | 15.0 | 1.71 | 20 | 70 | 8010 | 1099 | | 264 | 7.9 | -1.5 | | DEC | | - | - | 13.0 | | 20 | , 0 | 0010 | 1000 | | 201 | | 1.5 | | 05 | 1340 | 9 | 9 | 18.0 | 1.61 | 16 | 10 | 3045 | 1001 | 10 | 267 | 7.5 | 1.0 | | JAN | | | | | | | | | | | | | | | 16 | 1240 | 9 | 9 | 19.0 | 1.62 | 17 | 10 | 3045 | 1001 | | 305 | 7.8 | | | FEB | 1.400 | • | • | 10.0 | 1 00 | | 1.0 | 2045 | 1001 | | 0.7.5 | | 0 5 | | 08
MAR | 1400 | 9 | 9 | 18.0 | 1.98 | 14 | 10 | 3045 | 1001 | | 275 | 7.8 | -2.5 | | 01 | 1000 | 9 | 9 | 17.7 | 1.59 | 13 | 10 | 3045 | 1001 | | 272 | 8.0 | -1.0 | | APR | 1000 | , | , | 17.7 | 1.32 | 13 | 10 | 3043 | 1001 | | 2/2 | 0.0 | 1.0 | | 14 | 2100 | 9 | 9 | 17.0 | 1.79 | 25 | 10 | 3045 | 1001 | | 288 | 7.9 | 10.5 | | MAY | | | | | | | | | | | | | | | 01 | 1520 | 9 | 9 | 18.0 | 1.70 | 20 | 10 | 3045 | 1001 | | 289 | 8.2 | 7.5 | | 04 | 1930 | 9 | 9 | 18.5 | 1.76 | 23 | 10 | 3045 | 1001 | | 268 | 7.9 | 1.5 | | JUN | 1150 | • | • | 10 5 | | 0.5 | 1.0 | 2045 | 1001 | | 0.40 | | 15.0 | | 12
JUL | 1150 | 9 | 9 | 18.5 | 1.79 | 25 | 10 | 3045 | 1001 | | 242 | 7.8 | 15.0 | | 03 | 1330 | 9 | 9 | 18.0 | 1.69 | 17 | 10 | 3045 | 1001 | | 257 | 8.0 | 17.0 | | 05 | 1050 | 9 | 9 | 22.0 | 2.58 | 83 | 10 | 3045 | 1001 | | 119 | 7.1 | 18.5 | | AUG | 1030 | , | , | 22.0 | 2.50 | 03 | 10 | 3013 | 1001 | | 117 | , . ± | 10.5 | | 01 | 1200 | 9 | 9 | 18.7 | 1.70 | 24 | 10 | 3045 | 1001 | | 259 | 7.8 | 17.5 | | SEP | | | | | | | | | | | | | | | 06 | 1010 | D | 9 | | 1.69 | 21 | 8010 | 8010 | 1099 | | 239 | 7.9 | 22.0 | | 10 | 1200 | 9 | 9 | 17.8 | 1.65 | 18 | 10 | 3045 | 1001 | | 257 | 7.8 | 12.5 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued | DATE | TEMP-
ERATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31649) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |-----------|---|---|--|--|---|--|---|--|---|---|--|---|--| | OCT
05 | 5.0 | 754 | 11.8 | 93 | 390 | 240 | 360 | 110 | 32.7 | 7.27 | 6.3 | 77 | 1.13 | | NOV | 3.0 | 751 | 11.0 | ,,, | 370 | 210 | 300 | 110 | 32.7 | 7.27 | 0.5 | , , | 1.15 | | 02 | 2.5 | 752 | 14.2 | 106 | 1100 | E1500 | 130 | 110 | 32.7 | 7.29 | 7.1 | 81 | .88 | | 16 | 2.5 | 751 | 13.4 | 100 | 3500 | 1700 | 1300 | | | | | | | | 16 | 2.5 | 751 | 12.9 | 96 | 84 | 80 | 560 | | | | | | | | 17 | 2.1 | 751 | 13.0 | 96 | 88 | 78 | 850 | | | | | | | | 17 | 2.5 | 751 | 12.9 | 96 | 3900 | 2700 | 220 | | | | | | | | DEC | | | | | | | | | | | | | | | 05 | 2.0 | 747 | 13.5 | 100 | 77 | 83 | E45 | 120 | 35.4 | 7.92 | 8.4 | 85 | .88 | | JAN | | | | | | | | | | | | | | | 16 | .5 | 766 | 13.7 | 95 | 87 | 80 | 110 | 110 | 31.6 | 7.93 | 14.0 | 83 | 2.83 | | FEB | | | | | | | | | | | | | | | 08 | .00 | 767 | 14.6 | 99 | 27 | 25 | 180 | 120 | 34.6 | 7.84 | 8.2 | 85 | 1.18 | | MAR | .00 | 752 | 14.5 | 101 | 120 | 86 | 48 | 110 | 30.6 | 7.76 | 9.3 | 82 | 1.29 | | 01
APR | .00 | 752 | 14.5 | 101 | 120 | 86 | 48 | 110 | 30.6 | 7.76 | 9.3 | 82 | 1.29 | | 14 | 5.5 | 769 | 12.3 | 97 | | | | 100 | 30.0 | 7.28 | 10.7 | 73 | 3.40 | | MAY | 5.5 | 769 | 12.3 | 91 | | | | 100 | 30.0 | 7.20 | 10.7 | /3 | 3.40 | | 01 | 6.5 | 757 | 12.3 | 101 | | | | 120 | 34.2 | 8.06 | 9.1 | 78 | 1.32 | | 04 | 5.0 | 755 | 12.2 | 96 | | | | 100 | 29.1 | 7.20 | 9.9 | 73 | 1.86 | | JUN | 3.0 | 733 | 12.2 | 50 | | | | 100 | 27.1 | 7.20 | 5.5 | , 5 | 1.00 | | 12 | 11.5 | 766 | 11.1 | 101 | | | | 110 | 30.5 | 7.23 | 7.3 | 71 | 1.18 | | JUL | | | | | | | | | | | | | | | 03 | 13.5 | 768 | 10.4 | 99 | | | | 110 | 32.8 | 7.95 | 7.3 | 83 | .91 | | 05 | 13.0 | 756 | 9.2 | 88 | | | | 48 | 14.0 | 3.07 | 4.3 | 37 | 1.31 | | AUG | | | | | | | | | | | | | | | 01 | 13.0 | 765 | 10.7 | 101 | | | | 110 | 31.6 | 7.63 | 6.9 | 83 | .92 | | SEP | | | | | | | | | | | | | | | 06 | 9.5 | 760 | 11.3 | 99 | | | | | | | | | | | 10 | 9.0 | 767 | 12.3 | 106 | | | | 110 | 32.9 | 7.59 | 7.6 | 74 | 1.03 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued | DATE | BICARBO
NATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/S AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | |------------------|---|--|--|--|--|---|---|--|---|---|---|---|--| | OCT
05
NOV | 91 | 76 | 22.5 | 13.0 | <.2 | 11.8 | 155 | 143 | .007 | .686 | .037 | .28 | .17 | | 02 | 98 | 80 | 22.8 | 14.6 | E.1 | 11.9 | 160 | 149 | .003 | .759 | .010 | .16 | E.07 | | 16 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17
17 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 05 | 104 | 85 | 22.8 | 13.9 | E.1 | 13.1 | 167 | 158 | .007 | .853 | .045 | .23 | .11 | | JAN | | | | | | | | | | | | | | | 16 | 98 | 82 | 22.0 | 29.9 | E.1 | 12.0 | 179 | 172 | .011 | .832 | .062 | <.08 | .18 | | FEB | 104 | 85 | 02.0 | 17.0 | p 1 | 12.3 | 1.61 | 1.50 | .003 | .872 | 020 | 1.0 | T 00 | | 08
MAR | 104 | 85 | 23.0 | 17.2 | E.1 | 12.3 | 161 | 159 | .003 | .8/2 | .030 | .19 | E.08 | | 01 | 99 | 82 | 21.7 | 19.4 | E.1 | 11.1 | 160 | 153 | .004 | .776 | .023 | .11 | E.09 | | APR | | | | | | | | | | | | | | | 14 | 88 | 72 | 19.9 | 25.9 | <.2 | 8.8 | 182 | 152 | .010 | .550 | .094 | .68 | .36 | | MAY | 0.1 | | 00.4 | 01 5 | | | 1.60 | 154 | 004 | 405 | 000 | 2.0 | 1.0 | | 01
04 | 91
88 | | 23.4
19.8 | 21.5
23.9 | E.1 | 9.2
8.0 | 167
166 | 154
146 | .004 | .495
.497 | .009 | .32 | .17 | | JUN | 88 | 12 | 19.8 | 23.9 | <.2 | 8.0 | 100 | 146 | .009 | .49/ | .030 | .40 | .20 | | 12
 85 | 71 | 19.3 | 14.5 | E.1 | 10.6 | 148 | 135 | .006 | .455 | .009 | .34 | .21 | | JUL | | | | | | | | | | | | | | | 03 | 98 | | 17.8 | 13.7 | E.1 | 11.7 | 168 | 142 | .005 | .430 | .010 | .27 | .14 | | 05 | 43 | 36 | 8.7 | 7.0 | <.2 | 5.4 | 83 | 66 | .007 | .163 | .003 | .83 | .23 | | AUG
01 | 100 | 82 | 18.7 | 14.2 | <.2 | 10.6 | 159 | 142 | .005 | . 477 | <.002 | .17 | .13 | | SEP | 100 | 02 | 10.7 | 17.2 | \. ∠ | 10.6 | 139 | 172 | .005 | . 1// | <.00∠ | .1/ | .13 | | 06 | | | | | | | | | | | | | | | 10 | 91 | 76 | 19.9 | 14.7 | E.1 | 10.9 | 143 | 142 | .007 | .608 | .004 | .20 | .13 | | | | | | | | | | | | | | | | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued | | | | | | | | CAR- | | CAR- | | | | | |-----------|---------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | | | | BON, | CAR- | BON, | NITRO- | CHLOR-A | | PERIPH- | | | | | PHOS- | | | CAR- | INOR- | BON, | INORG + | GEN, | PERIPH- | PERIPH- | YTON | | | | PHOS- | PHORUS | | MANGA- | BON, | GANIC, | ORGANIC | ORGANIC | | YTON | YTON | BIO- | | | PHOS- | PHORUS | ORTHO, | IRON, | NESE, | ORGANIC | PAR- | PARTIC- | PAR- | ULATE | CHROMO- | BIO- | MASS | | | PHORUS | DIS- | DIS- | DIS- | DIS- | DIS- | TIC. | ULATE | TIC. | WAT FLT | GRAPHIC | MASS | TOTAL | | | TOTAL | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SUSP | FLUO- | ASH | DRY | | | (MG/L | (MG/L | (MG/L | (UG/L | (UG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | ROM | WEIGHT | WEIGHT | | | AS P) | (MG/L
AS P) | | | AS MN) | | | | | | | | G/SO M | | D.3. MID | | | AS P) | AS FE) | | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | | | DATE | (00665) | (00666) | (00671) | (01046) | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | | OCT | | | | | | | | | | | | | | | 05 | .026 | E.003 | .002 | 90 | 81.0 | 3.6 | <.1 | . 7 | .7 | .068 | | | | | NOV | 016 | 006 | - 004 | 100 | 00 0 | 1.0 | - | • | | 0.55 | | | | | 02
16 | .016 | <.006 | E.004 | 120 | 80.3 | 1.9 | <.1 | . 9 | .9 | .067 | | | | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 05 | .019 | .007 | <.007 | 100 | 103 | 1.6 | <.1 | 1.1 | 1.1 | .085 | | | | | JAN | | | | | | | | | | | | | | | 16 | .025 | E.005 | < .007 | 100 | 100 | 1.7 | <.1 | .5 | .5 | .034 | | | | | FEB | | | | | | | | | | | | | | | 08 | .031 | E.003 | <.007 | 80 | 70.7 | 1.5 | < .1 | 1.0 | 1.0 | .077 | | | | | MAR | | | | | | | | | | | | | | | 01 | .017 | <.006 | <.007 | 80 | 87.4 | 1.6 | <.1 | 1.2 | 1.2 | .061 | | | | | APR | 100 | 0.07 | 012 | 050 | 015 | 4 0 | | | 1 - | 202 | | | | | 14
MAY | .106 | .027 | .013 | 250 | 215 | 4.0 | | | 1.5 | .203 | | | | | MAY
01 | <.060 | <.060 | <.007 | 230 | 111 | 3.1 | | | . 7 | .077 | | | | | 04 | .054 | .006 | <.007 | 210 | 134 | 3.4 | | | E2.4 | .147 | | | | | JUN | .031 | .000 | 1.007 | 210 | 131 | 3.1 | | | D2.1 | , | | | | | 12 | .031 | .007 | < .007 | 130 | 62.1 | 4.4 | | | 1.3 | .125 | | | | | JUL | | | | | | | | | | | | | | | 03 | .025 | .010 | E.004 | 100 | 44.0 | 2.4 | | | E1.2 | .080 | | | | | 05 | .131 | .015 | < .007 | 70 | 52.5 | 4.3 | | | E5.1 | .338 | | | | | AUG | | | | | | | | | | | | | | | 01 | .014 | E.005 | < .007 | 100 | 40.2 | 2.1 | | | . 6 | .061 | | | | | SEP | | | | | | | | | | | | | | | 06 | | | | | | | | | | | 35.1 | 53.5 | 62.1 | | 10 | .021 | E.004 | < .007 | 110 | 59.0 | 2.4 | | | .6 | .053 | | | | | DATE | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------|--|---|---|--| | OCT
05 | | 7 | .49 | 94 | | NOV
02 | | 9 | .53 | 92 | | 16 | | | | | | 16 | | | | | | 17 | | | | | | 17 | | | | | | DEC | | | | | | 05 | | 10 | .43 | | | JAN
16 | | 10 | .46 | 93 | | TO | | 10 | .40 | 93 | | 08 | | 12 | .44 | 84 | | MAR | | 12 | • • • • | 01 | | 01 | | 10 | .36 | 89 | | APR | | | | | | 14 | | 12 | .81 | 89 | | MAY | | | | | | 01 | | 7 | .37 | 96 | | 04 | | 22 | 1.4 | 96 | | JUN | | 11 | 7.4 | 0.6 | | 12 | | 11 | .74 | 96 | | JUL
03 | | . 0 | .00 | | | 05 | | .0 | .00 | | | AUG | | . 0 | .00 | | | 01 | | 2 | .13 | | | SEP | | | | | | 06 | 10 | | | | | 10 | | 4 | .19 | | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued | OCTOBER NOVEMBER DECEMBER 1 6.0 4.0 5.0 3.0 1.5 2.0 1.0 .0 .0 1. 2 5.5 4.0 5.0 2.5 1.5 2.0 .0 .0 .0 | AX MIN MEAN | |---|---| | 1 6.0 4.0 5.0 3.0 1.5 2.0 1.0 .0 .0 1.
2 5.5 4.0 5.0 2.5 1.5 2.0 0 0 0 | JANUARY | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | .5 .0 .5
0 .0 .0
0 .0 .5
0 .0 .5
0 .0 .5 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 .0 .0
0 .0 1.0
1.0
5 1.0 1.5
0 .0 .5 | | 11 5.0 3.5 4.5 3.5 1.5 2.0 2.0 1.0 2.0 . 12 5.0 4.0 4.5 3.0 2.0 2.5 2.0 1.0 1.5 1. 13 5.5 4.5 5.0 3.0 2.5 2.5 1.0 .0 .5 1. 14 5.5 4.5 5.0 3.0 2.0 3.0 .0 .0 .0 .0 15 5.5 4.0 5.0 2.0 1.0 1.5 .0 .0 .0 .0 | 0 .0 .0
5 .0 1.0
5 1.0 1.5
0 1.5 2.0
5 1.5 2.0 | | 16 5.5 4.0 5.0 2.5 2.0 2.0 .0 .0 .0 .0 1. 17 5.5 4.5 5.0 3.0 1.5 2.5 .0 .0 .0 1. 18 5.0 4.0 4.5 3.0 2.0 2.5 1.0 .0 .0 2. 19 5.0 4.0 4.5 3.0 3.0 3.0 1.5 1.0 1.0 1. 20 4.0 2.5 3.5 3.0 2.5 3.0 2.0 .0 1.0 2. | 5 .5 1.0
5 1.0 1.5
5 1.0 2.0
5 1.0 1.5
0 1.5 2.0 | | 21 4.0 2.0 3.0 2.0 2.5 2.0 .0 1.0 2. 22 4.5 3.5 4.0 2.5 2.0 2.5 .0 .0 .0 .0 2. 23 4.0 3.0 3.5 2.0 1.5 2.0 .0 .0 .0 .0 2. 24 4.5 3.0 3.5 2.0 1.5 2.0 .5 .0 .0 1. 25 4.5 4.0 4.0 2.0 .5 1.0 1.0 .5 .5 1. | 0 1.0 1.5
5 1.5 2.0
5 1.5 2.0
5 1.5 1.5
5 1.5 1.5 | | 26 | 0 1.5 2.0
5 1.0 2.0
0 .5 .5
5 .0 .0
5 .0 .5
5 .5 1.0 | | MONTH 6.5 1.0 4.2 3.5 .0 2.0 | | | DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX
FEBRUARY MARCH APRIL | AX MIN MEAN
MAY | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5 4.5 5.5
0 3.5 4.5
5 2.5 3.5
0 3.0 4.0
0 3.0 4.5 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | .0 5.0 8.0 .0 5.5 8.5 .5 6.5 9.5 | | 16 .5 .0 .0 3.5 1.5 2.5 5.5 2.5 4.0 10. | 6.5 9.0
0 8.0 9.5
0 7.5 9.5 | | 17 .5 .0 .0 3.5 .5 1.5 6.5 2.5 4.0 11. 18 .0 .0 .0 1.5 .0 .5 6.5 3.0 4.5 11. 19 .0 .0 .0 .0 .0 7.5 2.5 4.5 13. 20 2.0 .0 1.5 .0 .0 .0 7.5 2.5 5.0 12. | | | 18 | 5 8.0 9.0
0 7.5 9.0
5 8.0 9.5
5 7.5 8.5 | | 18 .0 .0 .0 .0 .5 6.5 3.0 4.5 11. 19 .0 .0 .0 .0 .0 .7.5 2.5 4.5 13. 20 2.0 .0 1.5 .0 .0 .0 7.5 2.5 5.0 12. 21 2.5 1.5 2.0 .0 .0 .0 7.0 3.0 5.0 10. 22 2.0 .0 1.5 .0 .0 .0 8.0 4.0 5.5 11. 23 .0 .0 .0 .0 .0 7.0 3.0 5.0 11. 24 .0 .0 .0 .0 .0 8.0 3.0 5.5 9. | 5 8.0 9.0
0 7.5 9.0
5 8.0 9.5
5 7.5 8.5
0 7.5 8.5
5 7.5 9.5
5 7.0 10.0
0 8.5 11.0
0 9.5 11.5
5 10.0 11.5 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 15.0
14.5
14.0
13.5
13.0 | 10.0
10.5
11.0
10.5
11.0 | 12.0
12.5
12.5
12.0
12.0 | 15.0
15.5
14.0
14.5
14.0 | 12.0
11.5
12.5
13.0
13.0 | 13.0
13.5
13.0
13.5
13.5 | 14.5
15.0
15.0
13.5
14.5 | 12.0
12.0
12.0
12.5
11.5 | 13.0
13.5
13.0
13.0
12.5 | 12.0
12.5
12.5
12.0
11.5 | 9.5
10.5
11.5
11.0
10.0 | 10.5
11.5
12.0
11.5
11.0 | | 6
7
8
9
10 | 12.0
13.0
13.5
14.5 | 10.5
10.0
9.0
9.5
10.0 | 11.0
11.5
11.5
11.5
12.0 | 14.0
13.5
15.0
14.0
14.0 | 12.5
12.0
12.0
12.0
11.5 | 13.0
12.5
13.0
13.0 | 14.5
14.5
13.5
13.5
13.5 | 11.0
12.0
12.5
12.5
12.0 | 13.0
13.0
13.0
13.0 | 11.5
11.5
11.5
11.5 | 9.5
9.5
8.5
8.0
7.5 | 10.0
10.5
10.0
9.5
9.5 | | 11
12
13
14
15 | 12.5
12.0
13.5
14.5
15.5 | 11.0
11.0
10.5
10.0 | 11.5
11.5
11.5
12.0
13.0 | 12.5
12.5
13.0
14.5
13.0 | 11.5
11.0
11.0
11.0 | 12.0
11.5
12.0
12.5
12.5 | 15.0
15.0
15.5
14.0
13.5 | 12.0
12.0
11.5
13.0
12.0 | 13.0
13.5
13.5
13.5
13.0 | 10.5
10.0
10.0
10.5 | 7.5
9.0
8.5
9.0
8.0 |
9.0
9.5
9.5
9.5
9.5 | | 16
17
18
19
20 | 16.0
15.0
14.0
15.0
15.5 | 11.0
11.5
11.5
11.0
12.0 | 13.5
13.0
12.5
13.0
13.5 | 13.5
14.0
15.0
14.0 | 11.0
11.5
11.5
12.5
13.0 | 12.5
12.5
13.0
13.0 | 13.5
14.0
14.0
13.0
13.5 | 12.0
12.0
13.0
12.0
11.5 | 12.5
13.0
13.5
12.5
12.5 | 10.0
11.0
10.5
11.0 | 7.5
9.0
9.5
10.0
9.0 | 9.0
10.0
10.0
10.5
10.0 | | 21
22
23
24
25 | 15.5
16.0
16.0
14.5
16.0 | 12.0
11.5
11.5
12.5
12.0 | 13.5
13.5
14.0
13.5
14.0 | 13.5
14.5
13.0
13.5
14.5 | 12.0
13.0
12.0
12.0
12.0 | 13.0
13.5
12.5
12.5
13.0 | 14.5
14.0
13.0
12.5
13.5 | 11.0
10.5
10.5
11.5
10.5 | 12.5
12.5
12.0
12.0
12.0 | 10.5
10.0
9.5
9.5
9.0 | 7.5
7.0
8.0
7.5
7.0 | 8.5
8.5
9.0
8.5
8.0 | | 26
27
28
29
30
31 | 16.5
16.5
16.5
16.5
14.5 | 13.0
12.5
13.0
13.0
12.5 | 14.5
14.5
15.0
14.5
13.5 | 14.5
15.0
15.0
15.5
13.5 | 12.5
12.0
11.5
12.5
12.5
12.0 | 13.0
13.5
13.0
13.5
13.0 | 13.5
13.5
12.5
11.5
12.0 | 11.0
10.5
11.0
10.5
10.5 | 12.0
12.0
11.5
11.0
11.0 | 9.0
8.5
8.5
8.0 | 6.5
5.5
7.0
6.0
5.5 | 8.0
7.0
7.5
7.0
7.0 | | MONTH | 16.5 | 9.0 | 12.8 | 15.5 | 11.0 | 12.9 | 15.5 | 10.0 | 12.6 | 12.5 | 5.5 | 9.4 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|--|---|---|--|--|--|---|---| | | | OCTOBER | | NC | | | DE | | | | JANUARY | | | | 237
238
241
244
248 | | 231
235
238
241
239 | 325
261
263
263
260 | 256
256
259
260
256 | 268
258
260
261
259 | 269
271
272
273
273 | 260
264
269
265 | 264
268
270
268 | 236
248
248
233
243 | 228
236
233
229
231 | 230
242
242
230
238 | | 6
7
8
9
10 | 240
243
243
246
247 | | | | | 256
256
258
344
373 | 596
412
238
244 | 233
233
237
234
236 | 333
273
235
238 | 240
422
408
276
276 | 229
226
263
270
271 | 234
296

273
272 | | 11
12
13
14
15 | 247
252
250
249
249 | | | 244
251
254
252
263 | | | | | | 280
273
266
332
1090 | | | | 16
17
18
19
20 | 250
250
252
253
251 | 247
246
246
248
249 | 249
249
249
250
250 | 265
262
471
279
260 | 252
255
257
258
257 | 258
259
279
263
258 | 245
242
240
233
508 | 235
235
229
231
230 | 238
239
232
232
275 | 575
337
1240
776
340 | 281
277
294
332
302 | 339
291
430
448
311 | | | 256
265
392
269
264 | | | 314
295
257
262
263 | | | | | | 307
319
383
349
299 | | | | 26
27
28
29
30
31 | 256
258
262
262
262
385 | 248
251
257
259
260
258 | 250
254
259
261
261
304 | 268
266
274
422
291 | 263
264
263
261
259 | 266
265
266
336
267 | 244
241
236
315
327
230 | 231
233
231
230
230
227 | 235
235
233
242
263
228 | 284
292
279
265
265
266 | 270
263
263
261
260
260 | 278
273
269
263
262
263 | | | | | | | | | | | | 1240 | DAY | MAX | MIN | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | MIN | MEAN | | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | 1 | | 260
261
261
261
259 | 325
409
358
302
760 | MARCH
279
280
287
282
271 | 289
309
315
292
406 | 336
322
310
328
328 | 300
302
256
245
258 | 309
309
294
274
307 | MAX
282
314
268
285
287 | MAY | | | 1
2
3
4
5 | 1 | 256
258
259
256
255 | 260
261
261
261
259 | 325
409
358
302
760 | MARCH
279
280
287
282
271 | 289
309
315
292
406 | | 300
302
256
245
258 | 309
309
294
274
307 | | MAY
271
268
201
216
259 | 275
287
233
251
275 | | 1
2
3
4
5 | 264
264
265
265
266 | 256
258
259
256
255 | 260
261
261
261
259 | 325
409
358
302
760 | MARCH
279
280
287
282
271 | 289
309
315
292
406 | 336
322
310
328
328 | 300
302
256
245
258 | 309
309
294
274
307 | 282
314
268
285
287 | MAY
271
268
201
216
259 | 275
287
233
251
275 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 264
265
265
265
266
264
275
266
268
270
264
272
281 | FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 261 258 266 | 260
261
261
261
259
261
262
268
263
266
264
260
264
274 | 325
409
358
302
760
463
951
523
711
645
575
541
475
414 | MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368 | 289
309
315
292
406
313
476
368
483
527
479
483
412
390 | 336
322
310
328
328
328
310
291
280
292
282
275
280
280
273 | APRIL 300 302 256 245 258 258 247 220 221 269 219 227 267 264 | 309
309
294
274
307
280
276
255
262
268
251
262
276
269 | 282
314
268
285
287
286
284
283
305
336
311
358
358 | MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328 | 275
287
233
251
275
280
277
273
268
290
313
303
327
347 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 264
265
265
265
266
264
275
266
268
270
264
272
281
270
271
261
275
257 | FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 253 266 265 253 256 253 | 260
261
261
261
259
261
262
268
263
266
264
260
264
274
268
257
268 | 325
409
358
302
760
463
951
523
711
645
575
541
475
414
428
432
395
357
367 | MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368 380 370 350 344 334 | 289
309
315
292
406
313
476
368
483
527
479
483
412
390
403
400
365
347
351 | 336
322
310
328
328
328
310
291
280
292
282
275
280
273
278
276
276
273
273 | 300
302
256
245
258
247
220
221
269
219
227
267
264
261
260
269
270
268 | 309
309
294
274
307
280
276
255
262
268
251
262
276
269
269
269
268
272
271 | 282
314
268
285
287
286
284
283
305
336
311
358
358
361
290
290
293
290 | MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328 284 253 273 284 283 | 275
287
233
251
275
280
277
273
268
290
313
303
327
347
319
272
284
287
288 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 264
265
265
265
266
264
264
275
266
268
270
264
272
281
270
271
265
257
269
419
417
277 | FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 253 266 265 253 256 255 253 256 250 251 259 268 263 |
260
261
261
261
259
261
262
268
263
266
264
264
274
268
265
257
265
257
265
254
255 | 325
409
358
302
760
463
951
523
711
645
575
541
475
414
428
432
395
357
367
353
342
342
342
320
317 | MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368 380 370 350 344 337 320 318 306 303 | 289
309
315
292
406
313
476
348
483
527
479
483
412
390
403
403
400
365
347
351
344
333
331
316
309 | 336
322
310
328
328
310
291
280
292
282
275
280
273
278
276
276
273
273
273
273
273
273
273
275
275
277
277
277
277
277
277
277
277 | APRIL 300 302 256 245 258 258 247 220 221 269 219 227 267 264 261 260 269 270 268 267 269 270 268 267 | 309
309
294
274
307
280
276
255
262
268
251
262
276
269
269
269
272
271
275
272
272
272
272
274 | 282
314
268
285
287
286
284
283
305
336
311
358
361
290
290
293
290
306
304
316
313
305 | MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328 284 253 273 284 283 288 297 301 300 297 | 275
287
233
251
275
280
277
273
268
290
313
303
327
347
319
272
284
288
298
300
311
300
302 | # 15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | P | AUGUST | | S | SEPTEMBE | R | | 1 | 299 | 286 | 294 | 256 | 245 | 252 | 259 | 251 | 253 | 261 | 249 | 255 | | 2 | 290 | 264 | 272 | 249 | 244 | 247 | 260 | 250 | 254 | 261 | 152 | 234 | | 3 | 289 | 265 | 278 | 275 | 230 | 254 | 264 | 127 | 214 | 240 | 135 | 191 | | 4 | 269 | 255 | 261 | 230 | 81 | 171 | 240 | 163 | 205 | 247 | 118 | 212 | | 5 | 265 | 250 | 256 | 217 | 63 | 137 | 250 | 240 | 247 | 237 | 126 | 196 | | 6 | 270 | 247 | 258 | 220 | 99 | 172 | 278 | 249 | 253 | 251 | 236 | 243 | | 7 | 262 | 248 | 257 | 228 | 212 | 221 | 260 | 249 | 253 | 254 | 201 | 241 | | 8 | 268 | 260 | 263 | 235 | 113 | 186 | 259 | 250 | 253 | 243 | 195 | 229 | | 9 | 266 | 251 | 258 | 229 | 182 | 210 | 260 | 252 | 255 | 262 | 236 | 244 | | 10 | 257 | 249 | 253 | 237 | 208 | 228 | 262 | 252 | 256 | 256 | 242 | 248 | | 11 | 258 | 229 | 251 | 244 | 198 | 221 | 261 | 251 | 255 | 256 | 244 | 248 | | 12 | 251 | 229 | 241 | 253 | 244 | 249 | 260 | 254 | 257 | 252 | 248 | 250 | | 13 | 251 | 243 | 246 | 258 | 242 | 251 | 264 | 252 | 257 | 257 | 248 | 253 | | 14 | 255 | 249 | 251 | 253 | 226 | 241 | 260 | 251 | 255 | 256 | 238 | 246 | | 15 | 260 | 252 | 255 | 254 | 247 | 250 | 263 | 254 | 258 | 256 | 249 | 252 | | 16 | 261 | 257 | 259 | 253 | 245 | 250 | 263 | 231 | 257 | 262 | 251 | 255 | | 17 | 257 | 251 | 255 | 252 | 245 | 249 | 268 | 208 | 254 | 258 | 250 | 253 | | 18 | 264 | 255 | 260 | 254 | 250 | 252 | 242 | 173 | 211 | 260 | 242 | 252 | | 19 | 266 | 260 | 264 | 257 | 223 | 251 | 270 | 230 | 252 | 255 | 229 | 244 | | 20 | 261 | 248 | 255 | 235 | 173 | 207 | 254 | 216 | 240 | 259 | 252 | 255 | | 21 | 258 | 249 | 252 | 241 | 224 | 235 | 260 | 250 | 253 | 262 | 256 | 258 | | 22 | 276 | 258 | 267 | 234 | 150 | 198 | 259 | 250 | 253 | 265 | 257 | 261 | | 23 | 287 | 273 | 280 | 257 | 234 | 243 | 262 | 250 | 255 | 263 | 255 | 260 | | 24 | 277 | 263 | 266 | 254 | 242 | 246 | 260 | 242 | 252 | 271 | 257 | 261 | | 25 | 270 | 261 | 264 | 253 | 238 | 244 | 259 | 250 | 253 | 278 | 268 | 274 | | 26
27
28
29
30
31 | 264
254
261
265
260 | 246
244
248
253
251 | 254
248
255
260
256 | 251
255
257
260
261
253 | 244
249
250
251
234
237 | 247
251
254
255
249
249 | 260
259
261
258
261
262 | 249
248
250
250
250
250 | 256
254
257
254
255
256 | 276
272
271
270
270 | 261
262
264
260
264 | 267
267
268
265
266 | | MONTH | 299 | 229 | 260 | 275 | 63 | 231 | 278 | 127 | 250 | 278 | 118 | 248 | #### 15276000 SHIP CREEK NEAR ANCHORAGE LOCATION.--Lat $61^{\circ}13'32''$, long $149^{\circ}38'06''$, in $SW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 9, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on left bank, 800 ft downstream from diversion dam, 3.3 mi upstream from North Fork Ship Creek, and 7.8 mi east of intersection of Seward and Glenn Highways in Anchorage. DRAINAGE AREA. -- 90.5 mi². PERIOD OF RECORD. -- October 1946 to current year. REVISED RECORDS.--WSP 1936: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 490 ft above sea level, from topographic map. Prior to August 22, 1985, water-stage recorder at dam 800 ft upstream. See WSP 1936 for history of changes prior to October 1, 1954. REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2001 was 8.34 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment. COOPERATION. -- Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson. REVISIONS.--Revised figures of discharge for water years 1987 through 1997 are given below. These figures supercede those published in reports for 1987-97. | | | DISCHARGE, | , CUBIC | FEET P | | WATER
LY MEAN | YEAR OCTOBER VALUES | 1986 | TO SEPTEMBE | R 1987 | | | |--------------------------------------|--|---------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|-------------------------------------|--|---------------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 206
206
221
246
220 | 164
147
141 | e85
e85
e80
e80
e80 | e30
e30
e30
e30
e30 | e29
e29
e29
e28
e28 | e19
e20
e21
e21
e19 | e12
e12
e14
e15
e13 | 27
31
34
40
45 | 306
326
323
304
340 | 463
417
386
360
360 | 245
219
198
189
196 | 97
92
104
196
163 | | 6
7
8
9
10 | 207
198
194
187
291 | 109
124
115 | e85
e85
87
131
129 | e30
e30
e30
e30
e28 | e27
e26
e25
e23
e22 | e17
e16
e15
e14
e13 | e12
e14
e12
e14
e17 | 48
53
58
66
66 | 391
382
390
364
330 | 356
329
296
274
261 | 199
189
175
163
157 | 177
264
381
324
290 | | 11
12
13
14
15 | 796
721
626
577
484 | 113
107
101
113
111 | 116
89
76
70
68 | e28
e28
e28
e28
e30 | e21
e20
e19
e19
e18 | e12
e11
e11
e10
e10 | e17
e15
e14
e14
e13 | 71
84
92
108
127 | 318
318
307
343
356 | 261
271
280
266
242 | 155
156
177
192
194 | 251
228
201
185
174 | | 16
17
18
19
20 | 435
379
346
326
309 | 92
87
e90
e90 | 67
62
61
60
56 | e30
e30
e30
e30
e30 | e18
e18
e17
e17
e17 | e10
e11
e12
e11
e11 | e12
e12
e10
e11
e12 | 149
193
181
162
166 | 354
334
303
283
300 | 252
262
280
281
289 | 186
175
165
156
148 | 167
166
155
153
148 | | 21
22
23
24
25 | 295
264
241
224
206 | e90
e90
e85 | e55
e50
e45
e40
e38 | e30
e32
e32
e34
e34 | e17
e17
e17
e17
e18 | e12
e12
e13
e13 | e14
e15
17
20
24 | 190
190
169
182
178 | 375
456
422
379
339 | 303
301
296
264
256 | 137
130
125
116
112 | 140
135
267
279
234 | | 26
27
28
29
30
31 | 190
176
162
142
139
159 | e85
e85
e85
e85 | e36
e34
e32
e30
e30
e30 | e32
e32
e32
e32
e30
e30 | e19
e20
e20
 | e14
e14
e15
e15
e13
e12 | 21
20
19
20
25 | 170
194
212
234
254
281 | 314
326
318
448
546 | 256
252
249
256
269
274 | 110
107
107
108
103
96 | 211
195
180
168
159 | | TOTAL
MEAN
MAX
MIN
AC-FT | 9373
302
796
139
18590 | 107 6
172
85 | 072
6.8
131
30
110 | 940
30.3
34
28
1860 | 595
21.2
29
17
1180 | 429
13.8
21
10
851 | 460
15.3
25
10
912 | 4055
131
281
27
8040 | 10595
353
546
283
21020 | 9162
296
463
242
18170 |
4885
158
245
96
9690 | 5884
196
381
92
11670 | | | | | | | ADJUSTED ' | TO INCL | UDE DIVERSION | I | | | | | | MEAN
CFSM
IN
AC-FT | 329
3.64
4.19
20250 | 1.47 1
1.64 1 | 4.0
.04
.20
780 | 57.1
0.63
0.73
3510 | 48.3
0.53
0.56
2680 | 40.0
0.44
0.51
2460 | 41.2
0.46
0.51
2450 | 158
1.75
2.02
9740 | 383
4.23
4.72
22800 | 328
3.62
4.18
20180 | 191
2.11
2.44
11760 | 203
2.24
2.50
12060 | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1987, BY WATER YEAR (WY)# | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 154
302
1987
48.7
1969 | 177
1953 1
24.3 1 | 7.8
107
948
3.9
969 | 30.8
79.3
1961
7.13
1956 | 21.2
54.6
1961
5.36
1983 | 15.8
42.1
1947
3.61
1956 | 21.7
49.4
1964
4.77
1954 | 148
341
1960
39.9
1971 | 440
798
1977
224
1954 | 321
645
1980
128
1954 | 225
510
1981
94.6
1969 | 213
471
1967
55.8
1969 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated #### 15276000 SHIP CREEK NEAR ANCHORAGE--Continued REVISIONS. -- Continued. | SUMMARY STATISTICS | FOR 1986 CALENDA | R YEAR | FOR 1987 WAT | TER YEAR | WATER YEARS | 1947 - 1987# | |--------------------------|------------------|--------|--------------|----------|-------------|--------------| | ANNUAL TOTAL | 45992.0 | | 51655 | | | | | ANNUAL MEAN | 126 | | 142 | | 144 | | | ANNUAL MEAN | *151 | | *167 | | *161 | | | HIGHEST ANNUAL MEAN | | | | | 223 | 1980 | | LOWEST ANNUAL MEAN | | | | | 67.3 | 1969 | | HIGHEST DAILY MEAN | 796 | Oct 11 | 796 | Oct 11 | 1420 | Aug 9 1971 | | LOWEST DAILY MEAN | 6.5 | Apr 22 | a10 | Mar 14 | b.00 | Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 7.9 | Apr 19 | 11 | Mar 11 | .43 | Jan 9 1956 | | MAXIMUM PEAK FLOW | | | 921 | Oct 11 | 1860 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | 6.08 | Oct 11 | c3.44 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | | d6.08 | Oct 11 1986 | | INSTANTANEOUS LOW FLOW | | | f6.4 | Apr 7 | | | | ANNUAL RUNOFF (AC-FT) | 91230 | | 102500 | | 104000 | | | ANNUAL RUNOFF (AC-FT) | *110000 | | *121600 | | *117400 | | | ANNUAL RUNOFF (CFSM) | *1.67 | | *1.85 | | *1.79 | | | ANNUAL RUNOFF (IN) | *22.80 | | *25.19 | | *24.31 | | | 10 PERCENT EXCEEDS | 262 | | 325 | | 366 | | | 50 PERCENT EXCEEDS | 97 | | 107 | | 77 | | | 90 PERCENT EXCEEDS | 12 | | 14 | | 14 | | See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks From Mar, 14 to 16 and Apr. 18 No flow during one or more days in water years 1956, 1960, 1969, and 1971 Site and datum then in use Current site and datum Minimum observed, from current-meter measurement, but may have been less during periods of ice effect in Mar. and Apr. REVISIONS. -- Continued. | ICE V I DI OND | · conc | DISCHAF | RGE, CUBIC | FEET | | WATER
Y MEAN | YEAR OCTOBE | R 1987 | TO SEPTEME | BER 1988 | | | |---|---|---|--|---|--------------------------------------|--------------------------------------|--|--|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 150
168
176
153
144 | e100
102
100
100
89 | e50
e50
e48
e48
e48 | e34
e34
e34
e34
e30 | e16
e16
e15
e15
e14 | e8.0
e7.0
e7.0
e6.0
e6.0 | e3.0
e4.0
e3.0
e3.0
e2.0 | e32
e32
e28
36
e36 | 402
432
486
559
625 | 548
598
651
633
591 | 216
238
223
208
201 | 213
189
180
191
177 | | 6
7
8
9
10 | 135
131
127
128
140 | 89
85
85
e80
e80 | e48
e50
e50
e50
e50 | e28
e28
e26
e26
e22 | e14
e14
e13
e13
e13 | e6.0
e6.0
e5.0
e4.0
e4.0 | e2.0
e2.0
e4.0
e4.0
e4.0 | 48
59
e75
e85
104 | 772
807
804
882
913 | 540
500
458
439
477 | 202
196
183
165
162 | 162
153
140
135
134 | | 11
12
13
14
15 | 131
123
118
119
125 | e80
80
77
66
e62 | e50
e50
e50
e50
e50 | e22
e22
e22
e22
e22 | e13
e12
e13
e13
e13 | e6.0
e6.0
e5.0
e4.0
e4.0 | e4.0
e4.0
e4.0
e4.0
e4.0 | 122
136
143
150
145 | 881
822
800
812
820 | 509
480
468
453
433 | 230
249
226
196
173 | 127
122
129
122
115 | | 16
17
18
19
20 | 116
116
119
144
130 | e62
e62
e62
63
63 | e48
e48
e48
e46
e46 | e22
e22
e20
e20
e18 | e13
e13
e13
e13
e12 | e4.0
e4.0
e4.0
e5.0 | e6.0
e6.0
e8.0
e9.0
e9.0 | 150
171
177
222
227 | 762
731
737
702
655 | 460
437
401
379
376 | 161
159
159
152
144 | 112
106
104
101
153 | | 21
22
23
24
25 | 126
156
148
139
128 | 61
e55
54
55
e50 | e44
e44
e42
e39
e38 | e18
e18
e18
e18
e18 | e13
e13
e13
e12
e11 | e4.0
e4.0
e4.0
e4.0 | e12
e10
e12
e15
e10 | 238
277
306
306
321 | 601
606
592
562
551 | 373
334
303
282
256 | 149
184
176
150
144 | 195
186
177
164
149 | | 26
27
28
29
30
31 | 119
105
106
92
104
e100 | e50
e50
e50
e50
e50 | e36
e35
e35
e36
e36
e34 | e16
e16
e16
e16
e16 | e9.0
e8.0
e8.0
e8.0 | e4.0
e4.0
e4.0
e4.0
e4.0 | e11
e26
e34
e37
e34 | 354
406
427
444
443
428 | 589
605
565
553
553 | 240
235
235
220
208
197 | 224
236
216
206
242
223 | 138
136
131
123
120 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4016
130
176
92
7970 | 2112
70.4
102
50
4190 | 1397
45.1
50
34
2770 | 694
22.4
34
16
1380 | 366.0
12.6
16
8.0
726 | 149.0
4.81
8.0
4.0
296 | 290.0
9.67
37
2.0
575 | 6128
198
444
28
12150 | 20181
673
913
402
40030 | 12714
410
651
197
25220 | 5993
193
249
144
11890 | 4384
146
213
101
8700 | | | | | | | ADJUSTED T | O INCL | JDE DIVERSIC | N | | | | | | MEAN
CFSM
IN
AC-FT | 161
1.78
2.05
9910 | 99.0
1.09
1.22
5890 | 73.7
0.81
0.94
4530 | 52.6
0.58
0.67
3240 | 43.5
0.48
0.52
2500 | 35.5
0.39
0.45
2180 | 36.6
0.40
0.45
2180 | 224
2.48
2.86
13790 | 707
7.82
8.72
42090 | 447
4.93
5.69
27460 | 223
2.46
2.84
13720 | 177
1.96
2.18
10540 | | | | STATISTIC | S OF MONT | HLY MEA | AN DATA FOR | WATER | YEARS 1947 - | 1988, | BY WATER | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 153
302
1987
48.7
1969 | 80.6
177
1953
24.3
1969 | 47.8
107
1948
13.9
1969 | 30.6
79.3
1961
7.13
1956 | 20.9
54.6
1961
5.36
1983 | 15.5
42.1
1947
3.61
1956 | 21.4
49.4
1964
4.77
1954 | 149
341
1960
39.9
1971 |
445
798
1977
224
1954 | 323
645
1980
128
1954 | 224
510
1981
94.6
1969 | 211
471
1967
55.8
1969 | | SUMMARY | STATIST | ICS | FOR 1 | 987 CAL | ENDAR YEAR | | FOR 1988 WAT | TER YEA | R | WATER YE | ARS 1947 | - 1988# | | MAXIMUM
MAXIMUM
MAXIMUM | EAN EAN ANNUAL M NNUAL M AILY ME AILY ME EVEN-DA PEAK FL PEAK ST PEAK ST | EAN
EAN
AN
Y MINIMUM
OW
AGE
AGE | | | Jun 30
Mar 14
Mar 11 | | | | 5
1
9
9 | 144
*162
223
67.3
1420
c.00
.43
1860
d3.44
f6.08 | | 1980
1969
9 1971
9 1956
9 1956
21 1949
21 1949 | | INSTANTA ANNUAL R ANNUAL R ANNUAL R ANNUAL R 10 PERCE 50 PERCE 90 PERCE | NEOUS LOUNOFF (AUNOFF | OW FLOW AC-FT) AC-FT) CFSM) IN) EDS EDS EDS | *: | 88330
108000
*1.
*22.
303
80
14 | 64
37 | | g1.4
115900
*138000
*2.10
*28.60
482
85
5.0 | - | | 104200
*117400
*1.79
*24.31
369
77
13 | | | See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks From Mar. 14 to 16 and Apr. 7 Apr. 5 to 7 No flow during one or more days in water years 1956, 1960, 1969, and 1971 Site and datum then in use Estimated Current site and datum Minimum observed, from current-meter measurement, but may have been less during periods of ice effect in Mar. and Apr. a b c d REVISIONS. -- Continued. | | | DISCHAF | RGE, CUBI | C FEET PE | | | YEAR OCTOBE | R 1988 TO |) SEPTEMBI | ER 1989 | | | |--|---|---|--|--|--------------------------------------|--|--|--|-------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 110
112
112
156
226 | 86
81
e75
e75
e75 | e50
e50
e50
e50
e50 | e40
e40
e40
e40
e40 | e8.0
e8.0
e8.0
e8.0
e8.0 | e7.0
e6.5
e6.0
e6.5
e6.5 | e15
e15
e15
e14
e14 | 80
98
114
121
109 | 317
282
311
383
396 | 362
383
364
348
348 | 244
276
250
221
201 | 569
575
537
459
535 | | 6
7
8
9
10 | 297
286
275
244
215 | e75
e70
e70
e70
e70 | e50
e60
e70
e65
e65 | e35
e35
e35
e30
e30 | e8.0
e8.0
e8.0
e8.0
e9.0 | e6.5
e6.5
e6.5
e6.5 | e13
e13
e13
e12
e12 | 97
100
114
125
127 | 383
389
411
411
374 | 309
294
254
249
233 | 196
245
208
202
193 | 531
529
504
469
451 | | 11
12
13
14
15 | 222
204
190
166
153 | e70
e65
e65
e65
e65 | e65
e65
e60
e45
e35 | e30
e30
e28
e28
e28 | e9.0
e9.0
e9.0
e9.0 | e7.0
e7.5
e8.0
e8.5
e9.0 | e11
e10
e12
e13 | 134
123
117
115
111 | 368
367
353
382
400 | 226
225
217
221
202 | 189
177
175
168
156 | 403
384
353
332
298 | | 16
17
18
19
20 | 148
142
147
143
140 | e60
e60
e55
e55
e55 | e30
e25
e25
e25
e25 | e28
e26
e22
e15
e12 | e9.0
e9.0
e9.0
e9.0 | e9.5
e11
e11
e11
e12 | e14
e16
19
22
27 | 117
132
124
123
138 | 363
335
357
369
383 | 185
171
160
158
199 | 148
142
143
151
148 | 273
282
287
264
249 | | 21
22
23
24
25 | 126
120
110
111
105 | e55
e55
e55
e55
e55 | e25
e25
e25
e25
e25 | e10
e9.0
e8.0
e7.5
e7.0 | e8.5
e8.5
e8.0
e8.0
e7.5 | e12
e12
e12
e13
e13 | 30
35
38
35
48 | 183
196
195
194
189 | 373
365
370
432
381 | 199
186
198
242
232 | 144
139
129
131
215 | 253
242
234
243
305 | | 26
27
28
29
30
31 | 102
102
104
107
97 | e55
e55
e55
e50
e50 | e30
e30
e30
e35
e35
e40 | e7.0
e7.0
e7.0
e8.0
e8.0
e8.0 | e7.5
e7.0
e7.0
 | e14
e15
e15
e15
e16
e16 | 56
65
80
71
74
 | 206
233
253
306
378
368 | 364
362
370
369
370 | 204
180
173
181
202
195 | 982
1130
1010
898
754
623 | 356
340
301
241
234 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4862
157
297
90
9640 | 1902
63.4
86
50
3770 | 1285
41.5
70
25
2550 | 698.5
22.5
40
7.0
1390 | 233.0
8.32
9.0
7.0
462 | 312.5
10.1
16
6.0
620 | 823
27.4
80
10
1630 | 5020
162
378
80
9960 | 11090
370
432
282
22000 | 7300
235
383
158
14480 | 9988
322
1130
129
19810 | 11033
368
575
234
21880 | | | | | | i | ADJUSTED 1 | O INCL | UDE DIVERSI | ON | | | | | | MEAN
CFSM
IN
AC-FT | 186
2.05
2.37
11430 | 93.3
1.03
1.15
5550 | 69.8
0.77
0.89
4290 | 50.8
0.56
0.65
3120 | 37.8
0.42
0.43
2100 | 37.9
0.42
0.48
2330 | 52.1
0.58
0.64
3100 | 189
2.08
2.40
11600 | 401
4.43
4.94
23870 | 267
2.95
3.40
16400 | 346
3.83
4.41
21300 | 405
4.47
4.99
24100 | | | | STATISTIC | S OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1947 | - 1989, в | Y WATER Y | EAR (WY) | ‡ | | | MEAN
MAX
(WY)
MIN
(WY) | 153
302
1987
48.7
1969 | 80.2
177
1953
24.3
1969 | 47.6
107
1948
13.9
1969 | 30.5
79.3
1961
7.13
1956 | 20.7
54.6
1961
5.36
1983 | 15.4
42.1
1947
3.61
1956 | 21.5
49.4
1964
4.77
1954 | 149
341
1960
39.9
1971 | 444
798
1977
224
1954 | 321
645
1980
128
1954 | 226
510
1981
94.6
1969 | 215
471
1967
55.8
1969 | | | | | | | | | FOR 1989 WA | | | WATER YE | ARS 1947 | - 1989# | | HIGHEST LOWEST LOWEST ANNUAL MAXIMUN MAXIMUN | F ANNUAL ME ANNUAL ME F DAILY ME DAILY ME SEVEN-DAY F PEAK FLO F PEAK STA | MEAN CAN LAN LAN MY MINIMUM W GGE LGE LC-FT) LC-FT) LFSM) LN) LDS LDS LDS | | 913
a2.0
2.7 | Jun 10
Apr 5
Apr 1 | | 54547.0
149
*178
1130
6.0
6.4
1260
6.38
108200
*129200
*1,97
*26.77
369
90
8.0 | | * | 144 *163 223 67.3 1420 b.00 .43 1860 c3.44 d6.38 104300 118100 *1.80 | Aug
Jan
Jan
Jun
Jun
Aug | 1980
1969
9 1971
2 1956
9 1956
21 1949
27 1989 | | 50 PERO
90 PERO | CENT EXCEE | DS
DS | | 72
5.0 | | | 90 | | | 77
13 | | | See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks Apr. 5 to 7 No flow during one or more days in water years 1956, 1960, 1969, and 1971 Site and datum then in use Current site and datum Estimated a b c d e # 15276000 SHIP CREEK NEAR ANCHORAGE--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990 DAILY MEAN VALUES | | | | | | DAI | LY MEAN V | ALUES | | | | | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|--|-------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 275
264
238
241
239 | 145
150
165
150
143 | e60
e60
e60
e60 | e34
e34
e34
e34
e34 | e28
e28
e28
e28
e28 | e22
e20
e20
e20
e20 | e14
e14
e15
e14
e13 | 259
215
194
181
187 | 719
700
691
726
766 | 313
297
282
270
e260 | 98
91
87
94
94 | 81
78
82
115
98 | | 6 | 250 | 127 | e55 | e32 | e28 | e19 | e13 | 212 | 789 | e240 | 84 | 99 | | 7 | 243 | e120 | e55 | e32 | e28 | e18 | e13 | 217 | 825 | e220 | 79 | 97 | | 8 | 237 | e110 | e55 | e32 | e28 | e17 | e13 | 229 | 777 | e200 | 77 | 117 | | 9 | 222 | e100 | e55 | e32 | e28 | e16 | e13 | 273 | 683 | e190 | 82 | 302 | | 10 | 213 | e90 | e55 | e32 | e28 | e15 | e13 | 354 | 626 | 185 | 81 | 391 | | 11 | 193 | e80 | e55 | e30 | e28 | e15 | e14 | 375 | 585 | 172 | 88 | 372 | | 12 | 182 | e80 | e55 | e30 | e28 | e15 | e16 | 418 | 509 | 165 | 83 | 374 | | 13 | e180 | e80 | e50 | e30 | e28 | e14 | e19 | 464 | 514 | 151 | 79 | 418 | | 14 | e180 | e80 | e50 | e30 | e28 | e9.0 | e24 | 458 | 544 | 150 | 77 | 450 | | 15 | e190 | e80 | e50 | e30 | e28 | e4.5 | e28 | 461 | 498 | 145 | 76 | 409 | | 16 | e190 | e75 | e50 | e30 | e28 | e2.5 | e36 | 520 | 492 | 141 | 78 | 347 | | 17 | 200 | e75 | e50 | e30 | e26 | e2.0 | e38 | 566 | 480 | 136 | 76 | 302 | | 18 | 215 | e75 | e50 | e30 | e26 | e2.0 | e50 | 636 | 397 | 130 | 78 | 268 | | 19 | 215 | e75 | e48 | e30 | e26 | e2.0 | e65 | 636 | 362 | 131 | 81 | 252 | | 20 | 205 | e75 | e48 | e30 | e26 | e2.0 | e80 | 682 | 335 | 135 | 85 | 245 | |
21 | 184 | e70 | e46 | e30 | e24 | e2.0 | e90 | 688 | 326 | 136 | 83 | 228 | | 22 | 181 | e70 | e46 | e30 | e24 | e3.0 | e110 | 559 | e320 | 131 | 98 | 245 | | 23 | 207 | e70 | e44 | e30 | e24 | e4.0 | e120 | 460 | e300 | 125 | 89 | 238 | | 24 | 184 | e70 | e42 | e30 | e22 | e6.0 | 131 | 442 | e320 | 122 | 84 | 226 | | 25 | 166 | e70 | e40 | e30 | e22 | e9.0 | 141 | 490 | e320 | 118 | 79 | 207 | | 26
27
28
29
30
31 | 181
238
172
153
143 | e65
e65
e65
e65 | e38
e36
e36
e36
e36 | e30
e30
e30
e30
e30 | e22
e22
e22
 | e12
e13
e13
e14
e15
e14 | 149
163
198
241
242 | 572
610
611
710
721
737 | 329
321
316
317
317 | 112
108
108
120
114
112 | 95
91
91
e95
e90
e80 | 196
193
193
183
200 | | TOTAL | 6322 | 2750 | 1517 | 960 | 734 | 360.0 | 2090 | 14137 | 15204 | 5219 | 2643 | 7006 | | MEAN | 204 | 91.7 | 48.9 | 31.0 | 26.2 | 11.6 | 69.7 | 456 | 507 | 168 | 85.3 | 234 | | MAX | 275 | 165 | 60 | 34 | 28 | 22 | 242 | 737 | 825 | 313 | 98 | 450 | | MIN | 141 | 65 | 36 | 30 | 22 | 2.0 | 13 | 181 | 300 | 108 | 76 | 78 | | AC-FT | 12540 | 5450 | 3010 | 1900 | 1460 | 714 | 4150 | 28040 | 30160 | 10350 | 5240 | 13900 | | | | | | | ADJUSTED | TO INCLU | DE DIVERSI | ION | | | | | | MEAN | 225 | 119 | 82.4 | 56.4 | 49.4 | 36.4 | 94.1 | 482 | 533 | 200 | 115 | 250 | | CFSM | 2.49 | 1.31 | 0.91 | 0.62 | 0.54 | 0.40 | 1.04 | 5.32 | 5.89 | 2.21 | 1.27 | 2.76 | | IN | 2.87 | 1.47 | 1.05 | 0.72 | 0.57 | 0.46 | 1.16 | 6.13 | 6.57 | 2.55 | 1.47 | 3.08 | | AC-FT | 13840 | 7080 | 5060 | 3470 | 2740 | 2240 | 5600 | 29610 | 31730 | 12300 | 7080 | 14860 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | R WATER Y | EARS 1947 | - 1990, | BY WATER | YEAR (WY) | # | | | MEAN | 154 | 80.4 | 47.6 | 30.5 | 20.8 | 15.3 | 22.6 | 156 | 445 | 317 | 223 | 215 | | MAX | 302 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1987 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | 1969 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1989 CALENDAR YEAR | FOR 1990 WATER YEAR | WATER YEARS 1947 - 1990# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 57087.0 | 58942.0 | | | ANNUAL MEAN | 156 | 161 | 144 | | ANNUAL MEAN | *184 | *187 | *163 | | HIGHEST ANNUAL MEAN | | | 223 1980 | | LOWEST ANNUAL MEAN | | | 67.3 1969 | | HIGHEST DAILY MEAN | 1130 Aug 27 | 825 Jun 7 | 1420 Aug 9 1971 | | LOWEST DAILY MEAN | 6.0 Mar 3 | a2.0 Mar 17 | b.00 Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 6.4 Mar 2 | 2.2 Mar 16 | .43 Jan 9 1956 | | MAXIMUM PEAK FLOW | | 862 Jun 7 | 1860 Jun 21 1949 | | MAXIMUM PEAK STAGE | | 6.02 Jun 7 | c3.44 Jun 21 1949 | | MAXIMUM PEAK STAGE | | | d6.38 Aug 27 1989 | | ANNUAL RUNOFF (AC-FT) | 113200 | 116900 | 104600 | | ANNUAL RUNOFF (AC-FT) | *133900 | *135600 | *118100 | | ANNUAL RUNOFF (CFSM) | *2.04 | *2.06 | *1.80 | | ANNUAL RUNOFF (IN) | *27.74 | *28.10 | *24.46 | | 10 PERCENT EXCEEDS | 369 | 445 | 369 | | 50 PERCENT EXCEEDS | 115 | 87 | 78 | | 90 PERCENT EXCEEDS | 8.0 | 18 | 13 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks a Mar. 17 to 21 b No flow during one or more days in water years 1956, 1960, 1969, and 1971 c Site and datum then in use d Current site and datum DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | | DAILY MEAN VALUES | | | | | | | | | | | | |--------------|-------------------|------------|------------|------------|------------|------------|------------|-----------|------------|--------------|------------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 175 | e66 | e25 | e15 | e14 | e14 | e11 | e30 | 260 | 409 | 199 | 119 | | 2 | 151 | e66 | e25 | e15 | e14 | e14 | e11 | e38 | 267 | 368 | 204 | 118 | | 3 | 146 | e66 | e24 | e15 | e14 | e14 | e11 | 44 | 285 | 346 | 199 | 121 | | 4 | 137 | e66 | e24 | e15 | e14 | e14 | e11 | 50 | 326 | 343 | 193 | 130 | | 5 | 145 | e66 | e23 | e15 | e14 | e14 | e11 | 50 | 301 | 350 | 188 | 134 | | 6 | 142 | e64 | e23 | e15 | e14 | e14 | e11 | 57 | 305 | 297 | 177 | 137 | | 7 | 140 | e62 | e22 | e15
e15 | e14 | e14 | e11 | 62
59 | 295
294 | 276 | 169
160 | 136
140 | | 8
9 | 136
120 | e60
e58 | e22
e21 | e15 | e14
e14 | e14
e14 | e11
e11 | 59
56 | 294 | 266
306 | 157 | 140 | | 10 | 116 | e56 | e21 | e15 | e14 | e14 | e11 | 54 | 294 | 292 | 150 | 158 | | 11 | 119 | e52 | e21 | e15 | e14 | e13 | e11 | 54 | 330 | 428 | 150 | 173 | | 12 | 116 | e50 | e20 | e15 | e14 | e13 | e11 | 53 | 380 | 452 | 148 | 161 | | 13 | 106 | e47 | e20 | e15 | e14 | e13 | e11 | 56 | 407 | 397 | 143 | 158 | | 14 | 103 | e45 | e19 | e15 | e14 | e13 | e11 | 55 | 454 | 361 | 138 | 156 | | 15 | e80 | e43 | e19 | e15 | e14 | e13 | e11 | 57 | 491 | 319 | 137 | 153 | | 16 | e80 | e41 | e19 | e15 | e14 | e13 | e11 | 64 | 476 | 316 | 131 | 173 | | 17 | e75 | e40 | e18 | e15 | e14 | e13 | e11 | 74 | 470 | 321 | 188 | 201 | | 18 | e75 | e38 | e18 | e15 | e14 | e13 | e11 | 81 | 442 | 291 | 201 | 190 | | 19 | e70 | e36 | e18 | e15 | e14 | e13 | e11 | 78 | 441 | 280 | 148 | 176 | | 20 | e70 | e35 | e17 | e15 | e14 | e13 | e11 | 94 | 508 | 274 | 118 | 178 | | 21 | e70 | e34 | e17 | e15 | e14 | e12 | e11 | 129 | 568 | 254 | 96 | 164 | | 22 | e70 | e33 | e17 | e15 | e14 | e12 | e11 | 156 | 598 | 245 | 92 | 154 | | 23 | e70 | e32 | e16 | e15 | e14 | e12 | e12 | 194 | 585 | 247 | 87 | 157 | | 24 | e70 | e31 | e16 | e15 | e14 | e12 | e13 | 242 | 529 | 236 | 86 | 145 | | 25 | e70 | e30 | e16 | e15 | e14 | e12 | e14 | 312 | 493 | 220 | 106 | 138 | | 26 | e68 | e29 | e15 | e15 | e14 | e12 | e15 | 335 | 438 | 205 | 111 | 164 | | 27 | e68 | e28 | e15 | e15 | e14 | e12 | e17 | 297 | 418 | 192 | 105 | 184 | | 28 | e68 | e27 | e15 | e15 | e14 | e12 | e19 | 276 | 405 | 186 | 110 | 169 | | 29 | e68 | e26 | e15 | e15 | | e12 | e21 | 328 | 393 | 200 | 115 | 165 | | 30 | e68 | e26 | e15 | e15 | | e12 | e25 | 308 | 415 | 196 | 117 | 155 | | 31 | e68 | | e15 | e15 | | e12 | | 277 | | 192 | 118 | | | TOTAL | 3060 | 1353 | 591 | 465 | 392 | 402 | 378 | 4020 | 12164 | 9065 | 4441 | 4652 | | MEAN | 98.7 | 45.1 | 19.1 | 15.0 | 14.0 | 13.0 | 12.6 | 130 | 405 | 292 | 143 | 155 | | MAX | 175
68 | 66
26 | 25
15 | 15
15 | 14
14 | 14
12 | 25
11 | 335
30 | 598
260 | 452 | 204
86 | 201 | | MIN
AC-FT | 6070 | 2680 | 1170 | 922 | 778 | 797 | 750 | 7970 | 24130 | 186
17980 | 8810 | 118
9230 | | AC-F1 | 0070 | 2000 | 11/0 | | | | | | 24130 | 1/900 | 0010 | 9230 | | | | | | | ADJUSTED | TO INCLUI | E DIVERSI | ON | | | | | | MEAN | 129 | 78.7 | 51.3 | 46.4 | 39.8 | 32.7 | 33.7 | 156 | 428 | 317 | 168 | 177 | | CFSM | 1.43 | 0.87 | 0.57 | 0.51 | 0.44 | 0.36 | 0.37 | 1.72 | 4.73 | 3.50 | 1.86 | 1.96 | | IN | 1.65 | 0.97 | 0.65 | 0.59 | 0.46 | 0.42 | 0.42 | 1.99 | 5.28 | 4.03 | 2.14 | 2.18 | | AC-FT | 7958 | 4681 | 3151 | 2851 | 2213 | 2013 | 2008 | 9595 | 25462 | 19465 | 10351 | 10551 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER YE | CARS 1947 | - 1991, | BY WATER | YEAR (WY |)# | | | MEAN | 153 | 79.6 | 47.0 | 30.1 | 20.6 | 15.3 | 22.4 | 156 | 444 | 317 | 221 | 214 | | MAX | 302 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1987 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | 1969 | | | | | | | | | | | | | | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1990 CALENDAR YEAR | FOR 1991 WATER YEAR | WATER YEARS 1947 - 1991# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 53357.0 | 40983 | | | ANNUAL MEAN | 146 | 112 | 144 | | ANNUAL MEAN | *173 | *138 | *163 | | HIGHEST ANNUAL MEAN | | | 223 1980 | | LOWEST ANNUAL MEAN | | | 67.3 1969 | | HIGHEST DAILY MEAN | 825 Jun 7 | 598 Jun 22 | 1420 Aug 9 1971 | | LOWEST DAILY MEAN | a2.0 Mar 17 | b11 Apr 1 | c.00 Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 2.2 Mar 16 | 11 Apr 1 | .43 Jan 9 1956 | | MAXIMUM PEAK FLOW | | 917 Jun 23 | 1860 Jun 21 1949 | | MAXIMUM PEAK STAGE | | 5.82 Jun 23 | d3.44 Jun 21 1949 | | MAXIMUM PEAK STAGE | | | f6.38 Aug 27 1989 | | ANNUAL RUNOFF (AC-FT) | 105800 | 81290 | 104100 | | ANNUAL RUNOFF (AC-FT) | *125400 | *100300 | *118100 | | ANNUAL RUNOFF (CFSM) | *1.91 | *1.53 | *1.80 | | ANNUAL RUNOFF (IN) | *25.98 | *20.78 | *24.46 | | 10 PERCENT EXCEEDS | 445 | 310 | 368 | | 50 PERCENT EXCEEDS | 70 | 56 | 77 | | 90 PERCENT EXCEEDS | 15 | 13 | 13 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks AMAR. 17 to 22 b Apr. 1 to 22 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Site and datum then in use f Current site and datum ## 15276000 SHIP CREEK NEAR ANCHORAGE--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | Dibein | nton, con | C I DDI II | DAII | LY MEAN | | DR 1991 | TO DELTER | IDBN 1992 | | | |----------|------------|------------|------------|------------|--------------|------------|------------|----------|------------|------------
------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 153 | 69 | e35 | e20 | e20 | e16 | e12 | 42 | 608 | 455 | 171 | 156 | | 2 | 146 | 71 | e35 | e20 | e20 | e16 | e12 | 40 | 611 | 464 | 160 | 207 | | 3 | 147 | 68 | e35 | e20 | e20 | e16 | e12 | 40 | 596 | 473 | 157 | 194 | | 4 | 144 | 70 | e35 | e20 | e20 | e16 | e12 | 39 | 561 | 468 | 166 | 183 | | 5 | 131 | 74 | e35 | e20 | e20 | e16 | e12 | 38 | 541 | 447 | 194 | 184 | | 6 | 127 | 73 | e35 | e18 | e22 | e14 | e14 | 37 | 546 | 412 | 183 | 213 | | 7 | 121 | 67 | e35 | e18 | e22 | e14 | e14 | 38 | 576 | 383 | 170 | 206 | | 8 | 116 | 63 | e35 | e18 | e22 | e14 | e16 | 45 | 620 | 346 | 154 | 183 | | 9
10 | 110
110 | 63
58 | e30
e30 | e18
e18 | e22
e22 | e14
e14 | e16
e18 | 51
54 | 631
659 | 327
334 | 141
131 | 174
164 | | | | | | | | | | | | | | | | 11 | 107 | 54 | e30 | e16 | e24 | e12 | e18 | 55 | 697 | 392 | 135 | 155 | | 12 | 100 | e50 | e30 | e16 | e24 | e12 | e20 | 59 | 674 | 370 | 128 | 149 | | 13 | 106 | e50
e50 | e30 | e16 | e24 | e12 | e22 | 70 | 646 | 353 | 124 | 143
136 | | 14
15 | 105
93 | e50 | e30
e30 | e16
e16 | e24
e24 | e12
e12 | e24
27 | 84
93 | 629
617 | 338
316 | 117
112 | 130 | | | | | | | | | | | | | | | | 16 | 100 | e50 | e30 | e14 | e22 | e10 | 29 | 86 | 568 | 297 | 115 | 122 | | 17 | 99 | e45 | e25 | e14 | e22 | e10 | 29 | 85 | 516 | 293 | 123 | 122 | | 18 | 92 | e45 | e25 | e14 | e22 | e10 | 30 | 98 | 478 | 284 | 113 | 153 | | 19 | 108 | e45 | e25 | e14 | e22 | e10 | 29 | 118 | 472 | 276 | 113 | 138 | | 20 | 101 | e45 | e25 | e14 | e22 | e10 | 29 | 154 | 474 | 293 | 116 | 120 | | 21 | 82 | e45 | e25 | e16 | e20 | e10 | 31 | 190 | 472 | 283 | 105 | 113 | | 22 | 92 | e45 | e25 | e16 | e20 | e10 | 32 | 239 | 475 | 271 | 103 | 110 | | 23 | 76 | e45 | e25 | e16 | e20 | e10 | 32 | 274 | 451 | 253 | 103 | 98 | | 24 | 79 | e45 | e25 | e16 | e20 | e10 | 35 | 319 | 421 | 240 | 102 | 97 | | 25 | 72 | e40 | e25 | e16 | e20 | e10 | 38 | 386 | 409 | 235 | 113 | 94 | | 26 | 81 | e40 | e24 | e18 | e18 | e10 | 41 | 464 | 392 | 231 | 134 | 91 | | 27 | 100 | e40 | e24 | e18 | e18 | e10 | 45 | 499 | 413 | 214 | 120 | 93 | | 28 | 77 | e40 | e24 | e18 | e18 | e10 | 47 | 518 | 424 | 205 | 114 | e100 | | 29 | 80 | e40 | e22 | e18 | e18 | e10 | 47 | 530 | 474 | 199 | 111 | e95 | | 30 | 71 | e40 | e22 | e18 | | e10 | 46 | 554 | 488 | 188 | 118 | e90 | | 31 | 70 | | e22 | e18 | | e10 | | 595 | | 179 | 167 | | | TOTAL | 3196 | 1580 | 883 | 528 | 612 | 370 | 789 | 5894 | 16139 | 9819 | 4113 | 4213 | | MEAN | 103 | 52.7 | 28.5 | 17.0 | 21.1 | 11.9 | 26.3 | 190 | 538 | 317 | 133 | 140
213 | | MAX | 153 | 74 | 35 | 20 | 24 | 16 | 47 | 595 | 697 | 473 | 194 | 213 | | MIN | 70 | 40 | 22 | 14 | 18 | 10 | 12 | 37 | 392 | 179 | 102 | 90 | | AC-FT | 6340 | 3130 | 1750 | 1050 | 1210 | 734 | 1560 | 11690 | 32010 | 19480 | 8160 | 8360 | | | | | | | ADJUSTED | TO INCLU | DE DIVERSI | ION | | | | | | MEAN | 126 | 77.4 | 52.1 | 42.5 | 45.1 | 35.8 | 40.2 | 210 | 562 | 344 | 159 | 169 | | CFSM | 1.39 | 0.86 | 0.58 | 0.47 | 0.50 | 0.40 | 0.44 | 2.32 | 6.21 | 3.80 | 1.76 | 1.87 | | IN | 1.60 | 0.95 | 0.66 | 0.54 | 0.54 | 0.46 | 0.50 | 2.68 | 6.93 | 4.38 | 2.02 | 2.09 | | AC-FT | 7730 | 4600 | 3200 | 2610 | 2590 | 2200 | 2390 | 12930 | 33450 | 21140 | 9770 | 10070 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER Y | EARS 1947 | - 1992, | BY WATER | YEAR (WY) | # | | | MEAN | 152 | 79.1 | 46.6 | 29.8 | 20.6 | 15.2 | 22.5 | 156 | 446 | 317 | 219 | 212 | | MAX | 302 | 177 | 107 | 79.3 | 20.6
54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1987 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | 1969 | | (= / | | 2000 | | | 1,00 | 1,00 | | | 1001 | 1771 | 100 | 1,00 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1991 CALENDAR YEAR | FOR 1992 WATER YEAR | WATER YEARS 1947 - 1992# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 41638 | 48136 | | | ANNUAL MEAN | 114 | 132 | 143 | | ANNUAL MEAN | *138 | *155 | *162 | | HIGHEST ANNUAL MEAN | | | 223 1980 | | LOWEST ANNUAL MEAN | | | 67.3 1969 | | HIGHEST DAILY MEAN | 598 Jun 22 | 697 Jun 11 | 1420 Aug 9 1971 | | LOWEST DAILY MEAN | all Apr 1 | b10 Mar 16 | c.00 Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 11 Apr 1 | 10 Mar 16 | .43 Jan 9 1956 | | MAXIMUM PEAK FLOW | | 750 Jun 11 | 1860 Jun 21 1949 | | MAXIMUM PEAK STAGE | | 5.90 Jun 11 | d3.44 Jun 21 1949 | | MAXIMUM PEAK STAGE | | | f6.38 Aug 27 1989 | | ANNUAL RUNOFF (AC-FT) | 82590 | 95480 | 103900 | | ANNUAL RUNOFF (AC-FT) | *100000 | *112700 | *117400 | | ANNUAL RUNOFF (CFSM) | *1.52 | *1.72 | *1.79 | | ANNUAL RUNOFF (IN) | *20.73 | *23.35 | *24.30 | | 10 PERCENT EXCEEDS | 310 | 431 | 369 | | 50 PERCENT EXCEEDS | 57 | 56 | 76 | | 90 PERCENT EXCEEDS | 13 | 14 | 13 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks Apr. 1 to 22 b Mar. 16 to 31 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Site and datum then in use f Current site and datum DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 # 15276000 SHIP CREEK NEAR ANCHORAGE--Continued DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e90 e19 850 196 e85 e13 2 90 e46 e30 e19 e13 e13 e15 89 e800 193 e85 335 84 e46 e30 e19 e13 e13 e16 96 e750 183 e90 264 e46 e14 5 79 e46 e28 e18 e14 e13 e16 113 e650 168 e95 332 6 117 e44 e28 e18 e14 e13 e16 117 e600 158 e95 333 117 e44 e28 e18 e14 e13 e16 124 e550 149 92 362 8 125 e500 141 89 302 92 e42 e28 e18 e15 e13 e16 e42 e26 e13 128 486 93 10 77 e42 e26 e17 e15 e13 e18 131 436 147 88 255 11 69 e42 e26 e17 e15 e13 e20 125 438 155 89 218 12 13 70 76 e17 e17 223 211 e40 e26 e15 e13 e22 123 440 158 91 148 90 160 e26 420 e40 e15 e13 e24 14 70 e40 e24 e16 e15 e13 27 178 413 165 159 203 15 64 e38 e24 e16 e15 e13 29 218 405 158 234 194 16 62 e38 e24 e16 e14 e14 33 276 395 158 220 410 17 e60e38 e24 e16 e14 e14 e14 37 345 357 149 172 462 e15 401 147 154 383 18 e60 e36 e24 e14 40 333 1 0 e60 e36 e24 e15 e14 e14 37 464 304 125 131 378 2.0 e60e36 e22 e15 e14 e14 37 528 307 121 145 415 21 e55 e36 e22 e14 e14 ₽14 37 590 322 113 155 567 2.2 e55 e34 e22 e14 e14 e14 39 626 325 108 164 456 23 e34 e13 e14 609 137 397 e55 e22 e14 43 311 102 24 e55 e34 e22 e13 e14 e14 48 637 281 97 128 358 25 e55 e22 262 102 340 e34 e13 e14 e14 58 621 123 26 e55 67 570 235 119 e32 e20 e13 e13 e15 95 319 2.7 e50 e20 76 530 234 82 129 322 e32 e13 e13 e15 e32 e20 e13 e13 220 113 29 e50 e30 e20 e13 e15 72 610 210 e80 127 360 30 e50 e30 e20 e13 --e15 77 684 205 e80 176 557 781 10716 TOTAL 2147 1160 756 487 394 425 1063 12739 4174 3987 10227 MEAN 38.7 24.4 14.1 13.7 35.4 78 425 135 129 341 117 50 19 15 MAX 30 15 781 850 196 234 567 20 MIN 50 30 13 13 13 15 84 205 80 85 194 4260 2300 1500 781 843 2110 21260 25270 8280 7910 20290 ADJUSTED TO INCLUDE DIVERSION | C.T. | יאידפידפים ה | E MONTUIV | MENN | עידעם | FOD | משידות | VENDO | 1047 | 1002 | DV WATED | VEND | (MV) # | |------|--------------|-----------|------|-------|-----|--------|-------|------|------|----------|------|----------| 39.1 $\begin{smallmatrix}0.43\\0.45\end{smallmatrix}$ 2170 | MEAN | 150 | 78.2 | 46.1 | 29.5 | 20.5 | 15.2 | 22.8 | 160 | 446 | 313 | 217 | 215 | |------|------|------|------|------|------|------|------|------|------|------|------|------| | MAX | 302 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1987 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | | 29.7 0.33 1830 48.6 0.54 2890 367 4.06 4.68 22590 452 4.99 5.57 26880 161 1.78 9890 158 1.75 9720 368 4.06 21870 41.9 $0.46 \\ 0.53$ 2580 MEAN CESM IN AC-FT 96.2 1.06 1.23 5920 63.8 0.70 0.79 3800 50.4 0.56 3100 See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Estimated | SUMMARY STATISTICS | FOR 1992 CALEND | AR YEAR | FOR 1993 WATE | ER YEAR | WATER YEARS | 1947 - 1993# | |--------------------------|-----------------|---------|---------------|---------|-------------|--------------| | ANNUAL TOTAL | 46540 | | 48275 | | | | | ANNUAL MEAN | 127 | | 132 | | 143 | | | ANNUAL MEAN | *152 | | *156 | | *162 | | | HIGHEST ANNUAL MEAN | | | | | 223 | 1980 | | LOWEST ANNUAL MEAN | | | | | 67.3 | 1969 | | HIGHEST DAILY MEAN | 697 | Jun 11 | 850 | Jun 1 | 1420 | Aug 9 1971 | | LOWEST DAILY MEAN | a10 | Mar 16 | b13 | Jan 23 | c.00 | Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 10 | Mar 16 | 13 | Jan 23 | .43 | Jan 9 1956 | | MAXIMUM PEAK FLOW | | | d942 | Jun 1 | 1860 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | 6.10 | Jun 1 | f3.44 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | | q6.38 | Aug 27 1989 | | ANNUAL RUNOFF (AC-FT) | 92310 | | 95750 | | 103700 | 2 | | ANNUAL RUNOFF (AC-FT) | *110000 | | *113200 | | *117400 | | | ANNUAL RUNOFF (CFSM) | *1.67 | | *1.73 | | *1.79 | | | ANNUAL RUNOFF (IN) | *22.78 | | *23.46 | | *24.30 | | | 10 PERCENT EXCEEDS | 431 | | 396 | | 369 | | | 50 PERCENT EXCEEDS | 46 | | 55 | | 76 | | | 90 PERCENT EXCEEDS | 14 | | 14 | | 13 | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks a Mar. 16 to Mar. 31 b From Jan. 23 to Feb. 3, and Feb. 26 to Mar. 15 c No
flow during one or more days in water years 1956, 1960, 1969, and 1971 Site and datum then in use g Current site and datum DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | ALUES | | | | | | |-----------|-------|----------|-----------|-----------|----------|-----------|----------|---------|----------|-----------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 638 | e130 | e95 | e65 | e32 | e24 | 27 | 83 | 432 | e400 | e110 | 104 | | 2 | 584 | e120 | e95 | e70 | e34 | e24 | 28 | 96 | 430 | 479 | e110 | 99 | | 3 | 495 | e130 | e95 | e75 | e36 | e24 | 29 | 103 | 458 | 458 | e110 | 93 | | 4 | 453 | e150 | e90 | e75 | e40 | e24 | 28 | 90 | 497 | 419 | e110 | 88 | | 5 | 510 | e140 | e90 | e70 | e46 | e24 | 30 | 84 | 615 | 392 | e110 | 83 | | 6 | 434 | e130 | e90 | e70 | e48 | e24 | 30 | 91 | 698 | 356 | e110 | 78 | | 7 | 312 | e120 | e90 | e65 | e46 | e24 | 31 | 92 | 682 | 319 | e110 | 77 | | 8 | 321 | e140 | e85 | e65 | e42 | e24 | 29 | 88 | 649 | 322 | e100 | 78 | | 9 | 393 | e160 | e85 | e60 | e40 | e24 | 27 | 87 | 625 | 339 | e100 | 81 | | 10 | 397 | e140 | e85 | e60 | e38 | e24 | 27 | 102 | 624 | 314 | e100 | 93 | | 11 | 333 | e120 | e85 | e50 | e34 | e24 | 29 | 119 | 597 | 290 | e110 | 134 | | 12 | 395 | e120 | e80 | e55 | e32 | e24 | 28 | 143 | 605 | 277 | e100 | 113 | | 13 | 387 | e120 | e80 | e55 | e30 | e24 | 26 | e140 | 615 | 272 | 112 | 107 | | 14 | 378 | e110 | e80 | e55 | e28 | e24 | 27 | e160 | 709 | 260 | 107 | 116 | | 15 | 363 | e100 | e80 | e50 | e30 | e24 | 25 | e180 | 880 | 262 | 104 | 124 | | 16 | 341 | e100 | e80 | e48 | e26 | e24 | 30 | e220 | 993 | 265 | 97 | 116 | | 17 | 341 | e100 | e75 | e46 | e26 | e22 | 28 | e260 | 833 | 242 | 92 | 110 | | 18 | 300 | e110 | e75 | e44 | e26 | e22 | 24 | e220 | 714 | 246 | 92 | 129 | | 19 | 275 | e110 | e75 | e42 | e26 | e22 | 28 | e240 | 645 | 232 | 89 | 115 | | 20 | 250 | e120 | e70 | e38 | e26 | e22 | 32 | e220 | 540 | 187 | 92 | 119 | | 21 | 232 | e120 | e70 | e34 | e26 | e22 | 42 | e220 | 570 | 209 | 98 | 116 | | 22 | 217 | e130 | e70 | e30 | e24 | e22 | 49 | e200 | 641 | 215 | 92 | 115 | | 23 | 187 | e140 | e65 | e26 | e24 | e22 | 55 | e220 | 538 | 187 | 82 | 122 | | 24 | 190 | e120 | e65 | e26 | e24 | e22 | 58 | e240 | 537 | 166 | 79 | 116 | | 25 | 198 | e110 | e65 | e26 | e24 | e22 | 70 | e220 | 545 | 133 | 106 | 110 | | 26 | e180 | e100 | e60 | e26 | e24 | e22 | 75 | e220 | e550 | e120 | 99 | 116 | | 27 | e160 | e100 | e60 | e26 | e24 | e22 | 89 | e220 | e450 | e120 | 126 | 108 | | 28 | e130 | e100 | e60 | e28 | e24 | e22 | 85 | e280 | e400 | e120 | 143 | 101 | | 29 | e150 | e95 | e60 | e28 | | e22 | 84 | e360 | e400 | e110 | 124 | 97 | | 30 | e170 | e95 | e60 | e30 | | e24 | 85 | 385 | e380 | e120 | 115 | 93 | | 31 | e150 | | e60 | e30 | | e26 | | 389 | | e120 | 109 | | | TOTAL | 9864 | 3580 | 2375 | 1468 | 880 | 720 | 1255 | 5772 | 17852 | 7951 | 3238 | 3151 | | MEAN | 318 | 119 | 76.6 | 47.4 | 31.4 | 23.2 | 41.8 | 186 | 595 | 256 | 104 | 105 | | MAX | 638 | 160 | 95 | 75 | 48 | 26 | 89 | 389 | 993 | 479 | 143 | 134 | | MIN | 130 | 95 | 60 | 26 | 24 | 22 | 24 | 83 | 380 | 110 | 79 | 77 | | AC-FT | 19570 | 7100 | 4710 | 2910 | 1750 | 1430 | 2490 | 11450 | 35410 | 15770 | 6420 | 6250 | | | | | | | ADJUSTED | TO INCLUD | E DIVERS | ION | | | | | | MEAN | 345 | 143 | 91.1 | 65.2 | 46.2 | 40.4 | 60.6 | 204 | 617 | 286 | 133 | 127 | | CFSM | 3.82 | 1.58 | 1.01 | 0.72 | 0.51 | 0.45 | 0.67 | 2.25 | 6.81 | 3.16 | 1.47 | 1.41 | | IN | 4.40 | 1.76 | 1.16 | 0.83 | 0.53 | 0.51 | 0.75 | 2.60 | 7.60 | 3.64 | 1.70 | 1.57 | | AC-FT | 21240 | 8510 | 5600 | 4010 | 2570 | 2480 | 3610 | 12530 | 36700 | 17590 | 8190 | 7580 | | AC-FI | 21240 | | | | | | | | | | | 7560 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER YE | ARS 1947 | - 1994, | BY WATER | YEAR (WY) | # | | | MEAN | 154 | 79.0 | 46.8 | 29.9 | 20.7 | 15.3 | 23.2 | 161 | 449 | 312 | 215 | 213 | | MAX | 318 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1994 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | 1969 | | · · · ± / | | | | | | | | | | | -220 | _, , | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1993 CALENDAR YEAR | FOR 1994 WATER YEAR | WATER YEARS 1947 - 1994# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 60031 | 58106 | | | ANNUAL MEAN | 164 | 159 | 144 | | ANNUAL MEAN | *187 | *180 | *163 | | HIGHEST ANNUAL MEAN | | | 223 1980 | | LOWEST ANNUAL MEAN | | | 67.3 1969 | | HIGHEST DAILY MEAN | 850 Jun 1 | 993 Jun 16 | 1420 Aug 9 1971 | | LOWEST DAILY MEAN | a13 Jan 23 | b22 Mar 17 | c.00 Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 13 Jan 23 | 22 Mar 17 | .43 Jan 9 1956 | | MAXIMUM PEAK FLOW | | 1100 Jun 16 | 1860 Jun 21 1949 | | MAXIMUM PEAK STAGE | | 6.25 Jun 16 | d3.44 Jun 21 1949 | | MAXIMUM PEAK STAGE | | | f6.38 Aug 27 1989 | | ANNUAL RUNOFF (AC-FT) | 119100 | 115300 | 104000 | | ANNUAL RUNOFF (AC-FT) | *135800 | *130600 | *118100 | | ANNUAL RUNOFF (CFSM) | *2.07 | *1.99 | *1.80 | | ANNUAL RUNOFF (IN) | *28.13 | *27.06 | *24.46 | | 10 PERCENT EXCEEDS | 417 | 408 | 370 | | 50 PERCENT EXCEEDS | 100 | 100 | 78 | | 90 PERCENT EXCEEDS | 14 | 24 | 13 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks a From Jan. 23 to Feb. 3, and Feb. 26 to Mar. 15 b Mar. 17 to 29 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Site and datum then in use f Current site and datum DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | ALUES | | | | | | |----------------------------------|---------------------------------|------------------------------|--|--|---------------------------------|---------------------------------------|----------------------------|--|---------------------------------|--|---------------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 90 | e55 | e55 | e48 | e28 | e24 | 29 | 112 | 366 | 440 | 201 | 144 | | 2 | 89 | e60 | e55 | e46 | e34 | e24 | 29 | 130 | 350 | 416 | 192 | 147 | | 3 | 90 | e60 | e55 | e38 | e34 | e22 | 30 | 159 | 346 | 439 | 194 | 139 | | 4 | 96 | e60 | e55 | e36 | e34 | e22 | 32 | 164 | 362 | 411 | 199 | 133 | | 5 | 90 | e60 | e55 | e36 | e34 | e22 | 31 | 168 | 373 | 415 | 199 | 144 | | 6 | 93 | e55 | e50 | e36 | e34 | e22 | 30 | 146 | 379 | 421 | 193 | 144 | | 7 | 91 | e55 | e50 | e34 | e32 | e22 | 31 | 140 | 372 | 442 | 183 | 141 | | 8 | 87 | e55 | e50 | e36 | e32 | e22 | 30 | 168 | 392 | 405 | 163 | 158 | | 9 | 89 | e55 | e50 | e42 | e30 | e22 | 32 | 226 | 437 | 343 | 159 | 169 | | 10 | 97 | e55 | e50 | e42 | e30 | e22 | 31 | 312 | 558 | 315 | 159 | 168 | | 11 | 101 | e55 | e50 | e42 | e28 | e22 | 31 | 347 | 749 | 313 | 149 | 159 | | 12 | 105 | e55 | e50 | e42 | e28 | e22 | 33 | 383 | 874 | 299 | 155 | 168 | | 13 | 99 | e55 | e50 | e42 | e28 | e24 | 34 | 428 | 903 | 287 | 157 | 171 | | 14 | 91 | e55 | e50 | e42 | e28 | e24 | 35 | 397 | 860 | 279 | 145 | 161 | | 15 | 74 | e55 | e50 | e42 | e28 | e24 | 35 | 403 | 731 | 254 | 139 | 152 | | 16 | 81 | e55 | e50 | e42 | e28 | e24 | 34 | 382 | 618 | 234 | 132 | 151 | | 17 | 77 | e55 | e50 | e42 | e28 | e24 | 35 | 353 | 531 | 220 | 127 | 139 | | 18 | 68 | e55 | e50 | e40 | e28 | e24 | 36 | 341 | 516 | 215 | 123 | 137 | | 19 | 64 | e55 | e50 | e40 | e26 | e24 | 34 | 334 | 556 | 209 | 122 | 138 | | 20 | 61 | e55 | e50 | e42 | e26 | e24 | 36 | 337 | 553 | 200 | 120 | 641 | | 21
22
23
24
25 | 55
e55
e55
e60
e65 | e55
e55
e55
e55 | e50
e50
e50
e50
e50 | e42
e40
e40
e36
e38 | e26
e26
e26
e26
e26 | e26
e26
e26
e26
e26 | 38
41
55
69
76 | 367
379
427
509
611 | 490
470
529
478
422 | 203
243
223
238
284 | 114
114
109
111
110 | 1220
926
675
532
448 | | 26
27
28
29
30
31 | e60
e60
e60
e60
e55 | e55
e55
e55
e55
 | e50
e48
e48
e48
e48
e48 | e38
e38
e36
e36
e36
e34 | e24
e24
e24
 | e26
e26
e26
e26
e28
29 | 78
80
82
88
96 | 621
539
487
462
418
389 | 379
353
358
383
415 | 279
247
228
220
246
217 | 106
105
108
95
107
108 | 363
320
287
259
275 | | TOTAL | 2373 | 1670 | 1565 | 1224 | 800 | 751 | 1351 | 10639 | 15103 | 9185 | 4398 | 8809 | | MEAN | 76.5 | 55.7 | 50.5 | 39.5 | 28.6 | 24.2 | 45.0 | 343 | 503 | 296 | 142 | 294 | | MAX | 105 | 60 | 55 | 48 | 34 | 29 | 96 | 621 | 903 | 442 | 201 | 1220 | | MIN | 55 | 55 | 48 | 34 | 24 | 22 | 29 | 112 | 346 | 200 | 95 | 133 | | AC-FT | 4710 | 3310 | 3100 | 2430 | 1590 | 1490 | 2680 | 21100 | 29960 | 18220 | 8720 | 17470 | | | | | | | ADJUSTED | TO INCLUI | E DIVERS | ION | | | | | | MEAN | 101 | 73.1 | 65.3 | 54.4 | 41.2 | 34.3 | 49.6 | 351 | 532 | 326 | 169 | 311 | | CFSM | 1.11 | 0.81 | 0.72 | 0.60 | 0.46 | 0.38 | 0.55 | 3.88 | 5.88 | 3.60 | 1.87 | 3.44 | | IN | 1.28 | 0.90 | 0.83 | 0.69 | 0.47 | 0.44 | 0.61 | 4.48 | 6.56 | 4.15 | 2.16 | 3.84 | | AC-FT | 6180 | 4350 | 4010 | 3340 | 2290 | 2110 | 2950 | 21600 | 31660 | 20030 | 10410 | 18530 | | | | STATISTI | CS OF MON |
THLY MEAN | DATA FOR | WATER YE | ARS 1947 | - 1995, | BY WATER | YEAR (WY |)# | | | MEAN | 152 | 78.6 | 46.8 | 30.1 | 20.9 | 15.5 | 23.6 | 165 | 450 | 311 | 213 | 214 | | MAX | 318 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471 | | (WY) | 1994 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | 1967 | | MIN | 48.7 | 24.3 | 13.9 | 7.13 | 5.36 | 3.61 | 4.77 | 39.9 | 224 | 128 | 85.3 | 55.8 | | (WY) | 1969 | 1969 | 1969 | 1956 | 1983 | 1956 | 1954 | 1971 | 1954 | 1954 | 1990 | 1969 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1994 CALEN | DAR YEAR | FOR 1995 WATE | ER YEAR | WATER YEARS 1 | 947 - 1995# | |--------------------------|----------------|----------|---------------|---------|---------------|-------------| | ANNUAL TOTAL | 47895 | | 57868 | | | | | ANNUAL MEAN | 131 | | 159 | | 144 | | | ANNUAL MEAN | *152 | | *176 | | *163 | | | HIGHEST ANNUAL MEAN | | | | | 223 | 1980 | | LOWEST ANNUAL MEAN | | | | | 67.3 | 1969 | | HIGHEST DAILY MEAN | 993 | Jun 16 | 1220 | Sep 21 | 1420 | Aug 9 1971 | | LOWEST DAILY MEAN | a22 | Mar 17 | b22 | Mar 3 | c.00 | Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 22 | Mar 17 | 22 | Mar 3 | .43 | Jan 9 1956 | | MAXIMUM PEAK FLOW | | | 1440 | Sep 21 | 1860 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | 6.52 | Sep 21 | d3.44 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | | f6.52 | Sep 21 1995 | | ANNUAL RUNOFF (AC-FT) | 95000 | | 114800 | | 104200 | | | ANNUAL RUNOFF (AC-FT) | *109800 | | *127500 | | *118100 | | | ANNUAL RUNOFF (CFSM) | *1.67 | | *1.94 | | *1.80 | | | ANNUAL RUNOFF (IN) | *22.75 | | *26.41 | | *24.46 | | | 10 PERCENT EXCEEDS | 382 | | 417 | | 372 | | | 50 PERCENT EXCEEDS | 65 | | 60 | | 77 | | | 90 PERCENT EXCEEDS | 24 | | 26 | | 14 | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks Amar. 17 to 29 b Mar. 3 to 12 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Site and datum then in use f Current site and datum DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | ALUES | | | | | | |--------------------------------------|--|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|-----------------------------------|------------------------------------|------------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 236
221
210
195
175 | e85
e85
e80
e80 | e55
e55
e55
e55 | e44
e44
e44
e44 | e34
e34
e34
e34 | e26
e26
e26
e26
e26 | e20
e20
e20
e20
e20 | 51
51
51
60
83 | 194
221
227
236
215 | 90
85
88
86
84 | 86
89
80
74
82 | 70
63
62
59
56 | | 6
7
8
9
10 | 162
148
147
175
182 | e80
e75
e75
e75 | e55
e55
e55
e50 | e42
e42
e42
e42
e42 | e34
e32
e32
e32
e32 | e26
e26
e26
e24
e24 | e20
e20
e20
e22
e24 | 98
108
118
123
113 | 184
165
164
146
132 | 85
80
72
74
69 | 86
82
76
73
91 | 53
51
54
49
50 | | 11
12
13
14
15 | 170
174
150
136
139 | e70
e70
e70
e70 | e50
e50
e50
e50
e50 | e42
e40
e40
e40
e40 | e32
e32
e32
e30
e30 | e24
e24
e24
e24
e24 | e26
e28
32
31
32 | 125
139
164
188
e160 | 133
114
109
107
104 | 68
67
71
83
72 | 87
82
77
72
70 | 48
52
54
53
60 | | 16
17
18
19
20 | 130
122
e110
e110
e110 | e65
e65
e65
e65 | e50
e50
e50
e50
e50 | e40
e40
e38
e38
e38 | e30
e30
e30
e30
e30 | e24
e22
e22
e22
e22 | 33
34
36
38
40 | e150
e140
e130
e130
e120 | 102
104
104
102
99 | 71
65
67
67
68 | 72
76
70
67
68 | 65
80
145
133
120 | | 21
22
23
24
25 | e110
e100
e100
e100
e100 | e60
e60
e60
e60 | e48
e48
e48
e48
e48 | e38
e38
e38
e36
e36 | e28
e28
e28
e28
e28 | e22
e22
e22
e22
e22 | 41
40
40
42
44 | e110
e100
130
121
127 | 98
98
99
110
105 | 66
64
62
61
63 | 65
63
61
60
61 | 134
117
103
97
116 | | 26
27
28
29
30
31 | e90
e90
e90
e90
e90
e85 | e60
e60
e55
e55
e55 | e46
e46
e46
e46
e46 | e36
e36
e36
e34
e34 | e28
e28
e26
e26 | e22
e22
e22
e22
e22
e22 | 48
48
44
43
44 | 125
134
135
130
152
168 | 102
98
91
90
92 | 55
61
59
60
92
78 | 76
64
60
62
65
67 | 112
107
105
100
90 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4247
137
236
85
8420 | 2050
68.3
85
55
4070 | 1554
50.1
55
44
3080 | 1224
39.5
44
34
2430 | 886
30.6
34
26
1760 | 730
23.5
26
22
1450 | 970
32.3
48
20
1920 | 3734
120
188
51
7410 | 3945
132
236
90
7820 | 2233
72.0
92
55
4430 | 2264
73.0
91
60
4490 | 2458
81.9
145
48
4880 | | | | | | | ADJUSTED | TO INCLUI | E DIVERSI | ON | | | | | | MEAN
CFSM
IN
AC-FT | 152
1.68
1.94
9370 | 92.9
1.03
1.14
5530 | 67.3
0.74
0.86
4140 | 47.3
0.52
0.60
2900 | 36.7
0.41
0.44
2110 | 31.1
0.34
0.40
1910 | 39.0
0.43
0.48
2320 | 128
1.42
1.63
7880 | 154
1.70
1.90
9160 | 100
1.10
1.27
6150 | 102
1.12
1.29
6240 | 110
1.21
1.36
6540 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER YE | ARS 1947 | - 1996, E | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 152
318
1994
48.7
1969 | 78.4
177
1953
24.3
1969 | 46.9
107
1948
13.9
1969 | 30.3
79.3
1961
7.13
1956 | 21.1
54.6
1961
5.36
1983 | 15.7
42.1
1947
3.61
1956 | 23.8
69.7
1990
4.77
1954 | 164
456
1990
39.9
1971 | 444
798
1977
132
1996 | 307
645
1980
72.0
1996 | 211
510
1981
73.0
1996 | 212
471
1967
55.8
1969 | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted e Estimated | SUMMARY STATISTICS | FOR 1995 CALENI | DAR YEAR | FOR 1996 WAT | ER YEAR | WATER YEAR | S 1947 - 1996# | |--------------------------|-----------------|----------|--------------|---------|------------|----------------| | ANNUAL TOTAL | 60111 | | 26295 | | | | | ANNUAL MEAN | 165 | | 71.8 | | 142 | | | ANNUAL MEAN | *182 | | *88.3 | | *161 | | | HIGHEST ANNUAL MEAN | | | | | 223 | 1980 | | LOWEST ANNUAL MEAN | | | | | 67.3 | 1969 | | HIGHEST DAILY MEAN | 1220 | Sep 21 | 236 | Oct 1 | 1420 | Aug 9 1971 | | LOWEST DAILY MEAN | a22 | Mar 3 | b20 | Apr 1 | c.00 | Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 22 | Mar 3 | 20 | Apr 1 | .43 | Jan 9 1956 | | MAXIMUM PEAK FLOW | | | 375 | Sep 20 | 1860 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | d5.54 | Jun 25 | f3.44 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | | g6.52 | Sep 21 1995 | | ANNUAL RUNOFF (AC-FT) | 119200 | | 52160 | | 103200 | | | ANNUAL RUNOFF (AC-FT) | *132000 | | *64300 | | *116600 | | | ANNUAL RUNOFF (CFSM) | *2.01 | | *0.98 | | *1.78 | | | ANNUAL RUNOFF (IN) | *27.34 | | *13.31 | | *24.16 | | | 10 PERCENT EXCEEDS | 417 | | 133 | | 369 | | | 50 PERCENT EXCEEDS | 90 | | 60 | | 76 | | | 90 PERCENT EXCEEDS | 26 | | 26 | | 14 | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks a Mar. 3 to 12 b Apr. 1 to 8 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Jun. 25 and Sep. 20 f Site and datum then in use g Current site and datum 21 2.2 23 24 25 26 2.7 29 30 TOTAL MEAN MAX MIN MEAN CFSM IN AC-FT MEAN MAX MTN (WY) (WY) Estimated e55 e55 e55 e55 e48 e48 e50 e50 e55 e55 1914 61.7 3800 79.1 0.87 4870 150 318 1994 48.7 1969 81 48 e44 e44 e42 e42 e42 e40 e40 e40 **638** e38 1425 47.5 2830 59.1 0.65 0.73 3520 77 8 177 1953 24.3 1969 55 38 e34 e34 e34 e34 e34 e34 e32 e32 e32 e30 1086 35.0 2150 46.3 0.51 0.59 2850 46 7 107 1948 13.9 1969 38 30 e28 e28 e28 e24 e24 e24 e24 e26 e26 e26 890 32 24 28.7 1770 40.2 0.44 2470 30.3 79.3 1961 7.13 1956 e18 e18 e18 e18 e18 e18 e17 e15 --- 604 26 15 21.6 1200 33.4 0.37 0.38 1860 21 1 54.6 1961 5.36 1983 #### SOUTH-CENTRAL ALASKA DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES # 15276000 SHIP CREEK NEAR ANCHORAGE--Continued DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 301 110 512 81 e55 e38 e30 e26 e24 70 476 73 75 2 e55 e38 e30 e26 e13 e24 79 448 277 109 417 3 e55 e38 e28 e26 ₽14 e24 85 445 259 102 353 e26 e25 489 5 69 e55 e36 e28 e26 e14 e25 109 561 235 92 287 6 66 e55 e28 e26 e25 126 584 227 99 258 209 200 65 e55 e36 e32 e26 e14 e25 158 555 96 240 e32 e24 157 515 103 228 8 64 e50 e36 e14 e25 e24 e25 108 236 10 69 e50 e36 e32 e24 e14 e26 171 440 177 131 237 11 66 e50 e36 e32 e24 e15 e26 177 410 200 147 218 12 13 e32 e32 e22 e22 e15 e15 204 207 e75 e50 e36 e26 410 199 190 203 e70 192 254 189 e50 e36 e26 403
14 e50 e36 e22 e15 e26 202 390 180 234 183 15 e65 e48 e36 e32 e22 e15 e26 188 364 181 202 173 16 e60 e48 e36 e32 e20 e15 e26 176 341 179 191 167 17 e60e48 e36 e30 e20 e16 e27 204 200 322 167 167 175 159 212 18 e55 e46 e36 e28 e20 e16 e27 324 147 19 e55 e46 e36 e28 e19 e17 e27 195 330 151 131 204 2.0 e55 e44 e34 e28 e19 e17 e28 215 337 147 124 186 e18 e18 e19 e19 e20 e20 e22 e22 e22 e22 e22 518 16.7 1030 26.6 0.29 0.34 1630 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1997, BY WATER YEAR (WY)# 15.7 42.1 1947 3.61 1956 13 ADJUSTED TO INCLUDE DIVERSION e28 e28 e30 e32 e34 e38 e44 e50 e60 917 60 24 30.6 1820 40.0 0.44 2380 23.9 69.7 1990 4.77 1954 60 273 330 361 408 424 467 479 494 512 523 531 7986 258 531 15840 70 272 3.01 16730 166 456 1990 39.9 1971 305 323 363 390 385 384 370 356 329 12191 406 584 305 24180 416 4.59 5.12 24730 443 798 1977 1996 132 146 141 136 124 140 137 131 114 114 115 5476 177 301 114 10860 189 2.08 11600 304 645 1980 72.0 1996 142 191 146 144 186 184 160 161 4868 157 398 9660 170 1.88 10470 210 510 1981 73.0 1996 92 178 225 281 316 332 294 270 221 212 7572 252 512 167 259 2.86 15430 212 471 1967 55 8 1969 15020 | # | See Period of | Record an | d Remarks. | Values | shown | on | this | page | are | unadjusted | for | diversion, | |---|---------------|------------|------------|--------|-------|----|------|------|-----|------------|-----|------------| | | unless others | wise noted | | | | | | | | | | | | SUMMARY STATISTICS | FOR 1996 CALENI | DAR YE | AR | FOR 1997 WA | TER YE | AR | WATER YEA | RS 194 | 7 – | 1997# | |--------------------------|-----------------|--------|----|-------------|--------|----|-----------|--------|-----|-------| | ANNUAL TOTAL | 22869 | | | 45447 | | | | | | | | ANNUAL MEAN | 62.5 | | | 125 | | | 142 | | | | | ANNUAL MEAN | *77.7 | | | *136 | | | *161 | | | | | HIGHEST ANNUAL MEAN | | | | | | | 223 | | | 1980 | | LOWEST ANNUAL MEAN | | | | | | | 67.3 | | | 1969 | | HIGHEST DAILY MEAN | 236 | Jun | 4 | 584 | Jun | 6 | 1420 | Aug | 9 | 1971 | | LOWEST DAILY MEAN | a20 | Apr | 1 | b13 | Mar | 1 | c.00 | Jan | 2 | 1956 | | ANNUAL SEVEN-DAY MINIMUM | 20 | Apr | 1 | 14 | Mar | 1 | .43 | Jan | 9 | 1956 | | MAXIMUM PEAK FLOW | | | | 665 | Jun | 5 | 1860 | Jun | 21 | 1949 | | MAXIMUM PEAK STAGE | | | | 5.80 | Jun | 5 | d3.44 | Jun | 21 | 1949 | | MAXIMUM PEAK STAGE | | | | | | | f6.52 | Sep | 21 | 1995 | | ANNUAL RUNOFF (AC-FT) | 45360 | | | 90140 | | | 102900 | | | | | ANNUAL RUNOFF (AC-FT) | *56500 | | | *98500 | | | *116600 | | | | | ANNUAL RUNOFF (CFSM) | *0.86 | | | *1.50 | | | *1.78 | | | | | ANNUAL RUNOFF (IN) | *11.70 | | | *20.41 | | | *24.16 | | | | | 10 PERCENT EXCEEDS | 117 | | | 339 | | | 368 | | | | | 50 PERCENT EXCEEDS | 51 | | | 55 | | | 75 | | | | | 90 PERCENT EXCEEDS | 26 | | | 20 | | | 14 | | | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks Apr. 1 to 8 b Mar. 1 and 2 c No flow during one or more days in water years 1956, 1960, 1969, and 1971 d Site and datum then in use f Current site and datum ## 15276000 SHIP CREEK NEAR ANCHORAGE--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | Diocini | KGE, CODIC | | DAILY | MEAN VAI | | . 2000 10 | | 1001 | | | |-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e234 | e90 | e60 | e46 | e38 | 32 | 32 | 52 | 460 | 560 | 228 | 208 | | 2 | 219 | e85 | e60 | e48 | e38 | 32 | 29 | 46 | 526 | 526 | 220 | 193 | | 3 | 209 | e85 | e60 | e46 | e38 | 33 | 28 | 45 | 604 | 526 | 223 | 206 | | 4 | 199 | e80 | e60 | e46 | e38 | e32 | 29 | 42 | 637 | 505 | 235 | 215 | | 5 | 201 | e80 | e55 | e46 | e36 | e32 | 27 | 40 | 641 | 567 | 221 | 282 | | 6 | 193 | e75 | e55 | e46 | e36 | 32 | 28 | 40 | 615 | 541 | 206 | 265 | | 7 | 184 | e75 | e55 | e44 | e36 | 31 | 27 | 43 | 588 | 519 | 194 | 253 | | 8
9 | 179
165 | e70
e76 | e50
e50 | e44
e44 | e36
e36 | 31
31 | 28
28 | 49
53 | 584
593 | 523
482 | 189
183 | 238
216 | | 10 | 160 | e85 | e50
e47 | e44 | e36 | 31 | 28
28 | 5 <i>3</i> | 636 | 482 | 175 | 202 | | | | | | | | | | | | | | | | 11 | 157 | e91 | e61 | e42 | e36 | 32 | 28 | 56 | 667 | 428 | 166 | 192 | | 12 | 152 | e72 | e55 | e42 | e36 | 32 | 29 | 60
66 | 656 | 396 | 157 | 186 | | 13
14 | 149
151 | e72
e71 | e50
e50 | e42
e44 | e36
e36 | 32
31 | 29
29 | 66
77 | 641
625 | 378
358 | 153
154 | 180
169 | | 15 | 147 | e70 | e50 | e44 | e36 | 30 | 30 | 95 | 703 | 346 | 154 | 159 | | 15 | 14/ | e70 | esu | 644 | e36 | 30 | 30 | 95 | 703 | 340 | 154 | 159 | | 16 | 141 | e72 | e50 | e42 | e36 | 30 | 30 | 108 | 792 | 337 | 151 | 154 | | 17 | 137 | e68 | e50 | e42 | e36 | 30 | 30 | 114 | 819 | 331 | 150 | 149 | | 18 | 132 | e67 | e48 | e40 | e36 | e30 | 31 | 138 | 826 | 324 | 153 | 147 | | 19 | 129 | e67 | e46 | e40 | e36 | e30 | 32 | 152 | 781 | 349 | 146 | 154 | | 20 | 121 | e69 | e48 | e40 | e36 | 32 | 34 | 179 | 757 | 446 | 178 | 147 | | 21 | e110 | e69 | e48 | e40 | 35 | 33 | 35 | 189 | 766 | 430 | 166 | 143 | | 22 | 122 | e66 | e46 | e40 | 34 | 33 | 37 | 181 | 751 | 381 | 155 | 139 | | 23 | 120 | e64 | e46 | e42 | e34 | e34 | 39 | 183 | 783 | 345 | 146 | 136 | | 24 | 114 | e70 | e46 | e40 | e34 | e34 | 38 | 190 | 804 | 319 | 145 | 139 | | 25 | 116 | e65 | e50 | e42 | e34 | e36 | 40 | 189 | 766 | 302 | 136 | 132 | | 26 | e109 | e65 | e46 | e42 | e34 | e36 | 40 | 188 | 765 | 285 | 129 | 127 | | 27 | e95 | e65 | e50 | e40 | e34 | e38 | 46 | 204 | 759 | 267 | 123 | 124 | | 28 | e95 | e73 | e60 | e40 | e32 | 37 | 49 | 244 | 780 | 252 | 144 | 121 | | 29 | e90 | e80 | e70 | e40 | | 29 | 48 | 321 | 710 | 239 | 287 | 118 | | 30 | e100 | e70 | e55 | e38 | | 28 | 51 | 404 | 639 | 237 | 240 | 115 | | 31 | e90 | | e48 | e38 | | 28 | | 436 | | 240 | 220 | | | TOTAL | 4520 | 2207 | 1625 | 1312 | 999 | 992 | 1009 | 4234 | 20674 | 12186 | 5527 | 5209 | | MEAN | 146 | 73.6 | 52.4 | 42.3 | 35.7 | 32.0 | 33.6 | 137 | 689 | 393 | 178 | 174 | | MAX | 234 | 91 | 70 | 48 | 38 | 38 | 51 | 436 | 826 | 567 | 287 | 282 | | MIN | 90 | 64 | 46 | 38 | 32 | 28 | 27 | 40 | 460 | 237 | 123 | 115 | | AC-FT | 8970 | 4380 | 3220 | 2600 | 1980 | 1970 | 2000 | 8400 | 41010 | 24170 | 10960 | 10330 | | | | | | Δ | DJUSTED T | O INCLUDE | DIVERSIO |)N | MEAN | 152 | 79.8 | 58.9 | 48.6 | 42.3 | 38.1 | 39.5 | 143 | 697 | 403 | 204 | 180
1.99 | | CFSM | 1.68 | 0.88 | 0.65 | 0.54 | 0.47 | 0.42 | 0.44 | 1.58 | 7.70 | 4.46 | 2.26 | 1.99 | | IN | 1.94 | 0.98 | 0.75 | 0.62 | 0.49 | 0.49 | 0.49 | 1.82 | 8.59 | 5.14 | 2.60 | 2.22 | | AC-FT | 9340 | 4750 | 3620 | 2990 | 2350 | 2340 | 2350 | 8770 | 41470 | 24810 | 12560 | 10700 | | | | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | WATER YEA | RS 1947 - | 2001, BY | WATER Y | EAR (WY)# | | | | | 7.46 | | 45.0 | 21.1 | 00.1 | 1.0.0 | 0.4.0 | 1.65 | 455 | 200 | 000 | 0.7.7 | | MEAN | 149 | 77.6 | 47.2 | 31.1 | 22.1 | 16.6 | 24.8 | 165 | 455 | 308 | 209 | 211 | | MAX | 318 | 177 | 107 | 79.3 | 54.6 | 42.1 | 69.7 | 456 | 798 | 645 | 510 | 471
1967 | | (WY) | 1994 | 1953 | 1948 | 1961 | 1961 | 1947 | 1990 | 1990 | 1977 | 1980 | 1981 | | | MIN
(WY) | 48.7
1969 | 24.3
1969 | 13.9
1969 | 7.13
1956 | 5.36
1983 | 3.61
1956 | 4.77
1954 | 39.9
1971 | 132
1996 | 72.0
1996 | 73.0
1996 | 55.8
1969 | | (W I) | 1303 | 1202 | 1202 | 1930 | 1202 | TADO | T304 | 17/1 | 1330 | T220 | エフラひ | 1909 | See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Estimated | SUMMARY STATISTICS | FOR 2000 CALENI | DAR YI | EAR | FOR 2001 WA | TER YEAR | WATER YEAR | RS 1947 - 2001# | |--------------------------|-----------------|--------|-----|-------------|----------|------------|-----------------| | ANNUAL TOTAL | 66756 | | | 60494 | | | | | ANNUAL MEAN | 182 | | | 166 | | 143 | | | ANNUAL MEAN | *191 | | | *174 | | *162 | | | HIGHEST ANNUAL MEAN | | | | | | 223 | 1980 | | LOWEST ANNUAL MEAN | | | | | | 67.3 | 1969 | | HIGHEST DAILY MEAN | 880 | Jun | 8 | 826 | Jun 18 | 1420 | Aug 9 1971 | | LOWEST DAILY MEAN | 27 | Apr | 1 | a27 | Apr 5 | b.00 | Jan 2 1956 | | ANNUAL SEVEN-DAY MINIMUM | 28 | Mar | 26 | 28 | Apr 5 | .43 | Jan 9 1956 | | MAXIMUM PEAK FLOW | | | | 891 | Jun 18 | 1860 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | 6.05 | Jun 18 | c3.44 | Jun 21 1949 | | MAXIMUM PEAK STAGE | | | | | | d6.52 | Sep 21 1995 | | ANNUAL RUNOFF (AC-FT) | 132400 | | | 120000 | | 103900 | | | ANNUAL RUNOFF (AC-FT) | *139000 | | | *126100 | | *117400 | | | ANNUAL RUNOFF (CFSM) | *2.12 | | | *1.92 | | *1.79 | | | ANNUAL RUNOFF (IN) | *28.80 | | | *26.12 | | *24.30 | | | 10 PERCENT EXCEEDS | 528 | | | 511 | | 369 | | | 50 PERCENT EXCEEDS | 84 | | | 73 | | 76 | | | 90 PERCENT EXCEEDS | 32 | | | 32 | | 14 | | [#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted * Adjusted to account for diversion, see Remarks a Apr. 5 and Apr. 7 b No flow during one or more days in water years 1956, 1960, 1969, and 1971 c Site and datum then in use d Current site and datum ### 15278000 EKLUTNA LAKE NEAR PALMER LOCATION.--Lat $61^{\circ}24'39''$, long $149^{\circ}07'20''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 18, T. 15 N., R. 2 E. (Anchorage B-6 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on north shore, 0.7 mi upstream from lake outlet, 12 mi upstream from mouth of Eklutna River, and 14 mi south of Palmer. DRAINAGE AREA. -- 119 mi². PERIOD OF RECORD.--November 1946 to September 1962 (fragmentary after January 1955), June 1983 to current year. Fragmentary records for the period October 1962 to June 1983
available from Eklutna Hydroelectric Project. GAGE.--Water-stage recorder. Datum of gage is sea level (levels by Alaska Power Administration). Prior to June 1983, non-recording gage at lake outlet at datum of 859.8 ft above sea level. REMARKS.--Lake outlet consists of earth and rockfill dam with uncontrolled spillway crest at an elevation of 871 ft. Prior to 1965, control structure 1400 ft upstream with spillway crest at elevation of 867.5 ft which could be flash-boarded to elevation of 871 ft. Outflow was controlled by the flash boards and sluice gates. Dead storage below elevation of 859 ft. Reservoir is used for power generation and water supply. GOES satellite telemetry at station EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 877.68 ft, September 25, 1995; minimum observed, 814.2 ft, June 1, 1962. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 867.94 ft, September 8; minimum, 821.82 ft, May 15,16,19, and 20. # GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 851.62
851.67
851.67
851.70 | 850.17
850.08
849.97
849.85
849.68 | 846.62
846.48
846.33
846.18
846.08 | 842.66
842.54
842.43
842.30
842.14 | 839.06
838.94
838.81
838.67
838.48 | 834.64
834.48
834.35
834.18
833.99 | 829.01
828.84
828.67
828.52
828.28 | 824.13
824.06
824.03
823.91
823.72 | 822.87
823.05
823.16
823.14
823.12 | 834.37
835.20
836.00
836.76
837.49 | 854.78
855.34
855.93
856.43
856.91 | 867.13
867.19
867.38
867.54
867.74 | | 6
7
8
9
10 | 851.85
851.89
851.88
851.85
851.83 | 849.51
849.37
849.24
849.15
849.06 | 845.98
845.86
845.70
845.54
845.42 | 842.00
841.95
841.86
841.72
841.62 | 838.34
838.21
838.08
837.96
837.82 | 833.84
833.68
833.53
833.37
833.18 | 828.04
827.87
827.72
827.59
827.41 | 823.54
823.34
823.16
822.98
822.80 | 823.21
823.29
823.35
823.45
823.56 | 838.23
838.91
839.62
840.32
840.98 | 857.37
857.81
858.25
858.71
859.07 | 867.86
867.89
867.91
867.89 | | 11
12
13
14
15 | 851.83
851.81
851.79
851.77 | 848.97
848.85
848.74
848.61
848.49 | 845.30
845.18
845.08
844.94
844.81 | 841.36
841.36
841.23
841.10 | 837.68
837.50
837.36
837.21
837.04 | 832.98
832.80
832.62
832.36
832.18 | 827.25
827.09
826.92
826.73
826.57 | 822.64
822.49
822.17
821.91
821.84 | 823.67
823.80
823.88
823.91
823.92 | 841.61
842.14
842.62
843.07
843.49 | 859.32
859.62
859.96
860.41
860.96 | 867.82
867.81
867.78
867.71 | | 16
17
18
19
20 | 851.66
851.62
851.56
851.49
851.42 | 848.36
848.26
848.17
848.09
848.00 | 844.71
844.54
844.48
844.35
844.24 | 840.93
840.85
840.78
840.72 | 836.88
836.73
836.57
836.35
836.17 | 831.99
831.79
831.56
831.34
831.14 | 826.46
826.37
826.25
826.11
826.02 | 821.84
821.85
821.85
821.85 | 824.11
824.40
824.74
825.18
825.72 | 843.92
844.38
844.90
845.52
846.43 | 861.48
861.93
862.37
862.81
863.33 | 867.70
867.70
867.67
867.64
867.63 | | 21
22
23
24
25 | 851.35
851.27
851.18
851.07
850.98 | 847.90
847.79
847.66
847.51
847.38 | 844.09
843.96
843.89
843.74
843.60 | 840.48
840.33
840.21
840.08
839.93 | 835.98
835.82
835.67
835.51
835.29 | 830.97
830.80
830.61
830.45
830.25 | 825.86
825.63
825.50
825.36
825.18 | 821.87
821.91
821.92
821.95
822.00 | 826.29
826.81
827.39
828.13
828.97 | 847.44
848.35
849.18
849.91
850.59 | 863.77
864.08
864.29
864.51
864.73 | 867.60
867.58
867.61
867.64
867.59 | | 26
27
28
29
30
31 | 850.92
850.83
850.71
850.57
850.45
850.30 | 847.26
847.11
847.00
846.86
846.73 | 843.43
843.28
843.11
843.00
842.96
842.82 | 839.79
839.67
839.58
839.43
839.29
839.16 | 835.10
834.97
834.80
 | 830.02
829.81
829.58
829.41
829.29
829.15 | 824.95
824.74
824.54
824.35
824.19 | 822.03
822.05
822.09
822.20
822.42
822.65 | 829.75
830.59
831.59
832.58
833.52 | 851.24
851.90
852.48
853.05
853.64
854.26 | 864.90
865.04
865.28
866.12
866.72
867.02 | 867.52
867.45
867.37
867.29
867.19 | | MEAN
MAX
MIN | 851.42
851.89
850.30 | 848.46
850.17
846.73 | 844.70
846.62
842.82 | 840.94
842.66
839.16 | 837.04
839.06
834.80 | 831.95
834.64
829.15 | 826.60
829.01
824.19 | 822.55
824.13
821.84 | 825.71
833.52
822.87 | 844.45
854.26
834.37 | 861.27
867.02
854.78 | 867.61
867.91
867.13 | #### 15281000 KNIK RIVER NEAR PALMER LOCATION.--Lat $61^{\circ}30'18''$, long $149^{\circ}01'50''$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 2, T.16 N., R.2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, near the right bank on downstream side of bridge on Old Glenn Highway, 7 mi south of Palmer, 7 mi upstream from Alaska Railroad bridge, 9 mi downstream from Friday Creek, and about 17 mi downstream from Knik Glacier. DRAINAGE AREA.--1,180 mi², approximately. PERIOD OF RECORD.--October 1959 to January 1988, annual maximum, water year 1989, October 1991 to September 1992, and April to September, 2001. REVISED RECORDS. -- WRD-AK-77-1: 1974-75(M). GAGE.--Water-stage recorder and crest stage gage. Datum of gage is 27.51 ft above National Geodetic Vertical Datum of 1929 (surveys show a correction of -2.69 ft needed after earthquake of Mar. 27, 1964. Correction used beginning in 1985) Prior to June 27, 1960, nonrecording gage, and June 27, 1960 to Apr. 25,1974, water-stage recorder at old bridge 100 ft upstream at original 1929 datum. Apr. 26, 1974 to Apr. 18, 1976, recording gage at site 0.4 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Flood peaks due to outbreak of glacier-dammed Lake George, 1948-62, 1964, 1965, published in WSP 1936. Streamflow augmented by glaciers, which cover 54 percent of the basin. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1948, 359,000 ft³/s, July 18, 1958, gage height, 25.30 ft, at site in use beginning 1959, from outbreak of glacier-dammed Lake George. | | | DISCHARGE | , CUBIC | FEET P | | | YEAR OCTOBE | ER 2000 | TO SEPTEM | MBER 2001 | | | |-------|------|--------------|----------|----------|------------|-------|-------------|---------|-----------|-----------|---------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | e1200 | 1950 | 7390 | 27400 | 22600 | 22200 | | 2 | | | | | | | e1200 | 1910 | 8020 | 26600 | 23300 | 18800 | | 3 | | | | | | | e1200 | 1880 | 9080 | 26900 | 24700 | 17800 | | 4 | | | | | | | e1200 | 1790 | 10100 | 25900 | 23100 | 17900 | | 5 | | | | | | | 1100 | 1650 | 10000 | 24200 | 22200 | 19200 | | 6 | | | | | | | 1040 | 1540 | 9860 | 22200 | 21600 | 17400 | | 7 | | | | | | | 1090 | 1530 | 9340 | 20900 | 21700 | 14600 | | 8 | | | | | | | 1070 | 1530 | 9520 | 21100 | 22400 | 12600 | | 9 | | | | | | | 1050 | 1610 | 11900 | 20500 | 22600 | 11400 | | 10 | | | | | | | 1080 | 1720 | 12000 | 20900 | 21400 | 10700 | | 10 | | | | | | | 1000 | 1/20 | 12000 | 20900 | 21400 | 10700 | | 11 | | | | | | | 1110 | 1790 | 12600 | 22100 | 20200 | 10300 | | 12 | | | | | | | 1330 | 1850 | 12200 | 22000 | 20200 | 10100 | | 13 | | | | | | | 1350 | 1920 | 12600 | 20200 | 21700 | 10900 | | 14 | | | | | | | 1300 | 2050 | 11800 | 18100 | 25900 | 10900 | | 15 | | | | | | | 1230 | 2310 | 12500 | 17800 | 28700 | 10600 | | 3.6 | | | | | | | 1000 | 0000 | 14500 | 15000 | 21.400 | 10000 | | 16 | | | | | | | 1220 | 2820 | 14600 | 17900 | 31400 | 10000 | | 17 | | | | | | | 1240 | 3150 | 17100 | 18300 | 29500 | 9820 | | 18 | | | | | | | 1230 | 3220 | 20100 | 19300 | 27300 | 10200 | | 19 | | | | | | | 1240 | 3280 | 21300 | 22100 | 25500 | 10300 | | 20 | | | | | | | 1280 | 3630 | 22200 | 27100 | 26500 | 10400 | | 21 | | | | | | | 1330 | 4290 | 22900 | 29900 | 28400 | 10600 | | 22 | | | | | | | 1380 | 4450 | 23900 | 33000 | 28900 | 9860 | | 23 | | | | | | | 1420 | 4320 | 25200 | 34200 | 26700 | 9070 | | 24 | | | | | | | 1440 | 4340 | 27200 | 31900 | 24100 | 9180 | | | | | | | | | | | | | | | | 25 | | | | | | | 1480 | 4520 | 28300 | 29300 | 21000 | 8820 | | 26 | | | | | | | 1570 | 4590 | 28800 | 28100 | 19500 | 8070 | | 27 | | | | | | | 1610 | 4380 | 30000 | 27400 | 18700 | 7410 | | 28 | | | | | | | 1700 | 4660 | 30600 | 25800 | 19500 | 6640 | | 29 | | | | | | | 1830 | 5620 | 31700 | 23900 | 27100 | 6320 | | 30 | | | | | | | 1890 | 6720 | 31100 | 24000 | 29700 | 5970 | | 31 | | | | | | | | 7220 | 31100 | 23200 | 27700 | | | 31 | | | | | | | | 7220 | | 23200 | 27700 | | | TOTAL | | | | | |
 39410 | 98240 | 533910 | 752200 | 753800 | 348060 | | MEAN | | | | | | | 1314 | 3169 | 17800 | 24260 | 24320 | 11600 | | MAX | | | | | | | 1890 | 7220 | 31700 | 34200 | 31400 | 22200 | | MIN | | | | | | | 1040 | 1530 | 7390 | 17800 | 18700 | 5970 | | AC-FT | | | | | | | 78170 | 194900 | 1059000 | 1492000 | 1495000 | 690400 | | CFSM | | | | | | | 1.11 | 2.69 | 15.1 | 20.6 | 20.6 | 9.83 | | IN. | | | | | | | 1.24 | 3.10 | 16.83 | 23.71 | 23.76 | 10.97 | | | | | | | | | | | | | | 10.57 | | | | STATISTICS C |)F MONTH | ily MEAI | N DATA FOR | WATER | YEARS 1960 | - 2001, | BY WATER | YEAR (WY |)# | | | MEAN | 4346 | 1773 | 956 | 865 | 727 | 644 | 911 | 3683 | 12670 | 23490 | 21370 | 11340 | | MAX | 9419 | | .932 | 3781 | 2464 | 1314 | 1534 | 7347 | 19960 | 37450 | 28300 | 16960 | | (WY) | 1970 | | .977 | 1981 | 1977 | 1977 | 1983 | 1981 | 1969 | 1960 | 1979 | 1974 | | MIN | 1782 | 637 | 500 | 460 | 338 | 260 | 348 | 1039 | 2598 | 17440 | 15260 | 6594 | | | | | | | | | | | | | | | | (WY) | 1982 | 1969 1 | .974 | 1976 | 1962 | 1962 | 1972 | 1965 | 1965 | 1970 | 1969 | 1992 | [#] See Period of Record; partial years used in monthly statistics e Estimated ## 15281000 KNIK RIVER NEAR PALMER--Continued | SUMMARY STATISTICS | FOR 2001 WA | TER Y | EAR | R WATER YEARS 1960 - 200 | | | | |--------------------------|-------------|-------|-----|--------------------------|-----|----|------| | ANNUAL TOTAL | | | | | | | | | ANNUAL MEAN | | | | 6981 | | | | | HIGHEST ANNUAL MEAN | | | | 13800 | | | 2001 | | LOWEST ANNUAL MEAN | | | | 2286 | | | 1988 | | HIGHEST DAILY MEAN | 34200 | Jul | 23 | 341000 | Jul | 26 | 1961 | | LOWEST DAILY MEAN | | | | a260 | Mar | 1 | 1962 | | ANNUAL SEVEN-DAY MINIMUM | | | | 260 | Mar | 1 | 1962 | | MAXIMUM PEAK FLOW | 35400 | Jul | 23 | bc355000 | Jul | 26 | 1961 | | MAXIMUM PEAK STAGE | 12.21 | Jul | 23 | 24.35 | Jul | 17 | 1960 | | ANNUAL RUNOFF (AC-FT) | | | | 5057000 | | | | | ANNUAL RUNOFF (CFSM) | | | | 5.92 | | | | | ANNUAL RUNOFF (INCHES) | | | | 80.38 | | | | | 10 PERCENT EXCEEDS | | | | 21100 | | | | | 50 PERCENT EXCEEDS | | | | 2000 | | | | | 90 PERCENT EXCEEDS | | | | 500 | | | | [#] See Period of Record; partial years used in monthly statistics a Mar. 1-31, 1962 Site then in use, caused by release of stored water (Lake George) behind Knik Glacier c Gage height, 24.3 ft ### 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE LOCATION.--Lat $61^{\circ}50'20''$, long $147^{\circ}24'31''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 11, T. 20 N., R. 11 E. (Anchorage D-2 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on left bank 5 ft downstream from culvert on old alignment (1/2 mile upstream from new alignment) Glenn Highway, and 3.5 mi northeast of Sheep Mountain Lodge. DRAINAGE AREA.--1.09 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Annual maximum, water years 1968-69, 1971, 1989-95. October 1995 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,950 ft above sea level, from topographic map. Prior to 1971 crest-stage gage at site above culvert at different datum, June 2, 1989 to September 30, 1995, crest-stage gage at same site, and datum. REMARKS.--Records are poor. Goes satellite telemetry at station. | | | DISCHARGE | E, CUBIC | FEET PER | | | YEAR OCTOBE | ER 2000 1 | TO SEPTEM | BER 2001 | | | |---|--|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e1.9
e1.8
e1.7
e1.6
e1.5 | e.00
e.00
e.00
e.00 5.1
6.7
7.6
8.7
9.5 | 5.1
4.8
4.5
4.3
4.3 | .94
e.92
e.90
e.90 | e.80
e1.0
e1.2
e1.8
e2.0 | | 6
7
8
9
10 | e1.3
e1.0
e.90
e.80
e.70 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | 9.0
9.9
10
14
11 | 4.9
5.8
5.7
4.9 | e.90
e.88
e.88
e.86 | e1.8
e1.6
e.90
e.88
e.86 | | 13
14
15 | e.60
e.50
e.40
e.30 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.10
e.20 | 12
9.9
10
10 | 3.8
3.5
3.3
3.0 | e.86
e.86
e.86
e.86 | e.84
e.84
e.82
e.82 | | 16
17
18
19
20 | e.20
e.20
e.20
e.10
e.10 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.40
e.60
e.80
e1.0
e1.2 | 9.6
9.7
8.2
7.3
8.6 | e2.6
e2.5
2.3
2.2 | e.84
e.84
e.84
e.84 | e.82
e.80
e.80
e.80 | | 21
22
23
24
25 | e.10
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e1.4
e1.6
e1.8
e2.0
e2.2 | 6.9
9.0
8.2
7.7
7.7 | 1.9
1.8
1.7
1.6
1.5 | e.84
e.84
e.82
e.82
e.82 | e.78
e.78
e.78
e.78 | | 26
27
28
29
30
31 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | 2.3
2.4
2.6
3.2
3.7
4.3 | 6.5
6.1
5.9
5.6 | 1.4
1.3
1.2
1.1
1.1 | e.80
e.80
e.80
e.80
e.80 | e.78
e.78
e.76
e.76 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 16.10
.52
1.9
.00
32
.48 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 32.10
1.04
4.3
.00
64
.95
1.10 | 257.5
8.58
14
5.1
511
7.87
8.79 | 92.0
2.97
5.8
1.0
182
2.72
3.14 | 26.42
.85
.94
.80
52
.78 | 28.74
.96
2.0
.76
.57
.88 | | | | STATISTICS | OF MONTH | HLY MEAN I | ATA FOR | WATER | YEARS 1996 | | | YEAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | .55
1.12
1998
.17
1997 | .27
.65
1998
.000
2001 | .10
.39
1998
.000
2001 | .010
.042
1999
.000
1996 | .000
.000
1996
.000
1996 | .000
.000
1996
.000
1996 | .019
.058
1996
.000
1999 | .88
1.55
1998
.25
1999 | 4.50
8.58
2001
.56
1996 | 1.94
2.97
2001
.42
1996 | 1996 | 1.26
2.63
2000
.45
1998 | | SUMMARY | STATIST: | ICS | FOR 20 | 00 CALEND | AR YEAR | | FOR 2001 WA | TER YEAR | | WATER YEARS | 1996 | - 2001# | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC | MEAN T ANNUAL M T DAILY DEAK FL T PEAK ST T RUNOFF (T | EAN EAN AN Y MINIMUM DW AGE AC-FT) CFSM) INCHES) EDS | | | Jun 6
Jan 1
Jan 1 | | 452.86
1.24
14
b.00
.00
19
14.77
898
1.14
15.46
4.6
.00 | Jun 9) Oct 22) Oct 22 Jun 9 7 Jun 9 | | .92
1.46
.26
17
c.00
.00
d46
15.49
666
.84
11.46
2.5
.25 | | 2000
1996
7 1997
6 1995
6 1995
21 1992
28 2000 | See Period of Record Jan. 1 to May 15 and Oct. 22 to Dec. 31 Oct. 22 to May 12 No flow most days during winter From rating curve extended above 2 ft³/s Fetimated Estimated ## 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1996 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1996 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval. REMARKS.--No record from October 22 to May 12 due to no flow conditions, and August 3 to September 3 due to equipment problems. Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on September 28. No variation was found within the cross section. No variation was found between mean stream temperature and temperature at the sensor. Large stream icing forms near the gage. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 9.5 $^{\circ}$ C, on several days in June and July 1997 and June 29-30, July 1, 1998; minimum, 0.0 $^{\circ}$ C, on many days during fall, winter, and spring breakup periods. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 7.5 °C, July 26, but may have been higher during a period of missing record; minimum, 0.0 °C, on many days during fall, winter, and spring breakup periods. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | GAGE
HEIGHT
(FEET)
(00065) |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | |------|------|------------------------------------|--|-------------------------------------|---|---|---|--|--------------------------------------| | SEP | | | | | | | | | | | 28 | 1202 | 5.20 | 1.0 | 13.90 | .77 | 2.5 | 5.0 | 10 | 8010 | | 28 | 1204 | 5.20 | 2.0 | 13.90 | .77 | 2.5 | 5.0 | 10 | 8010 | | 28 | 1206 | 5.20 | 3.0 | 13.90 | .77 | 2.5 | 5.0 | 10 | 8010 | | 28 | 1208 | 5.20 | 4.0 | 13.90 | .77 | 2.5 | 5.0 | 10 | 8010 | | 28 | 1210 | 5.20 | 5.0 | 13.90 | .77 | 2.5 | 5.0 | 10 | 8010 | #### TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------|-----------------------|--------------------------|--------------|----------|----------|--------------|----------|----------|----------|----------|----------| | | | OCTOBER | | NC | VEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | .5
.5
.5
.5 | .0
.0
.0 | .0
.0
.0
.5 |

 | | 6
7
8
9
10 | 1.0
1.0
1.0
1.0 | .5
1.0
.5
.5 | 1.0
1.0
1.0
1.0 |

 | | 11
12
13
14
15 | 1.0
1.0
1.0
1.0 | .5
1.0
.5
.5 | 1.0
1.0
1.0
1.0 |

 | | 16
17
18
19
20 | 1.0
.5
.5
.5 | .5
.5
.5
.5 | 1.0
.5
.5
.5 |

 | |

 |

 |

 |

 |

 |

 | | | 21
22
23
24
25 | . 5

 | . 5

 | .5

 |

 | |

 |

 |

 | |

 |

 |

 | | 26
27
28
29
30
31 | |

 |

 |

 | |

 |

 | |

 |

 | | | | MONTH | | | | | | | | | | | | | ## 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|---|---|---|--|---|---|-----------------|---------------------------------|-----------------|--|--|---| | | : | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2
3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6
7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11
12 | | | | | | | | | | | | | | 13 | | | | | | | | | | .0 | .0 | . 0 | | 14 | | | | | | | | | | . 0 | . 0 | . 0 | | 15 | | | | | | | | | | .0 | . 0 | . 0 | | 16
17 | | | | | | | | | | .0 | . 0 | . 0 | | 18 | | | | | | | | | | .0 | .0 | .0 | | 19 | | | | | | | | | | . 5 | .0 | . 0 | | 20 | | | | | | | | | | .5 | . 0 | . 0 | | 21
22 | | | | | | | | | | .0
.5 | .0 | .0 | | 23 | | | | | | | | | | .5 | .0 | .0 | | 24 | | | | | | | | | | . 5 | . 0 | . 0 | | 25 | | | | | | | | | | .5 | . 0 | . 0 | | 26 | | | | | | | | | | . 5 | . 0 | . 5 | | 27
28 | | | | | | | | | | .5
.5 | .0 | . 0
. 5 | | 29 | | | | | | | | | | . 5 | .0 | .5 | | 30
31 | | | | | | | | | | 1.0
1.0 | .0 | . 5
. 5 | | MONTH | | | | | | | | | | | | | | 11011111 | EAR OCTOBE | | | | | | | DAY | MAX | MIN | EMPERATURI
MEAN | E, WATER (| MIN | WATER YI | MAX | MIN | TO SEPTEME | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | | MAX | | | MAX | MIN
SEPTEMBE | | | 1 | 1.0 | MIN
JUNE
.0 | MEAN | MAX
5.5 | MIN
JULY
3.0 | MEAN | MAX
4 | MIN
AUGUST
5.0 | MEAN
5.5 | MAX | SEPTEMBE | R
 | | | | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | SEPTEMBE | R | | 1
2
3
4 | 1.0
1.5
1.5 | MIN
JUNE
.0
.0
.0 | MEAN
. 5
. 5
. 5 | MAX
5.5
6.5
5.5
4.5 | MIN
JULY
3.0
3.0
3.0
3.0
3.5 | MEAN 4.0 4.5 4.5 4.5 | MAX 6.0 | MIN
AUGUST
5.0
4.5
 | MEAN 5.5 | MAX | SEPTEMBE

 | R

 | | 1
2
3 | 1.0
1.5
1.5 | MIN JUNE .0 .0 .0 | MEAN
.5
.5 | MAX
5.5
6.5
5.5 | MIN
JULY
3.0
3.0
3.0 | MEAN 4.0 4.5 4.5 | MAX 6.0 | MIN
AUGUST
5.0
4.5 | MEAN 5.5 | MAX

 | SEPTEMBE

 | R | | 1
2
3
4
5 | 1.0
1.5
1.5
1.5 | MIN JUNE .0 .0 .0 .0 .5 .5 | .5
.5
.5
.5 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 | MIN JULY 3.0 3.0 3.0 3.5 3.5 | MEAN 4.0 4.5 4.5 4.0 3.5 | MAX 6.0 | MIN 5.0 4.5 | 5.5
 | MAX 4.5 4.0 4.5 | SEPTEMBE

3.0
2.5 | R

3.0
3.0 | | 1
2
3
4
5 | 1.0
1.5
1.5
1.5 | MIN
JUNE
.0
.0
.0
.5 | MEAN .5 .5 .5 .5 | 5.5
6.5
5.5
4.5
4.0 | MIN
JULY
3.0
3.0
3.0
3.5
3.5 | MEAN 4.0 4.5 4.5 4.5 3.5 | MAX 6.0 | MIN 5.0 4.5 | 5.5

 | MAX 4.5 4.0 | SEPTEMBE

3.0 | R 3.0 | | 1
2
3
4
5
6
7
8
9 | 1.0
1.5
1.5
1.5
1.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 | .5
.5
.5
.5
.5 | 5.5
6.5
5.5
4.5
4.0
3.5
3.0
4.5
5.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 | 4.0
4.5
4.5
4.0
3.5
3.0
2.5
3.0 | 6.0

 | MIN 5.0 4.5 | 5.5

 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 | | 1
2
3
4
5
6
7
8 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 | .5
.5
.5
.5
.5 | 5.5
6.5
5.5
4.5
4.0
3.5
3.0
4.5
5.5 | MIN JULY 3.0 3.0 3.0 3.5 2.5 2.5 2.5 2.0 2.0 2.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 | MAX 6.0 | MIN 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 2.5 | | 1
2
3
4
5
6
7
8
9
10 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 | .5
.5
.5
.5
.5
.5 | MAX
5.5
6.5
5.5
4.5
4.0
3.5
3.0
4.5
5.5
5.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 2.5 | | 1
2
3
4
5
6
7
8
9 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0 | MIN JUNE .00 .00 .05 .5 .5 .5 .5 .5 .5 .5 | .5
.5
.5
.5
.5 | 5.5
6.5
5.5
4.5
4.0
3.5
3.0
4.5
5.5 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5 | 6.0

 | MIN 5.0 4.5 | 5.5

 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 2.5 2.5 2.5 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .1 .5 .1 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.0 1.5 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 4.0 4.5 5.5 5.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.0 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 4.5 5.5 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 5.5 6.0 6.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 3.5 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.5
2.5
2.5 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 | 5.5
6.5
5.5
4.5
4.0
3.5
3.0
4.5
5.5
5.5
6.0 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.0 3.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
2.5 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.5 6.0 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0 4.5 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5 5.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.5 3.5 | R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 2.5 3.0 3.0 3.0 2.5 3.5 3.5 3.5 3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
2.5
2.0
2.5 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 | MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.0 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.5 4.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
3.0
3.0
4.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.5 | MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 4.0 6.5 6.0 6.5 6.5 6.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5 5.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.5 4.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.5
2.5
2.5
2.5
3.0
3.0
4.0
4.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 | MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 5.5 4.0 6.5 6.0 6.5 6.5 7.0 6.5 6.5 7.0 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.5 4.5 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5 5.5 5.5 5.5 5.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
3.0
3.0
4.0
4.0
4.5
5.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.5 | MAX 5.5 6.5 5.5 4.0 3.5 5.5 4.0 4.5 5.5 6.0 6.5 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5 5.0 5.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 | R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 | MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 | MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 4.5 5.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.5 4.5 4.5 4.5 4.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
3.0
4.0
4.0
4.5
5.0
5.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.5 3.5 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 6.5 6.0 6.5 7.0 6.5 7.0 7.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 5.0 5.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 4.0 4.5 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 3.0 3.0 3.5 3.0 3.0 3.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
2.5
2.5
3.0
3.0
4.0
4.0
4.5
5.0
5.0
5.0
5.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 2.5 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 3.5 3.5 | MAX 5.5 6.5 5.5 4.0 4.5 5.5 5.5 4.0 4.5 5.5 6.0 6.5 7.0 6.5 7.0 6.5 7.0 7.0 7.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5 5.0 5.0 5.0 | MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 3.0 3.5 3.0 3.5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 1.5 1.5 1.5 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 1.0
1.5
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.0
2.5
2.5
2.0
2.5
3.0
4.0
4.0
4.5
5.0
5.0 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.5 3.5 | MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 6.5 6.0 6.5 7.0 6.5 7.0 7.5 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 5.0 5.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 4.0 4.5 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 3.0 3.0 3.5 3.0 3.0 3.0 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 1.0
1.5
1.5
1.5
1.5
2.0
2.5
2.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.0
3.0
4.0
4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 2.5 2.5 | MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.5 3.5 4.0 | MAX 5.5 6.5 5.5 4.0 3.5 5.5 4.0 4.5 5.5 6.0 6.5 7.0 6.5 7.0 7.5 7.0 6.0 | MIN JULY 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.5 4.5 5.0 5.0 5.0 5.0 | MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | MAX 6.0 | MIN AUGUST 5.0 4.5 | MEAN 5.5 | MAX 4.5 4.0 4.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 4.5
4.5 4.5 4.5 5.5 5 | SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 | R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | --- 7.5 2.0 4.6 MONTH --- #### 15283700 MOOSE CREEK NEAR PALMER LOCATION.--Lat $61^{\circ}41'00''$, long $149^{\circ}02'36''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 2, T. 18 N., R. 2 E. (Anchorage C-6 quad), Hydrologic Unit 19020402, on right bank 0.2 mi upstream from Glenn Highway bridge over Moose Creek, 0.8 mi upstream from mouth and 6.5 mi north of Palmer. DRAINAGE AREA.--47.3 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1998 to September 2001 (discontinued). REVISED RECORDS. -- WDR AK-00-1: 1999, drainage area. GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, $18,000 \text{ ft}^3/\text{s}$, August $10, 1971 \text{ (at site 0.3 mi upstream from Buffalo Creek mine and 5 mi upstream from present gage site), gage height not determined.$ DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 REMARKS.--Records good except for estimated daily discharges, which are poor. | | | DIBCIA | KGE, CODI | S FEET FE | DAIL' | Y MEAN VA | | K 2000 10 | DEFTENDE | 1001 | | | |------------------------------------|--|--|---|--|---|---|--|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 219
192
176
164
160 | e65
e65
e65
e60 | e40
e40
e40
e40
e38 | e24
e24
e24
e24
e24 | e23
e22
e22
e22
e22 | e20
e20
e20
e20
e20 | e18
e19
e19
e19
e20 | 64
55
50
45
42 | 171
239
299
308
289 | 230
211
212
211
276 | 231
217
204
218
189 | 84
83
98
92
137 | | 6
7
8
9
10 | 158
143
132
123
115 | e60
e60
e60
e55 | e38
e38
e38
e36
e36 | e24
e24
e24
e24
e24 | e22
e21
e21
e21
e21 | e20
e20
e20
e20
e20 | e20
e20
e20
e20
e21 | 42
46
56
59
58 | 269
253
240
278
322 | 281
242
204
188
172 | 171
158
155
164
154 | 161
126
113
104
98 | | 11
12
13
14
15 | 109
103
100
97
93 | e55
e55
e55
e50 | e34
e34
e34
e32
e32 | e24
e24
e24
e24
e24 | e21
e21
e21
e21
e21 | e20
e20
e20
e20
e20 | e21
e21
e21
e21
e22 | 59
65
77
85
87 | 403
415
367
396
465 | 162
148
147
149
142 | 142
137
134
144
167 | 94
91
89
86
82 | | 16
17
18
19
20 | 90
87
85
83
80 | e50
e50
e50
e48
e50 | e32
e32
e30
e30
e30 | e26
e25
e26
e26
e25 | e20
e20
e20
e20
e20 | e20
e20
e20
e20
e20 | 24
24
25
27
30 | 87
83
86
87
91 | 514
564
542
503
477 | 136
135
132
137
177 | 158
145
152
148
134 | 78
76
76
79
78 | | 21
22
23
24
25 | 80
82
80
78
76 | e48
e46
e46
e46
e44 | e30
e29
e28
e27
e27 | e25
e25
e24
e24
e24 | e20
e20
e20
e20
e20 | e20
e20
e19
e19
e19 | 34
38
42
45
49 | 89
86
85
80
77 | 460
429
415
408
371 | 172
158
147
147
150 | 123
121
116
143
131 | 75
72
70
65
65 | | 26
27
28
29
30
31 | 72
e70
e65
e65
e65
e65 | e44
e42
e42
e42
 | e26
e26
e25
e26
e26
e24 | e24
e24
e23
e23
e23
e23 | e20
e20
e20
 | e18
e18
e18
e18
e18 | 55
59
64
66
68 | 78
83
110
143
152
168 | 368
354
345
308
260 | 165
204
219
276
258
294 | 120
114
103
98
92
89 | 64
62
61
59
58 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 3307
107
219
65
6560
2.26
2.60 | 1577
52.6
65
42
3130
1.11
1.24 | 998
32.2
40
24
1980
.68
.78 | 750
24.2
26
23
1490
.51 | 582
20.8
23
20
1150
.44
.46 | 605
19.5
20
18
1200
.41
.48 | 952
31.7
68
18
1890
.67 | 2475
79.8
168
42
4910
1.69
1.95 | 11032
368
564
171
21880
7.77
8.68 | 5882
190
294
132
11670
4.01
4.63 | 4572
147
231
89
9070
3.12
3.60 | 2576
85.9
161
58
5110
1.82
2.03 | | | | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | WATER YEA | ARS 1998 - | - 2001, BY | WATER Y | EAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 98.8
107
2001
87.4
1999 | 48.6
55.4
2000
37.8
1999 | 27.6
32.2
2001
24.8
1999 | 21.7
24.2
2001
19.1
1999 | 18.5
20.8
2001
14.6
1999 | 16.7
19.5
2001
14.1
1999 | 28.8
34.4
2000
20.2
1999 | 78.7
89.9
2000
66.5
1999 | 339
385
2000
265
1999 | 212
327
2000
152
1998 | 182
210
1999
147
2001 | 139
236
2000
85.9
2001 | See period of record, partial years used in monthly statistics ${\tt Estimated}$ ## 15283700 MOOSE CREEK NEAR PALMER--Continued | SUMMARY STATISTICS | FOR 2000 CALENDA | AR YEAR | FOR 2001 WATE | ER YEAR | WATER YEARS 1 | 998 - 2001# | |--------------------------|------------------|---------|---------------|---------|---------------|-------------| | ANNUAL TOTAL | 46144 | | 35308 | | | | | ANNUAL MEAN | 126 | | 96.7 | | 103 | | | HIGHEST ANNUAL MEAN | | | | | 125 | 2000 | | LOWEST ANNUAL MEAN | | | | | 87.0 | 1999 | | HIGHEST DAILY MEAN | 754 | Sep 22 | 564 | Jun 17 | 754 | Sep 22 2000 | | LOWEST DAILY MEAN | a15 | Mar 26 | b18 | Mar 26 | c13 | Feb 3 1999 | | ANNUAL SEVEN-DAY MINIMUM | 15 | Mar 24 | 18 | Mar 26 | 14 | Apr 8 1999 | | MAXIMUM PEAK FLOW | | | 658 | Jun 17 | 1080 | Sep 22 2000 | | MAXIMUM PEAK STAGE | | | 14.70 | Jun 17 | 15.32 | Sep 22 2000 | | MAXIMUM PEAK STAGE | | | d16.36 | Dec 16 | d16.36 | Dec 16 2000 | | ANNUAL RUNOFF (AC-FT) | 91530 | | 70030 | | 74680 | | | ANNUAL RUNOFF (CFSM) | 2.67 | | 2.05 | | 2.18 | | | ANNUAL RUNOFF (INCHES) | 36.29 | | 27.77 | | 29.61 | | | 10 PERCENT EXCEEDS | 367 | | 230 | | 248 | | | 50 PERCENT EXCEEDS | 66 | | 60 | | 72 | | | 90 PERCENT EXCEEDS | 18 | | 20 | | 18 | | See period of record, partial years used in monthly statistics Mar.26 to Mar.30 Mar.26 to Apr.1 Feb.3 to Feb.4 and Apr.12 to Apr.14, 1999 Backwater from ice ## 15283700 MOOSE CREEK NEAR PALMER--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1948-49, 1951-52, 1956, 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | COLOR
(PLAT-
INUM
COBALT
UNITS)
(00080) | SAM-
PLING
METHOD,
CODES
(82398) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-------------------------------|--|---|--|---|--|---|---|---|--|---|--|--|--| | MAR 2001
27 | 1330 | 9 | 9 | 18 | <1 | 10 | 24.0 | 713 | 13.1 | 96 | 8.1 | 144 | .1 | | JUN
19 | 1310 | 9 | 9 | 465 | | 10 | | 737 | 11.6 | 99 | 7.8 | 57 | 7.1 | | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
(MG/S
AS
CACO3)
(39086) | ANC WATER UNFLTRD FET FIELD (MG/L AS CACO3) (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
(MG/L
AS
HCO3)
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) |
SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) | SOLIDS,
RESIDUE
AT 180
DEG.C
DIS-
SOLVED
(MG/L)
(70300) | | MAR 2001 | | 10.4 | 0.00 | | | 4.0 | 4.0 | 50 | 4.5 | | | 10.5 | 0.0 | | 27
JUN | 60 | 19.4 | 2.83 | .51 | 5.3 | 48 | 49 | 58 | 4.5 | <.2 | 6.5 | 12.5 | 90 | | 19 | 24 | 8.10 | .946 | .31 | 1.3 | 21 | 22 | 27 | . 6 | <.2 | 3.8 | 4.7 | 43 | | DATE | SOLDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
PARTI-
CULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-PHORUS DIS-SOLVED (MG/LAS P) (00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CAR-BON, INORG + ORGANIC PAR-TIC. TOTAL (MG/L AS C) (00694) | CAR-BON, INOR-GANIC, PAR-TIC. TOTAL (MG/L AS C) (00688) | CAR-
BON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | MAR 2001
27 | 82 | .006 | E.06 | <.08 | .400 | <.001 | <.022 | <.006 | <.007 | E.002 | <.1 | <.1 | .64 | | JUN
19 | 34 | .002 | <.10 | <.08 | .099 | <.001 | <.022 | <.006 | <.007 | .013 | <.1 | | .89 | | DATE
MAR 2001
27
JUN | CAR-BON, ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) | ALUMI-
NUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BAR-
IUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CAD- MIUM WATER UNFL- TRD TOTAL (UG/L AS CD) (01027) | CHRO-MIUM,
TOTAL
RECOV-ERABLE
(UG/L
AS CR)
(01034) | COP-
PER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | CYA-
NIDE
TOTAL
(MG/L
AS CN)
(00720) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | 19 | | 361 | E2 | 23.3 | <2.50 | <.10 | <1 | 1.9 | <.01 | M | 480 | <1 | <3.0 | ## 15283700 MOOSE CREEK NEAR PALMER--Continued | | | | | | | | | SEDI- | | | |----------|-----------|-----------|-----------|----------|-----------|-----------|---------|---------|---------|---------| | | MANGA- | | | | | | | MENT, | | | | | NESE, | MERCURY | NICKEL, | SELE- | SILVER, | ZINC, | SEDI- | DIS- | | | | | TOTAL | TOTAL | TOTAL | NIUM, | TOTAL | TOTAL | MENT, | CHARGE, | PURPOSE | | | | RECOVER- | RECOVER- | RECOVER- | TOTAL | RECOVER- | RECOVER- | SUS- | SUS- | SITE | SAMPLER | | | ABLE (UG/ | ABLE (UG/ | ABLE (UG/ | (UG/L AS | ABLE (UG/ | ABLE (UG/ | PENDED | PENDED | VISIT, | TYPE | | | L AS MN) | L AS HG) | L AS NI) | SE) | L AS AG) | L AS ZN) | (MG/L) | (T/DAY) | (CODE) | (CODE) | | DATE | (01055) | (71900) | (01067) | (01147) | (01077) | (01092) | (80154) | (80155) | (50280) | (84164) | | MAR 2001 | | | | | | | | | | | | 27 | <3 | <.14 | <2 | <2.6 | <.43 | <31 | <1 | | 1099 | 3045 | | JUN | | | | | | | | | | | | 19 | 14 | <.01 | <2 | <3.0 | < .40 | <31 | 16 | 20 | 1099 | 3045 | #### 15284000 MATANUSKA RIVER NEAR PALMER LOCATION.--Lat $61^{\circ}36'33''$, long $149^{\circ}04'15''$, in SE^{1}_{4} NW $^{1}_{4}$ sec. 34, T. 18 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on downstream left bank of old Glenn Highway bike path bridge, and 1 mi east of Palmer. DRAINAGE AREA. -- 2,070 mi², approximately. PERIOD OF RECORD.--April 1949 to September 1973, May 1985 to September 1986, October 1991 to September 1992, and May 2000 to current year. Annual maximum, water year 1974 and 1995. GAGE.--Water-stage recorder. Datum of gage is 170.92 ft above National Geodetic Vertical Datum of 1929 (Alaska Railroad Commission benchmark, prior to Mar. 27,1964 earthquake). Prior to Nov. 2, 1950, non-recording gage at bridge 20 ft upstream at same datum. Nov.2,1950 to Apr.30,1952, non-recording gage at current site and same datum. May 1, 1952 to Sep.30, 1973, July 19 to Oct. 20, 1987, and Oct. 1, 1991 to Sep.30, 1992, water-stage recorder at site 100 ft downstream at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 21,000 ft^3/s and maximum (*). | | Date | Time | Disch
(ft³ | | Gage Heigh
(ft) | it | Date | Т | ime D | ischarge
(ft ³ /s) | Gage H
(ft | | |---|---|--|--|--|---|--|---|--|--|--|--|--| | | Jun 18 | 0945 | a32, | 700 | a11.22 | | Jul 23 | 0 | 100 | a22,200 | a10 | . 82 | | | Jun 29 | 0645 | *a34, | 300 | a11.24 | | | | | | | | | | | DISCHA | ARGE, CUBI | C FEET | PER SECOND, | WATER
LY MEAN | | BER 2000 | TO SEPTEM | 1BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5780
5180
4840
4810
4840 | e1600
e1600
e1600
e1600
e1600 | 1090
899
829
985
ell00 | e900
899
860
1020
889 | e650
e650
e650
e650
e650 | 540
553
610
543
540 | 616
576
566
558
536 | 942
794
750
687
643 | 4160
6080
7280
7940
7850 | 22400
19300
18800
16700
15200 | 12800
12000
11800
11100
11600 | 5070
5530
8690
8980
7750 | | 6
7
8
9
10 | 4740
4450
4190
3890
3630 | 1730
1590
1710
1930
1940 | e1000
e1000
e1000
e1000
e1000 | 853
e850
e850
e800
e800 | e650
626
690
637
697 | 579
556
543
546
579 | 511
512
526
507
508 | 647
660
746
833
819 | 7280
7800
6360
6140
7220 | 14200
13700
14000
12000
11000 | 10300
9730
9790
9590
9320 | 6830
5690
5120
4680
4330 | | 11
12
13
14
15 | 3500
3360
3250
3110
2950 | 1860
1540
1410
1460
1400 | e1000
e1000
e1000
e1000
962
989 | e800
777
810
979
1070 | 631
606
564
631
625 | 556
581
573
555
527 | 633
581
621
624
619 | 830
852
927
1080
1190 | 10600
11300
10300
11300
13600 | 10200
9540
8700
8460
8520 | 8620
9630
11300
12300
12200 | 4080
3950
3820
3620
3420 | | 16
17
18
19
20 | 2810
2680
2480
2370
2170 | 1430
1540
1510
1510
1460 | e950
e950
e950
e950
e950 | 885
779
821
837
716 | 716
720
654
635
622 | 546
e550
e550
e550
e550 | 642
663
689
780
e820 | 1240
1250
1270
1340
1540 | 15900
20100
24700
22600
21200 | 9220
10400
11400
12400
14800 | 13500
13800
14000
11400
9840 | 3290
3230
3290
3570
3740 | | 21
22
23
24
25 | 2060
2000
2070
2020
2010 | 1410
1310
1170
e1200
e1200 | e950
e950
e950
e950
e950 | 645
680
688
678
687 | 612
571
555
653
531 | e550
560
575
664
667 | e870
e820
e790
797
885 | 1680
1780
1760
1790
1750 | 18100
13500
13500
18500
19700 | 16000
16700
18900
18000
17000 | 9420
11100
10100
9290
8500 | 3680
3430
3200
2960
2800 | | 26
27
28
29
30
31 | 2020
1860
e1700
e1700
e1700
e1700 | e1200
e1100
e1100
e1100
1070 | e950
e900
e900
e900
e900 | 661
690
638
e650
e650
e650 | 571
593
579
 | 744
730
642
567
638
605 | 933
945
975
937
936 | 1740
1810
1960
2790
3530
4860 | 21600
28300
30700
31300
28500 | 15200
13700
12600
10600
10500
12100 | 7970
7770
7480
7400
6550
5790 | 2610
2490
2360
2270
2190 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 95870
3093
5780
1700
190200
1.49
1.72 | 43880
1463
1940
1070
87040
.71
.79 | 29804
961
1100
829
59120
.46
.54 | 24512
791
1070
638
48620
.38
.44 | 17619
629
720
531
34950
.30
.32 | 18069
583
744
527
35840
.28 | 20976
699
975
507
41610
.34
.38 | 44490
1435
4860
643
88250
.69 | 453410
15110
31300
4160
899300
7.30
8.15 | 422240
13620
22400
8460
837500
6.58
7.59 | 315990
10190
14000
5790
626800
4.92
5.68 | 126670
4222
8980
2190
251200
2.04
2.28 | | | | STATISTI | CS OF MON | THLY ME | AN DATA FOR | WATER | YEARS 1949 | - 2001, | BY WATER | YEAR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) | 1939
3093
2001
1166
1992 | 985
1793
1972
568
1959 | 728
1024
1972
440
1969 | 621
821
1961
349
1959 |
519
629
2001
381
1971 | 473
583
2001
360
1971 | 637
985
1964
465
1972 | 2657
6019
1960
1007
1966 | 10210
17250
1964
5415
1965 | 13170
18750
2000
9206
1973 | 9945
15730
1971
4992
1969 | 4916
8966
1951
2123
1969 | Peak discharge adjusted to exclude surge; peak gage-height not adjusted to exclude surge ## 15284000 MATANUSKA RIVER NEAR PALMER--Continued | SUMMARY STATISTICS | FOR 2000 CALEND | AR YEAR | FOR 2001 WAT | ER YEAR | WATER YEARS | 1949 - 2001# | |--------------------------|-----------------|---------|--------------|---------|-------------|--------------| | ANNUAL TOTAL | | | 1613530 | | | | | ANNUAL MEAN | | | 4421 | | 3835 | | | HIGHEST ANNUAL MEAN | | | | | 4815 | 1957 | | LOWEST ANNUAL MEAN | | | | | 2562 | 1969 | | HIGHEST DAILY MEAN | a31300 | Jul 1 | 31300 | Jun 29 | 40700 | Aug 10 1971 | | LOWEST DAILY MEAN | 808 | Apr 20 | 507 | Apr 9 | 234 | Apr 25 1956 | | ANNUAL SEVEN-DAY MINIMUM | 914 | Dec 25 | 523 | Apr 4 | 304 | Apr 20 1956 | | MAXIMUM PEAK FLOW | | | b34300 | Jun 29 | c82100 | Aug 10 1971 | | MAXIMUM PEAK STAGE | | | b11.24 | Jun 29 | d13.60 | Aug 10 1971 | | INSTANTANEOUS LOW FLOW | | | 415 | Mar 4 | | | | ANNUAL RUNOFF (AC-FT) | | | 3200000 | | 2778000 | | | ANNUAL RUNOFF (CFSM) | | | 2.14 | | 1.85 | | | ANNUAL RUNOFF (INCHES) | | | 29.00 | | 25.17 | | | 10 PERCENT EXCEEDS | 19800 | | 12700 | | 12200 | | | 50 PERCENT EXCEEDS | 4900 | | 1430 | | 1310 | | | 90 PERCENT EXCEEDS | 998 | | 579 | | 480 | | [#] See Period of Record; partial years used in monthly statistics a Jul. 1 and Jul. 5 b Peak discharge adjusted to exclude surge; meak gage-height not adjusted to exclude surge. c From rating curve extended above 34,000 ft /s on basis of velocity-area study, from break-out of natural reservoir on Granite Creek tributary d Site then in use #### 15290000 LITTLE SUSITNA RIVER NEAR PALMER LOCATION.--Lat 61°42'37", long 149°13'47", in SE¹/₄ NW¹/₄ sec. 26, T. 19 N., R. 1 E. (Anchorage C-6 NW quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on right bank 100 ft downstream from highway bridge on Wasilla-Fishhook Road, 1.5 mi north of road junction, 1.8 mi downstream from unnamed tributary, and 8 mi northwest of Palmer. Prior to October 1, 1991 at site 60 ft upstream. DRAINAGE AREA. -- 61.9 mi2. PERIOD OF RECORD.--July 1948 to current year. Low-flow records not equivalent prior to January 1962 because most measurements below 300 $\rm ft^3/s$ were made at site 3.4 mi downstream. GAGE.--Water-stage recorder. Datum of gage is 916.6 ft above sea level (river-profile survey). Prior to August 16, 1948, non-recording gage and August 17, 1948 to May 15, 1972, water-stage recorder on left bank; water-stage recorder on right bank, May 16, 1972 to September 30, 1991, at site 60 ft upstream. Prior to October 1, 1974, at datum 4.00 ft higher; October 1, 1974 to September 30, 1991, at datum 2.00 ft higher. REMARKS.--Records fair except for October 28 to March 23 (flow under ice), and for discharges above 700 ft^3/s , which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft³/s and maximum (*). | | Date | Time | Discha
(ft³/ | | Gage Height
(ft) | | Date | Time | Discharge
(ft ³ /s) | Gag | e height
(ft) | | |--|--|--|--|---|---|---|---|---|---|--|---|---| | | June 17 | 2315 | 142 | 20 | 5.59 | | June 20 | 2345 | 1630* | | 5.75* | | | | | DISCHARG | E, CUBIC | FEET | | | YEAR OCTOBER
VALUES | 2000 | TO SEPTEMBER | 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 344 | 93 | e60 | 35 | 28 | 23 | 22 | 48 | 517 | 466 | 407 | 185 | | 2 | 306 | e90 | e60 | 36 | 29 | 23 | 20 | 40 | 697 | 439 | 376 | 184 | | 3 | 283 | e90 | e60 | 35 | 27 | e23 | 21 | 36 | 806 | 412 | 364 | 225 | | 4 | 262 | e85 | e60 | 34 | 27 | 23 | 21 | 33 | 756 | 400 | 395 | 223 | | 5 | 263 | e85 | e60 | 35 | 27 | 23 | 20 | 31 | 728 | 533 | 349 | 330 | | 6 | 271 | e85 | e55 | 34 | 27 | 23 | 20 | 31 | 650 | 456 | 322 | 345 | | 7 | 239 | e80 | e55 | 34 | 27 | 23 | 20 | 33 | 591 | 398 | 302 | 301 | | 8 | 216 | e80 | e55 | 33 | 26 | 23 | 21 | 39 | 553 | 369 | 288 | 282 | | 9 | 201 | 81 | e55 | 33 | 26 | 23 | 20 | 40 | 652 | 372 | 274 | 259 | | 10 | 190 | 91 | e50 | 32 | e26 | 23 | 21 | 41 | 783 | 338 | 259 | 246 | | 11 | 183 | e85 | e50 | 32 | 26 | 23 | 21 | 45 | 959 | 335 | 242 | 231 | | 12 | 174 | e80 | e50 | 32 | 26 | 23 | 21 | 55 | 918 | 307 | 234 | 220 | | 13 | 167 | e75 | 49 | 32 | 27 | 22 | 21 | 72 | 796 | 302 | 233 | 210 | | 14 | 161 | 74 | 48 | 32 | 28 | 22 | 21 | 92 | 855 | 296 | 263 | 199 | | 15 | 154 | 68 | e48 | 34 | 26 | 22 | 21 | 111 | 972 | 282 | 305 | 185 | | 16 | 147 | 84 | e46 | 32 | 26 | 22 | 21 | 121 | 1060 | 274 | 279 | 177 | | 17 | 141 | 71 | e48 | 32 | 25 | 22 | 21 | 121 | 1100 | 278 | 273 | 169 | | 18 | 134 | 66 | 51 | 31 | 25 | e22 | 22 | 143 | 1060 | 271 | 287 | 166 | | 19 | 129 | 65 | 48 | 31 | 25 | e22 | 23 | 156 | 993 | 290 | 269 | 172 | | 20 | 118 | 64 | 45 | 30 | 25 | e22 | 25 | 183 | 983 | 378 | 251 | 170 | | 21 | 115 | 63 | 44 | 30 | 25 | e20 | 28 | 194 | 1060 | 337 | 238 | 161 | | 22 | 125 | 60 | 44 | 30 | 24 | e20 | 31 | 191 | 854 | 307 | 229 | 151 | | 23 | 113 | 63 | 48 | 30 | 24 | e20 | 35 | 189 | 859 | 286 | 217 | 142 | | 24 | 113 | 75 | 43 | 29 | 26 | 22 | 33 | 180 | 839 | 306 | 308 | 135 | | 25 | 108 | 72 | 40 | 29 | 25 | 22 | 36 | 169 | 738 | 296 | 261 | 129 | | 26
27
28
29
30
31 | 98
98
e100
e100
e95
e95 | e70
e65
e65
e65
e65 | 39
37
37
38
40
37 | 29
29
e26
e28
e28
28 | 24
24
24
 | 22
21
21
21
21
21 | 40
43
47
50
53 | 169
204
300
372
428
475 | 809
719
779
598
516 | 319
400
369
380
425
464 | 243
220
216
217
201
195 | 123
118
114
109
104 | | TOTAL
MEAN
MAX
MIN
MED
AC-FT
CFSM
IN. | 5243
169
344
95
147
10400
2.73
3.15 | 2255
75.2
93
60
74
4470
1.21
1.36 | 1500
48.4
60
37
48
2980
.78
.90 | 975
31.5
36
26
32
1930
.51
.59 | 725
25.9
29
24
26
1440
.42
.44 | 682
22.0
23
20
22
1350
.36
.41 | 819
27.3
53
20
21
1620
.44
.49 | 4342
140
475
31
121
8610
2.26
2.61 | 807
1100
516
801
48000 2
13.0
14.54 | 1085
358
533
271
338
1990
5.78
6.66 | 8517
275
407
195
263
16890
4.44
5.12 | 5765
192
345
104
180
11430
3.10
3.46 | | MEAN | 138 | 62.6 | 40.2 | 30.8 | 24.8 | 20.4 | 25.2 | 218 | 671 | 500 | 408 | 302 | | MAX | 391 | 134 | 61.7 | 54.1 | 41.2 | 29.7 | 68.0 | 649 | 1215 | 1047 | 909 | 651 | | (WY) | 1984 | 1980 | 1980 | 1961 | 1982 | 1991 | 1990 | 1990 | 1977 | 1963 | 1971 | 1985 | | MIN | 51.3 | 24.5 | 17.4 | 17.5 | 14.0 | 10.0 | 10.0 | 52.9 | 276 | 193 | 169 | 82.2 | | (WY) | 1969 | 1969 | 1955 | 1959 | 1952 | 1956 | 1955 | 1971 | 1996 | 1996 | 1969 | 1969 | See Period of Record for remark on low-flow records; partial years used in monthly statistics ### 15290000 LITTLE SUSITNA RIVER NEAR PALMER--Continued | SUMMARY STATISTICS | FOR 2000 CALENDA | AR YEAR | FOR 2001 WAT | TER YEAR | WATER YEARS | 1948 - 2001# | |--------------------------|------------------|---------|--------------|----------|-------------|--------------| | ANNUAL TOTAL | 86367 | | 66108 | | | | | ANNUAL MEAN | 236 | | 181 | | 204 | | | HIGHEST ANNUAL MEAN | | | | | 316 | 1949 | | LOWEST ANNUAL MEAN | | | | | 95.8 | 1969 | | HIGHEST DAILY MEAN | 1680 | Sep 22 | 1100 | Jun 17 | 5040 | Aug 10 1971 | | LOWEST DAILY MEAN | a22 | Apr 7 | b20 | Mar 21 | c8.0 | Apr 1 1956 | | ANNUAL SEVEN-DAY MINIMUM | 22 | Apr 5 | 20 | Apr 2 | 8.0 | Apr 1 1956 | | MAXIMUM PEAK FLOW | | | 1630 | Jun 20 | d7840 | Aug 10 1971 | | MAXIMUM PEAK STAGE | | | 5.75 | Jun 20 | f13.00 | Aug 10 1971 | | INSTANTANEOUS LOW FLOW | | | 19 | Apr 1 | 8.0 | Apr 1 1956 | | ANNUAL RUNOFF (AC-FT) | 171300 | | 131100 | | 147500 | | | ANNUAL RUNOFF (CFSM) | 3.81 | | 2.93 | | 3.29 | | | ANNUAL RUNOFF (INCHES) | 51.90 | | 39.73 | | 44.69 | | | 10 PERCENT EXCEEDS | 765 | | 432 | | 568 | | | 50 PERCENT EXCEEDS | 89 | | 80 | | 70 | | | 90 PERCENT EXCEEDS | 28 | | 22 | | 20 | | See Period of Record for remark on low-flow records; partial years used in monthly statistics Apr. 7 to Apr. 11 Mar. 21 to Mar. 23, Mar. 31, Apr. 2, Apr. 5 to Apr. 7 and Apr. 9 Apr. 1 to Apr. 20, 1956; and Mar. 11 and 12, 1957 From rating curve extended above 4,600 ft³/s on basis of slope-area measurement of peak flow Gage height about 13.0 ft, from floodmarks; 9.84 ft in gage well; 12.30 ft at top of needle peak in gage well; at prior datum (WY 1974-91) at sites then in use ### 15292000 SUSITNA RIVER AT GOLD CREEK LOCATION.--Lat $62^{\circ}46'04''$, long $149^{\circ}41'28''$, in $NW^{1}/_{4}$ sec. 20, T. 31 N., R. 2 W. (Talkeetna Mts. D-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020501, near left bank under Alaska Railroad bridge, 0.1 mi downstream from Gold Creek, 0.9 mi north of Gold Creek railroad station, and 2.0 mi. downstream from
Indian River. DRAINAGE AREA.--6,160 mi², approximately. PERIOD OF RECORD.--August 1949 to 1996 and May 25 to September 30, 2001. GAGE.--Water-stage recorder. Elevation of gage is 676.50 ft above sea level. Prior to June 6, 1957, non-recording gage at same site and datum. June 7, 1957 to June 2, 1964, water-stage recorder at site 0.3 mi upstream at same datum. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHARGE | E, CUBIC | FEET PER | | WATER
Y MEAN | YEAR OCTOBE | R 2000 | TO SEPTEM | MBER 2001 | | | |---|--------------------------|---------------|-------------|---------------|-------------|-----------------|------------------------|----------------|-------------------------|------------------|------------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 24000 | 22700 | 38400 | 13700 | | 2 | | | | | | | | | 26800 | 20900 | 32100 | 12900 | | 3 | | | | | | | | | e30000 | 19900 | 28000 | 13000 | | 4
5 | | | | | | | | | e38000
e36000 | 20300
21800 | 28300
27600 | 13800
15500 | | 6 | | | | | | | | | e36000 | 24900 | 24200 | 18000 | | 7 | | | | | | | | | e35400 | 24900 | 21100 | 16800 | | 8 | | | | | | | | | 34100 | 21500 | 19800 | 13800 | | 9 | | | | | | | | | 31100 | 22500 | 19300 | 12300 | | 10 | | | | | | | | | 28700 | 28600 | 17900 | 11100 | | 11
12 | | | | | | | | | 29800 | 20900 | 16500 | 10300
9760 | | 13 | | | | | | | | | 33600
34400 | 18600
18300 | 15600
15400 | 9570 | | 14 | | | | | | | | | 34500 | 16600 | 15100 | 10100 | | 15 | | | | | | | | | 33400 | 16100 | 17000 | 9940 | | 16 | | | | | | | | | 31800 | 17000 | 21000 | 9380 | | 17 | | | | | | | | | 30900 | 17700 | 23200 | 8840 | | 18
19 | | | | | | | | | 31100
32800 | 17400
17100 | 25700
28400 | 8440 | | 20 | | | | | | | | | 34400 | 18600 | 28100 | 8360
8330 | | | | | | | | | | | | | | | | 21
22 | | | | | | | | | 33900
33500 | 21100
24400 | 23200
21500 | 8710
9100 | | 23 | | | | | | | | | 31900 | 24900 | 20800 | 9020 | | 24 | | | | | | | | | 29800 | 24500 | 23100 | 8410 | | 25 | | | | | | | | 16800 | 28500 | 22000 | 22500 | 7900 | | 26 | | | | | | | | 15500 | 27600 | 21600 | 19300 | 7380 | | 27
28 | | | | | | | | 15100
18200 | 26200
25300 | 23100
25300 | 17900
17000 | 7040 | | 29 | | | | | | | | 21800 | 23400 | 28200 | 16500 | 6720
6460 | | 30 | | | | | | | | 23200 | 23100 | 29100 | 15900 | e6000 | | 31 | | | | | | | | 24600 | | 33900 | 15100 | | | TOTAL | | | | | | | | | 930000 | 683500 | 675500 | 310660 | | MEAN | | | | | | | | | 31000 | 22050 | 21790 | 10360 | | MAX | | | | | | | | | 38000 | 33900 | 38400 | 18000 | | MIN
AC-FT | | | | | | | | | 23100
1845000 | 16100
1356000 | 15100
1340000 | 6000
616200 | | CFSM | | | | | | | | | 5.03 | 3.58 | 3.54 | 1.68 | | IN. | | | | | | | | | 5.62 | 4.13 | 4.08 | 1.88 | | | | CMA MI CMI CC | OF MONEY | T 37 MELANT E | 3.00 EOD | MARIED | YEARS 1949 | 2001 | DV WARED | WEAD (NO | r \ 11 | | | | | STATISTICS | OF MONTE | ILY MEAN I | DATA FOR | WAIER | IEARS 1949 | - 2001, | BY WAIER | YEAR (WY |)# | | | MEAN | 6208 | 2658 | 1878 | 1591 | 1399 | 1289 | 1648 | 13500 | 27040 | 24010 | 21350 | 13660 | | MAX | 12680 | | 3264 | 2452 | 2028 | 1900 | 4250 | 25630 | 50580 | 34400 | 37870 | 26510 | | (WY)
MIN | 1987
3124 | | 1958
866 | 1961
724 | 1972
723 | 1968
713 | 1990
745 | 1990
3745 | 1964
15500 | 1963
16010 | 1981
8879 | 1990
5093 | | (WY) | 1970 | | 1970 | 1969 | 1969 | 1964 | 1964 | 1971 | 1969 | 1996 | 1969 | 1969 | | SUMMARY | STATISTI | CS | | FOR 2001 | WATER Y | EAR | WATER | YEARS 1 | 949 - 200 | 1# | | | | ANNUAL | MEAN | | | | | | 9724 | | | | | | | HIGHEST ANNUAL MEAN | | | | | | | 13020 | | 1990 | | | | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN | | | 38400 | Aug | 1 | 5597
85900 | .T11 | 1969
1964 n | | | | | | LOWEST DAILY MEAN | | | 30400 | Aug | 1 | a600 | | b 16 1950 | | | | | | ANNUAL SEVEN-DAY MINIMUM | | | | | | 614 | | b 16 1950 | | | | | | MAXIMUM PEAK FLOW | | | | 40200 | | 1 | 90700 | | ın 7 1964 | | | | | MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE | | | | 12.22 | Aug | 1 | 16.5
b24.4 | | ın 7 1964
ıy 10 1954 | | | | | | RUNOFF (A | | | | 7045000 | o Ma | ., 10 193 4 | | | | | | | ANNUAL RUNOFF (CFSM) | | | | | | | 1.5 | | | | | | | ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | | | | | | | 21.4 | 5 | | | | | | | CENT EXCEE
CENT EXCEE | | | | | | 25700
3400 | | | | | | | | | | | | | | 1100 | | | | | | | 90 PERCENT EXCEEDS 1100 | | | | | | | | | | | | | See Period of Record; partial years used in monthly statistics Feb. 16-20, 1950 Maximum observed, ice jam $\,$ Estimated #### 15292700 TALKEETNA RIVER NEAR TALKEETNA (Hydrologic Bench-Mark Station) LOCATION.--Lat $62^{\circ}20'49''$, long $150^{\circ}01'01''$, in NE $^{1}/_{4}$ sec. 16, T. 26 N., R. 4 W. (Talkeetna B-1 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020503, on left bank 1.7 mi downstream from Chunilna Creek, 3.5 mi northeast of Talkeetna, and about 5 mi upstream from mouth. DRAINAGE AREA.--1,996 mi². REVISED RECORDS.-- WRD AK 2000-1: Drainage Area. PERIOD OF RECORD. -- June 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. From October 1, 1992 to September 30, 1994 at site 0.5 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. | | | DISCHA | ARGE, CUE | BIC FEET I | PER SECOND,
DAIL | | YEAR OCT | OBER 2000 | TO SEPTEM | MBER 2001 | | | |---|---|---|--|---|--|---|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5570
4970
4640
4670
4780 | e1600
e1600
e1500
e1500 | e1000
e1000
e950
e950
e950 | e750
e750
e750
e750
e750 | e650
e630
e630
e630
e630 | e550
e550
e550
e550 | e500
e525
e525
e525
e525 | e800
e850
e850
e900
e900 | 9800
12500
14100
15200
13800 | 7560
7480
7350
7010
7980 | 11600
10400
10400
11100
10200 | 5690
5590
5800
6110
7200 | | 6
7
8
9
10 | 5030
4670
4430
4150
3710 | e1500
e1400
e1400
e1400
e1400 | e950
e950
e900
e900 | e750
e750
e750
e750
e750 | e630
e630
e630
e600
e600 | e550
e550
e550
e530
e530 | e550
e550
e550
e550
e550 | e950
e950
e1020
e1100
e1200 | 11900
13100
11400
11100
11800 | 8380
7250
6350
6030
5780 | 9040
8400
8240
7950
7450 | 7200
e6500
e6000
e5000
4640 | | 11
12
13
14
15 | 3740
3500
3470
3330
3210 | e1300
e1300
e1300
e1200
e1200 | e900
e900
e900
e850
e850 | | e600
e600
e600
e600 | e530
e530
e530
e530
e530 | e550
e550
e550
e600
e600 | | 13500
16200
13900
13100
13400 | 5960
5710
5480
5900
5740 | 6900
6690
6720
7410
8140 | 4410
4190
4050
4010
3720 | | 16
17
18
19
20 | 3030
2930
2770
2650
2350 | e1200
e1200
e1200
e1200
e1100 | e850
e850
e850 | e720
e720
e700 | e600
e600
e570
e570 | e530
e530
e530
e530
e530 | e600
e600
e600
e650
e650 | 2890
3210
3690
3880
4670 | 13700
13300
13600
13300
14600 | 5600
5890
6030
6280
7600 | 9910
10100
10700
10700
9490 | 3530
3390
3290
3240
3290 | | 21
22
23
24
25 | 2090
2080
2410
2110
2200 | e1100
e1100
e1100
e1100
e1100 | e850
e800
e800
e800
e800 | e700
e700
e670 | e570
e570
e570
e570
e570 | e530
e500
e500
e500
e500 | e650
e650
e650
e700 | 5230
5180
5100
5440
5460 | 13900
12900
11600
10800
10800 | 8400
9990
13200
11600
10600 | 8270
7980
7480
7920
7850 | 3250
3020
2860
2740
2710 | | 26
27
28
29
30
31 | 2190
1810
1740
e1700
e1700
e1600 | e1100
e1000
e1000
e1000
e1000 | e800
e800
e800
e800
e800
e800 | e670
e670
e650
e650
e650
e650 | e570
e570
e570
 | e500
e500
e500
e500
e500 | e700
e750
e750
e750
e800 | | 10000
9290
9400
9480
8670 | 10200
9910
10100
9800
10300
12800 | 7850
7140
6840
6400
6110
5780
5750 | 2930
2680
2540
2450
2360 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 99230
3201
5570
1600
196800
1.60
1.85 | 37600
1253
1600
1000
74580
.63 | 26950
869
1000
800
53460
.44
.50 | 22150
715
750
650
43930
.36
.41 | 16730
598
650
570
33180
.30 | 16290
525
550
500
32310
.26
.30 |
18400
613
800
500
36500
.31
.34 | 112310
3623
10600
800
222800
1.82
2.09 | 370140
12340
16200
8670
734200
6.18
6.90 | 248260
8008
13200
5480
492400
4.01
4.63 | 259060
8357
11600
5750
513800
4.19
4.83 | 124390
4146
7200
2360
246700
2.08
2.32 | | | | STATISTI | CS OF MO | NTHLY MEA | N DATA FOR | WATER | YEARS 196 | 4 - 2001, | BY WATER | YEAR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) | 2798
10000
1987
1424
1997 | 1171
1992
1987
672
1992 | 834
1122
1987
538
1996 | 684
996
1990
457
1996 | 576
990
1990
401
1969 | 517
1058
1990
285
1982 | 1990
396 | 11510 | 11070
19040
1971
5207
1969 | 10370
15410
1981
7080
1969 | 9133
16770
1971
3787
1969 | 5800
12090
1993
2070
1969 | | SUMMARY STATISTICS | | | | | ENDAR YEAR | | | WATER YEA | IR. | WATER Y | EARS 1964 | 4 - 2001# | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN | | | | 1642790
4488 | Tup 20 | | 1351510
3703 | Tup 1 | 2 | 4042
5389
2249 | Oat | 1990
1969 | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | | Jun 28
Feb 29
Feb 29 | | 10200 | Mar 2
Mar 2
Jun 1
.16 Jun 1 | 2 2 2 2 | 4042
5389
2249
63200
c260
75700
17.3
2928000
27.5
10700 | Feb
Feb
Oct
Oct | 27 1982
27 1982
11 1986
11 1986 | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | 550 | | | 1400
550 | | | 1400
500 | | | See Period of Record; partial years used in monthly statistics Feb. 29 to Apr. 1 Mar. 22 to Apr. 1 From Feb. 27 to Mar. 20, 1982 Estimated ### 15294005 WILLOW CREEK NEAR WILLOW LOCATION.--Lat $61^{\circ}46'51''$, long $149^{\circ}53'04''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 31, T.20 N., R.3 W. (Anchorage D-8 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on the right bank, 0.9 mi downstream from unnamed tributary, 5.5 mi northeast of Willow, and 6.7 mi upstream from Deception Creek. DRAINAGE AREA.--166 mi². PERIOD OF RECORD. -- June 1978 to September 1993, and May to September 2001. REVISED RECORDS.--WRD-AK-80-1: 1979 (M). GAGE.--Water-stage recorder. Elevation of gage is 350 ft above sea level from topographic map. Prior to Apr. 2, 1981 at site 0.2 mi upstream at different datum. REMARKS.--Records good, except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge 2,300 ${\rm ft}^3/{\rm s}$ and maximums (*). | | | | | Date | Time | Dischar
(ft ³ /s | | Gage Heigl
(ft) | nt | | | | |---------------|------|------------|----------|-----------|----------|--------------------------------|---------|--------------------|--------------|--------------|--------------|--------------| | | | | | June 21 | 0200 | *2580 | | *4.99 | | | | | | | | DISCHA | RGE, CUB | C FEET PE | | WATER YEA
Y MEAN VAL | | BER 2000 ' | TO SEPTEM | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | e80 | 1120 | 773 | 632 | 274 | | 2 | | | | | | | | e80 | 1420 | 724 | 566 | 270 | | 3
4 | | | | | | | | e80
e90 | 1630
1520 | 672
696 | 592
841 | 336
326 | | 5 | | | | | | | | e90 | 1480 | 1070 | 709 | 719 | | 3 | | | | | | | | 650 | 1400 | 1070 | 703 | 110 | | 6 | | | | | | | | e100 | 1380 | 950 | 597 | 653 | | 7 | | | | | | | | e100 | 1320 | 733 | 535 | 536 | | 8 | | | | | | | | e100 | 1320 | 691 | 501 | 512 | | 9 | | | | | | | | e110 | 1460 | 776 | 476 | 446 | | 10 | | | | | | | | e130 | 1560 | 688 | 449 | 413 | | 11 | | | | | | | | e140 | 1750 | 814 | 422 | 384 | | 12 | | | | | | | | e170 | 1750 | 665 | 395 | 358 | | 13 | | | | | | | | e200 | 1520 | 662 | 373 | 353 | | 14 | | | | | | | | e260 | 1430 | 656 | 377 | 341 | | 15 | | | | | | | | e280 | 1640 | 570 | 432 | 313 | | | | | | | | | | | | | | | | 16 | | | | | | | | e300 | 1780 | 538 | 418 | 296 | | 17 | | | | | | | | e350 | 1800 | 515 | 457 | 283 | | 18 | | | | | | | | 458 | 1740 | 482 | 581 | 271 | | 19 | | | | | | | | 479 | 1550 | 484 | 509 | 279 | | 20 | | | | | | | | 539 | 1480 | 648 | 445 | 271 | | 21 | | | | | | | | 590 | 1050 | F.C.F. | 206 | 255 | | 21
22 | | | | | | | | 590
587 | 1950
1520 | 565
510 | 396
351 | 255
242 | | 23 | | | | | | | | 539 | 1430 | 475 | 325 | 229 | | 24 | | | | | | | | 554 | 1410 | 526 | 436 | 219 | | 25 | | | | | | | | 513 | 1260 | 503 | 401 | 211 | | 23 | | | | | | | | 313 | 1200 | 303 | 401 | 211 | | 26 | | | | | | | | 467 | 1320 | 485 | 386 | 204 | | 27 | | | | | | | | 498 | 1260 | 782 | 341 | 197 | | 28 | | | | | | | | 702 | 1340 | 718 | 318 | 191 | | 29 | | | | | | | | 894 | 1060 | 612 | 316 | 184 | | 30 | | | | | | | | 1080 | 930 | 710 | 299 | 178 | | 31 | | | | | | | | 1100 | | 775 | 303 | | | | | | | | | | | 11660 | 44120 | 00460 | 14150 | 0.7.4.4 | | TOTAL | | | | | | | | 11660 | 44130 | 20468 | 14179 | 9744 | | MEAN | | | | | | | | 376 | 1471 | 660 | 457 | 325 | | MAX | | | | | | | | 1100 | 1950 | 1070 | 841 | 719 | | MIN | | | | | | | | 80
23130 | 930
87530 | 475
40600 | 299
28120 | 178
19330 | | AC-FT
CFSM | | | | | | | | 23130 | 8.86 | 3.98 | 28120 | 1.96 | | IN. | | | | | | | | 2.61 | 9.89 | 4.59 | 3.18 | 2.18 | | ±1V. | | | | | | | | 2.01 | 7.07 | 4.55 | 3.10 | 2.10 | | | | STATISTIC | S OF MON | THLY MEAN | DATA FOR | WATER YEAR | RS 1978 | 3 - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 405 | 162 | 110 | 86.6 | 74.1 | 64.5 | 93.9 | 635 | 1074 | 722 | 620 | 644 | | MEAN | 1197 | 162
364 | 152 | 112 | 98.8 | 97.5 | 205 | 1578 | 1500 | 722
1287 | 1286 | 1177 | | (WY) | 1987 | 1980 | 1980 | 1980 | 1990 | 1990 | 1990 | 1990 | 1990 | 1980 | 1981 | 1993 | | MIN | 177 | 81.5 | 57.3 | 57.1 | 52.9 | 33.7 | 50.5 | 340 | 484 | 338 | 307 | 259 | | (WY) | 1985 | 1985 | 1981 | 1981 | 1981 | 1982 | 1986 | 1985 | 1981 | 1983 | 1978 | 1978 | | · · · - / | 2200 | 2,00 | 1,01 | | | 1000 | | 2703 | | 1703 | 20,0 | 17,0 | [#] See Period of Record; partial years used in monthly statistics e Estimated ### 15294005 WILLOW CREEK NEAR WILLOW--Continued | SUMMARY STATISTICS | FOR 2001 WATER YEAR | WATER YEARS 1978 - 2001# | |---|---------------------|---| | ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | 1950 Jun 21 | 401
536 1990
320 1986
8670 Oct 11 1986 | | LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW | 2580 Jun 21 | a33 Mar 9 1982
33 Mar 9 1982
b12000 Oct 11 1986 | | MAXIMUM PEAK STAGE
MAXIMUM PEAK STAGE | 4.99 Jun 21 | 9.01 Oct 11 1986
c9.40 Dec 18 1986 | | ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | | 290700
2.42
32.85 | | ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 1000
223
65 | See Period of Record; partial years used in monthly statistics Mar. 9-30, 1982 From rating curve extended above 3,900 ft³/s on basis of slope-area measurement of peak flow Backwater from ice ### 15294100 DESHKA RIVER NEAR WILLOW LOCATION.--Lat $61^{\circ}46'05''$, long $150^{\circ}20'13''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 3, T. 19 N., R. 6 W. (Tyonek D-1 quad), Mantanuska-Susitna Borough , Hydrologic Unit 19020505, on left bank, 0.2 mi upstream from unnamed tributary, 1.1 mi downstream from unnamed tributary, 7.9 mi upstream from mouth, and 10 mi west of Willow. DRAINAGE AREA. -- 591 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1978 to September 1986, and October 1998 to September 2001 (discontinued). REVISED RECORDS.--WRD AK-83-1: 1980, WRD AK-00-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge $3,600~{\rm ft}^3/{\rm s}$ and maximums (*). | | Date | Time | Discha
(ft ³ / | | Gage Height (ft) | | Date | | e Discharge (ft ³ /s) | | Gage Height
(ft) | | |---|--|---|---|--|--|--|--|--|--|--|--|--| | | May 01 | 2015 | 4440 | | 4.40 | | May 20 | 1630 | *48 | 50 | *4.62 | | | | | DISCHA | RGE, CUBIC | FEET P | | | YEAR OCTOB | ER 2000 | TO SEPTEME | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 720
655
589
550
600 | e400
e400
e400
e400
e400 | e380
e360
e360
e360 | e320
e320
e320
e320
e320 | e260
e260
e260
e260
e260 | e270
e270
e270
e270
e270 | e290
e290
e290
e290
e290 | 4280
4130
3440
2980
2650 | 1880
1600
1420
1200
1030 | 250
240
229
250
309 | 1610
1590
1010
928
1500 | 558
553
524
536
1200 | | 6
7
8
9
10 | 756
1080
1230
1080
920 | e400
e400
e400
e420
e440 |
e360
e360
e360
e360 | e320
e320
e320
e300
e300 | e260
e260
e260
e260
e260 | e280
e280
e280
e280
e280 | e290
e300
e300
e300
e300 | 2430
2310
2300
2480
2920 | 902
853
851
873
767 | 377
420
346
301
308 | 1180
827
636
535
465 | 2820
3060
2310
1720
1360 | | 11
12
13
14
15 | 805
724
662
e600
e550 | e440
e420
e400
e400
e400 | e360
e360
e340
e340
e340 | e300
e300
e300
e290
e290 | e260
e260
e260
e260
e260 | e280
e280
e290
e290
e290 | e300
e300
e300
e300
e300 | 3290
3420
3470
3630
3870 | 688
660
664
661
610 | 365
796
1030
725
565 | 426
392
371
347
328 | 1140
978
879
809
776 | | 16
17
18
19
20 | e500
e480
e460
e460
e440 | e400
e400
e400
e420
e420 | e340
e340
e340
e340
e340 | e290
e290
e280
e280
e280 | e260
e260
e260
e260
e260 | e290
e290
e290
e280
e280 | e300
e320
e320
e320
e340 | 4140
4400
4540
4680
4780 | 554
501
453
421
399 | 475
413
371
335
352 | 370
1050
1260
1470
1500 | 727
679
640
609
584 | | 21
22
23
24
25 | e420
e420
e420
e420
e420 | e400
e400
e380
e380
e380 | e340
e340
e340
e340
e340 | e280
e280
e270
e270
e260 | e260
e260
e260
e260
e260 | e280
e280
e280
e280
e290 | e360
e400
e500
e700
e1000 | 4640
4420
4300
4010
3660 | 379
362
362
338
316 | 561
720
673
677
596 | 1530
1150
848
713
699 | 550
510
488
475
460 | | 26
27
28
29
30
31 | e420
e420
e400
e400
e400
e400 | e380
e380
e380
e380
e380 | e340
e340
e340
e340
e340
e340 | e260
e260
e260
e260
e260
e260 | e260
e260
e270
 | e290
e290
e290
e290
e290
e290 | e1400
e1900
e2500
3440
3940 | 3230
2840
2770
2940
2930
2460 | 299
313
298
278
259 | 565
531
580
621
550
583 | 807
695
607
562
556
558 | 444
423
406
386
376 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 18401
594
1230
400
36500
1.00
1.16 | 12000
400
440
380
23800
.68
.76 | 10800
348
380
340
21420
.59
.68 | 8980
290
320
260
17810
.49
.57 | 7290
260
270
260
14460
.44
.46 | 8760
283
290
270
17380
.48
.55 | 22180
739
3940
290
43990
1.25
1.40 | 108340
3495
4780
2300
214900
5.91
6.82 | 20191
673
1880
259
40050
1.14
1.27 | 15114
488
1030
229
29980
.82
.95 | 26520
855
1610
328
52600
1.45
1.67 | 26980
899
3060
376
53510
1.52
1.70 | | | | STATISTIC | CS OF MONTH | ILY MEAN | N DATA FOR | WATER | YEARS 1979 | - 2001, | BY WATER | YEAR (W | 7)# | | | MEAN
MAX
(WY)
MIN
(WY) | 1161
1748
2000
480
1985 | 673
2669
1980
277
1986 | 338
561
1980
218
1999 | 277
393
1980
191
1999 | 239
362
1980
182
1986 | 240
332
1980
177
1982 | 590
1215
1980
215
1985 | 2800
4367
1985
1361
1986 | 902
1911
1985
421
1986 | 831
2580
1981
247
1983 | 1140
2714
1981
399
2000 | 1231
2561
1982
443
1984 | See Period of Record Estimated | SUMMARY STATISTICS | FOR 2000 CALEN | DAR YEAR | FOR 2001 WATE | ER YEAR | WATER YEARS 1 | .979 - 2001# | |--------------------------|----------------|----------|---------------|---------|---------------|--------------| | ANNUAL TOTAL | 286777 | | 285556 | | | | | ANNUAL MEAN | 784 | | 782 | | 873 | | | HIGHEST ANNUAL MEAN | | | | | 1242 | 1980 | | LOWEST ANNUAL MEAN | | | | | 632 | 1984 | | HIGHEST DAILY MEAN | 6930 | May 5 | 4780 | May 20 | 9440 | Nov 13 1979 | | LOWEST DAILY MEAN | a260 | Feb 21 | 229 | Jul 3 | b160 | Feb 24 1986 | | ANNUAL SEVEN-DAY MINIMUM | 260 | Feb 21 | 258 | Jun 28 | 160 | Feb 24 1986 | | MAXIMUM PEAK FLOW | | | 4850 | May 20 | c48000 | Oct 12 1986 | | MAXIMUM PEAK STAGE | | | 4.62 | May 20 | d13.54 | Oct 12 1986 | | INSTANTANEOUS LOW FLOW | | | 220 | Jul 3 | 160 | Feb 24 1986 | | ANNUAL RUNOFF (AC-FT) | 568800 | | 566400 | | 632800 | | | ANNUAL RUNOFF (CFSM) | 1.33 | | 1.32 | | 1.48 | | | ANNUAL RUNOFF (INCHES) | 18.05 | | 17.97 | | 20.08 | | | 10 PERCENT EXCEEDS | 1470 | | 2300 | | 2120 | | | 50 PERCENT EXCEEDS | 400 | | 400 | | 429 | | | 90 PERCENT EXCEEDS | 260 | | 260 | | 210 | | [#] See Period of Record a Feb. 21 to Mar. 28 b Feb. 24 to Mar. 8, 1986 c From rating curve extended above 6,430 ft³/s on basis of slope-area measurement of peak flow 7.0 mi upstream from station d From floodmarks #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1981 to 1984, 1998 to September 2001 (discontinued). PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1999 to September 2001. INSTRUMENTATION. -- Electronic water-temperature recorder since January 1999, set for 15-minute recording interval. WATER TEMPERATURE: Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the average of the stream by cross section measurements on March 13, May 15, and June 11. No variation was found within the cross sections. No variation was found between mean stream temperature and temperature at the sensor. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 24.0 °C, July 7, 1999; minimum, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 23.5 °C, June 28; minimum, 0.0°C on many days during winter. | DATE | TIME | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|--|--|--|---|---|--|---| | MAR | | | | | | | | | | 13 | 1300 | 7.00 | 72 | 7.0 | 0 | 762 | 8.5 | 58.1 | | 13 | 1302 | 35.0 | 72 | 7.1 | 0 | 762 | 8.4 | 57.4 | | 13 | 1304 | 63.0 | 73 | 7.2 | 0 | 762 | 8.3 | 56.8 | | 13 | 1306 | 91.0 | 73 | 7.2 | 0 | 762 | 8.4 | 57.5 | | 13 | 1308 | 119 | 74 | 7.2 | 0 | 762 | 8.5 | 58.1 | | 13 | 1310 | 140 | 75 | 7.2 | 0 | 762 | 8.4 | 57.5 | | MAY | | | | | | | | | | 15 | 1245 | 20.0 | 21 | 6.7 | 6.5 | 751 | 11.2 | 92.4 | | 15 | 1246 | 65.0 | 21 | 6.7 | 6.5 | 751 | 11.0 | 90.8 | | 15 | 1247 | 110 | 21 | 6.7 | 6.5 | 751 | 11.0 | 90.8 | | 15 | 1248 | 155 | 21 | 6.7 | 6.5 | 751 | 11.0 | 90.8 | | 15 | 1249 | 200 | 21 | 6.7 | 6.5 | 751 | 10.9 | 89.9 | | JUN | | | | | | | | | | 11 | 1423 | 15.0 | 51 | 7.5 | 16.0 | 762 | 9.7 | 98.3 | | 11 | 1425 | 45.0 | 51 | 7.4 | 16.0 | 762 | 9.6 | 97.2 | | 11 | 1426 | 75.0 | 51 | 7.4 | 16.0 | 762 | 9.6 | 97.2 | | 11 | 1428 | 105 | 51 | 7.4 | 16.0 | 762 | 9.6 | 97.2 | | 11 | 1430 | 135 | 51 | 7.3 | 16.0 | 762 | 9.6 | 97.2 | | | | | | | | DIS-
CHARGE, | | | | QUALITY
ASSUR- | SPE- | PH
WATER | | |----------|------|--------|--------|---------|---------|-----------------|----------|---------|--------------|-------------------|----------|-------------|----------| | | | | | | | INST. | CAM | | PURPOSE | ANCE | CIFIC | WHOLE | MEMBER A | | | | | | | ~-~- | CUBIC | SAM- | ~ | | DATA | CON- | FIELD | TEMPERA | | | | | | STREAM | GAGE | FEET | PLING | SAMPLER | SITE | INDICA- | DUCT- | (STAND- | TURE | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | VISIT | TOR | ANCE | ARD | AIR | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | (CODE) | CODE | (US/CM) | UNITS) | (DEG C) | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (50280) | (99111) | (00095) | (00400) | (00020) | | OCT | | | | | | | | | | | | | | | 06 | 1300 | 9 | 9 | 160 | 1.90 | 737 | 10 | 3045 | 1001 | | 49 | 7.6 | | | NOV | | | | | | | | | | | | | | | 14 | 1050 | 9 | 9 | E160 | | | 10 | 3045 | 1001 | | 48 | 7.0 | | | FEB | | | | | | | | | | | | | | | 02 | 1440 | 9 | 9 | 142 | | 262 | 10 | 3045 | 1001 | | 73 | 7.4 | | | MAR | | _ | _ | | | | | | | | | | | | 13 | 1200 | 9 | 9 | 143 | | 286 | 10 | 3045 | 1001 | | 73 | 7.0 | 5.5 | | MAY | 1700 | 0 | 0 | 005 | 2 10 | 0070 | 1.0 | 2052 | 1001 | | 0.0 | | 0 5 | | 08
15 | 1720 | 9
9 | 9
9 | 205 | 3.10 | 2270 | 10
10 | 3053 | 1001
1001 | | 23
21 | 6.6
6.7 | 8.5 | | JUN | 1240 | 9 | 9 | 222 | 4.07 | 3880 | 10 | 3039 | 1001 | | 21 | 6.7 | | | 11 | 1350 | 9 | 7 | 150 | 1.85 | 659 | 10 | 3045 | 1001 | 30 | 51 | 7.4 | 15.0 | | JUL | 1330 | 9 | , | 130 | 1.05 | 039 | 10 | 3043 | 1001 | 30 | 31 | 7.4 | 13.0 | | 02 | 1330 | 9 | 9 | 160 | 1.26 | 230 | 10 | 3045 | 1001 | | 77 | 7.4 | 20.0 | | AUG | 1330 | , | | 100 | 1.20 | 250 | 10 | 3013 | 1001 | | | , | 20.0 | | 15 | 1230 | D | 9 | | | | | 8010 | 1099 | | | | | | 15 | 1620 | 9 | 9 | 133 | 1.46 | 331 | 10 | 3045 | 1001 | | 64 | 7.3 | 18.0 | | SEP | | - | - | | | | | | | | 0.1 | | | | 07 | 1450 | 9 | 9 | 191 | 3.60 | 3120 | 10 | 3053 | 1003 | | 28 | 6.7 | 18.5 | | DATE | TEMP-
ERATURE
WATER
(DEG
C)
(00010) | BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | HCO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/S AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |-------------------------------------|--|--|---|---|--|---|---|---|---|--|-------------------------|--|--| | OCT | | | | | | | | | | | | | | | 06
NOV | | | | | 27 | 7.62 | 1.84 | 1.9 | 29 | .85 | 33 | 28 | .6 | | 14
FEB | .0 | | 12.8 | 88 | 20 | 5.86 | | 1.6 | 23 | .67 | 26 | 21 | .6 | | 02
MAR | . 0 | | 8.1 | 56 | 34 | 9.74 | | 2.2 | 38 | .86 | 43 | 36 | .7 | | 13
MAY | .0 | 0 762 | 8.4 | 57 | 34 | 9.83 | 2.30 | 2.3 | 38 | .91 | 44 | 37 | .8 | | 08
15 | 3.5
6.5 | | 11.5
11.0 | 87
91 | 13
9 | 3.90
2.73 | | | 13
10 | .61
.35 | 15
10 | 12
8 | .2 | | JUN
11 | 16.0 | 762 | 9.6 | 97 | 23 | 6.75 | 1.59 | 1.8 | 25 | .74 | 28 | 23 | . 4 | | JUL
02 | 20.0 | | | 95 | 35 | 10.1 | 2.36 | 2.4 | 36 | .93 | 41 | 34 | . 4 | | AUG
15 | | | | | | | | | | | | | | | 15
SEP | 16.0 | 763 | 9.5 | 96 | 29 | 8.51 | 1.96 | 2.0 | 35 | .74 | 41 | 34 | .5 | | 07 | 10.5 | 760 | 10.6 | 95 | 13 | 3.89 | .899 | 1.1 | 10 | .55 | 12 | 10 | .3 | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | ENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
06 | .7 | <.2 | 14.2 | 60 | 45 | .002 | .107 | .035 | .27 | .24 | .041 | .019 | .013 | | NOV
14 | .6 | E.1 | 13.6 | 53 | 41 | .006 | .764 | <.002 | E.38 | .23 | E.027 | .012 | .092 | | FEB
02 | .6 | E.1 | 19.7 | 66 | 59 | .001 | .159 | .015 | .17 | .16 | .030 | .018 | .015 | | MAR
13 | | | | | | | | | | | | | | | MAY
08 | .8 | <.2 | 19.0 | 65 | 59 | .001 | .133 | .025 | .20 | .14 | .030 | .017 | .013 | | | .3 | <.2 | 9.6 | 47 | 25 | .001 | .049 | .006 | .31 | .21 | .045 | .011 | <.007 | | 15
JUN | .3 | <.2
<.2 | 9.6
8.2 | 47
51 | 25
19 | .001 | .049 | .006 | .31 | .21 | .045 | .011 | <.007
<.007 | | 15 | .3 | <.2 | 9.6 | 47 | 25 | .001 | .049 | .006 | .31 | .21 | .045 | .011 | <.007 | | 15
JUN
11
JUL
02
AUG | .3 .2 .2 | <.2
<.2
<.2 | 9.6
8.2
12.7 | 47
51
51 | 25
19
39 | .001
.002 | .049
.066 | .006 | .31
.40 | .21
.26 | .045 | .011 | <.007
<.007
E.005 | | 15
JUN
11
JUL
02 | .3 .2 .2 .4 | <.2
<.2
<.2
<.2 | 9.6
8.2
12.7
14.9 | 47
51
51
68 | 25
19
39
52 | .001
.002
.001
<.001 | .049
.066
.017 | .006
.008
.007
<.002 | .31
.40
.36 | .21
.26
.23 | .045
.080
.030 | .011
.011
.013 | <.007
<.007
E.005 | ## SOUTH-CENTRAL ALASKA ### 15294100 DESHKA RIVER NEAR WILLOW--Continued | | | | | CAR- | | CAR- | | | | | | | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | BON, | CAR- | BON, | NITRO- | CHLOR-A | | PERIPH- | | | | | | | | CAR- | INOR- | BON, | INORG + | GEN, | PERIPH- | PERIPH- | YTON | | | SEDI- | | | | MANGA- | BON, | GANIC, | ORGANIC | ORGANIC | PARTIC- | YTON | YTON | BIO- | PHEO- | | MENT, | | | IRON, | NESE, | ORGANIC | PAR- | PARTIC- | PAR- | ULATE | CHROMO- | BIO- | MASS | PHYTIN | SEDI- | DIS- | | | DIS- | DIS- | DIS- | TIC. | ULATE | TIC. | WAT FLT | GRAPHIC | MASS | TOTAL | Α, | MENT, | CHARGE, | | | SOLVED | SOLVED | SOLVED | TOTAL | TOTAL | TOTAL | SUSP | FLUO- | ASH | DRY | PERI- | SUS- | SUS- | | | (UG/L | (UG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | ROM | WEIGHT | WEIGHT | PHYTON | PENDED | PENDED | | | AS FE) | AS MN) | AS C) | AS C) | AS C) | AS C) | AS N) | (MG/M2) | G/SQ M | G/SQ M | (MG/M2) | (MG/L) | (T/DAY) | | DATE | (01046) | (01056) | (00681) | (00688) | (00689) | (00694) | (49570) | (70957) | (00572) | (00573) | (62359) | (80154) | (80155) | | DAIL | (01046) | (01036) | (00001) | (00000) | (00009) | (00094) | (49570) | (70957) | (00572) | (00573) | (02339) | (00134) | (00133) | | OCT | | | | | | | | | | | | | | | 06 | 820 | 111 | 5.1 | <.1 | .6 | .6 | .070 | | | | | 7 | 14 | | NOV | | | | | | | | | | | | | | | 14 | 680 | 52.9 | 6.6 | <.1 | . 5 | E.5 | E.046 | | | | | | | | FEB | | | | | | | | | | | | _ | | | 02 | 790 | 95.0 | 3.1 | | | .3 | <.022 | | | | | 3 | 2.1 | | MAR | 600 | 02.0 | 0 0 | | . 1 | 2 | . 000 | | | | | 2 | 0 0 | | 13 | 690 | 83.9 | 2.9 | <.1 | <.1 | .3 | <.022 | | | | | 3 | 2.3 | | MAY
08 | 660 | 44.5 | 8.6 | | | 1.0 | E.086 | | | | | 23 | 141 | | 15 | 440 | 26.2 | 8.1 | | | 1.4 | .135 | | | | | 56 | 587 | | JUN | 440 | 20.2 | 0.1 | | | 1.4 | .133 | | | | | 30 | 307 | | 11 | 520 | 44.8 | 5.2 | | | .5 | .052 | | | | | 4 | 7.1 | | JUL | 320 | 11.0 | 3.2 | | | . 5 | .032 | | | | | - | , . ± | | 02 | 550 | 33.8 | 4.2 | | | E.2 | <.022 | | | | | 2 | 1.2 | | AUG | | | | | | | | | | | | _ | | | 15 | | | | | | | | 21.1 | 140.1 | 151.0 | 8.2 | | | | 15 | 660 | 34.8 | 5.1 | | | . 2 | <.022 | | | | | 4 | 3.6 | | SEP | | | | | | | | | | | | | | | 07 | 550 | 34.4 | 14 | | | 2.6 | .226 | | | | | 33 | 278 | | DATE | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------|--| | OCT | | | 06 | 76 | | NOV | | | 14 | | | FEB
02 | 84 | | MAR | 84 | | 13 | 8.4 | | MAY | 01 | | 08 | 58 | | 15 | 51 | | JUN | | | 11 | 82 | | JUL | | | 02
AUG | | | 15 | | | 15 | | | SEP | | | 07 | 39 | | | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|----------------------|----------------------|--------------------------|------------|---------------------------------|----------------------|----------|----------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 3.0
2.5
2.5
3.5
3.5 | 2.0
1.5
1.5
2.0
2.5 | 2.5
2.0
2.0
2.5
3.0 | . 5
. 5
. 5
. 5 | .5
.5
.5
.5 | .5
.5
.5
.5 | . 5
. 5
. 5
. 5 | .0.0.0.0 | .5
.5
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | | 6
7
8
9
10 | 4.5
4.5
4.5
4.0
3.5 | 3.0
3.5
4.0
3.5
2.0 | 3.5
4.0
4.5
4.0
2.5 | .5
.5
.5
.0 | .5
.5
.0 | .5
.5
.0 | . 5
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | | 11
12
13
14
15 | 3.0
2.5
2.5
3.0
3.5 | 2.0
1.5
1.0
2.5
2.5 | 2.5
2.0
2.0
2.5
3.0 | . 5
. 5
. 5
. 5 | .0
.5
.5 | .0
.5
.5
.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | | 16
17
18
19
20 | 3.5
3.5
3.0
2.5
1.5 | 3.0
2.5
2.5
1.5 | 3.0
3.0
2.5
2.0 | . 5
. 5
. 5
. 5 | .5
.0
.0
.0 | .5
.5
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | | 21
22
23
24
25 | .5
.5
.5
.5 | .0.0.0.0 | .5
.0
.0
.5 | .5
.5
.5 | .0
.5
.5
.5 | .5
.5
.5
.5 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0 | | 26
27
28
29
30
31 | .5
.5
.5
.5 | .0
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.0
.5 | .5
.0
.0
.0 | .5
.5
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0.0.0 | . 0
. 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | | MONTH | 4.5 | .0 | 1.9 | .5 | .0 | .3 | .5 | .0 | . 0 | .0 | .0 | .0 | ## SOUTH-CENTRAL ALASKA ### 15294100 DESHKA RIVER NEAR WILLOW--Continued TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | • | | | | | | | | | |---
--|---|--|--|---|--|--|--|--|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0 | .0.0.0 | .0 | .0.0.0.0 | .0.0.0.0 | .0.0.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0.0 | 3.0
1.5
1.5
2.5
2.5 | . 0 | 2.0
.5
1.0
2.0
2.0 | | 6
7
8
9
10 | .0.0.0 | .0.0.0.0 | .0.0.0 | .0.0.0 | | .0.0.0 | .0
.0
.0
.0 | . 0 | .0.0.0.0 | 3.0
3.5
4.0
4.5
4.0 | 2.0
2.5
2.5
3.5
3.0 | 2.5
3.0
3.5
4.0
3.5 | | 11
12
13
14
15 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0 | .0 | .0.0.0 | .0
.0
.0 | .0.0.0 | .0.0.0 | 5.0
5.5
6.5
7.5
7.0 | 3.0
3.5
4.5
5.5
6.0 | 4.0
4.5
5.5
6.5 | | 16
17
18
19
20 | . 0
. 0
. 0
. 0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0
.0
.0
.0 | . 0 | .0.0.0 | .0
.0
.0 | | .0.0.0 | 6.5
6.5
7.5
7.5
8.0 | 5.5
4.5
5.5
6.0
6.5 | 6.0
5.5
6.5
7.0
7.5 | | 21
22
23
24
25 | . 0
. 0
. 0
. 0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0
.0
.0
.0 | .0 | .0.0.0 | .0
.0
.0 | . 0 | .0 | 8.0
8.0
8.0
8.0
7.5 | 7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.0 | | 26
27
28
29
30
31 | .0.0.0 | .0.0.0 | .0.0.0 | . 0
. 0
. 0
. 0
. 0 | .0 | .0.0.0.0.0 | .0
1.0
1.5
2.5
3.0 | .0
.0
.0
.5 | .0
.5
1.5
2.0 | 8.0
10.0
11.5
11.5
11.0 | 7.0
7.0
9.0
10.0
10.0 | 7.5
8.5
10.5
11.0
11.0 | | MONTH | .0 | .0 | .0 | .0 | .0 | .0 | 3.0 | .0 | .1 | 11.5 | .0 | 5.8 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | MAX
13.0
15.5
16.0
15.5
14.0 | | | MAX
21.5
22.0
19.5
17.5
17.0 | JULY | MEAN 19.0 19.5 18.0 16.0 15.5 | | | MEAN 15.0 16.5 16.5 15.5 | | SEPTEMBE | | | DAY 1 2 3 4 | 13.0
15.5
16.0
15.5 | JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 | 11.5
13.5
15.0
14.5 | 21.5
22.0
19.5
17.5 | JULY 17.0 17.5 16.0 15.0 14.0 14.5 16.0 14.5 | 19.0
19.5
18.0
16.0 | 16.0
17.5
17.5
16.5 | AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.6 16.5 16.5 | 15.0
16.5
16.5
15.5 | 13.0
13.0
14.5
13.0 | SEPTEMBE
11.5
11.5
11.5
11.5
10.5
10.0
9.0
8.5 | 12.5
12.0
12.5
12.0 | | DAY 1 2 3 4 5 6 7 8 9 10 | 13.0
15.5
16.0
15.5
14.0
13.5
13.0
14.0
16.0 | JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5 | 11.5
13.5
15.0
14.5
13.5
12.5
11.5
12.5
14.5
16.0 | 21.5
22.0
19.5
17.5
17.0
17.0
18.5
17.5 | JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 | 19.0
19.5
18.0
16.0
15.5
16.0
17.0
16.5
17.0 | 16.0
17.5
17.5
16.5
16.5
17.0
18.0
17.0 | AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.5 16.5 16.0 15.5 | 15.0
16.5
16.5
15.5
15.5
16.0
16.5
17.0
16.5 | 13.0
13.0
14.5
13.0
12.0
11.0
11.0
10.5 | SEPTEMBE
11.5
11.5
11.5
11.5
10.5
10.0
9.0
8.5 | 12.5
12.0
12.5
12.0
11.5
10.5
10.5
10.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 13.0
15.5
16.0
15.5
14.0
13.5
13.0
16.0
17.5 | JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5 | 11.5
13.5
15.0
14.5
13.5
12.5
11.5
12.5
14.5
16.0 | 21.5
22.0
19.5
17.5
17.0
17.0
18.5
17.5
19.0
17.5 | JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 15.0 | 19.0
19.5
18.0
16.0
15.5
16.0
17.0
16.5
17.0
16.5 | 16.0
17.5
17.5
16.5
16.5
17.0
18.0
17.0
16.0 | AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.5 16.0 15.5 | 15.0
16.5
16.5
15.5
15.5
16.0
16.5
17.0
16.5
16.0
17.0
18.0
17.0 | 13.0
13.0
14.5
13.0
12.0
11.0
11.0
10.5
10.5 | SEPTEMBE 11.5 11.5 11.5 10.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.0 9.5 | 12.5
12.0
12.5
12.0
11.5
10.5
10.5
10.0
9.5
9.0
9.5
10.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 13.0
15.5
16.0
15.5
14.0
13.5
13.0
16.0
17.5
16.5
15.0
17.0
18.5
20.0
20.5
20.0 | JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5 15.0 16.0 17.0 16.5 17.0 | 11.5
13.5
15.0
14.5
13.5
12.5
11.5
12.5
14.5
16.0
16.0
14.5
15.0
16.5 | 21.5
22.0
19.5
17.5
17.0
17.0
18.5
17.5
19.0
17.5
16.0
15.5
16.5
16.5 | JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 14.5 14.0 13.0 14.5 15.5 | 19.0
19.5
18.0
16.0
15.5
16.0
17.0
16.5
17.0
16.5
15.0
14.0
15.5
16.0 | 16.0
17.5
17.5
16.5
16.5
17.0
18.0
17.0
16.0
17.5
19.0
20.5
18.5
16.5 | AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.0 15.5 16.0 16.0 16.0 16.5 15.0 14.0 14.0 | 15.0
16.5
16.5
15.5
15.5
16.0
16.5
17.0
16.5
16.0
17.0
16.0
17.0
18.0
17.5
16.0 | 13.0
13.0
14.5
13.0
12.0
11.0
11.0
10.5
10.5
10.5
10.5
11.0
11.5
12.0 | SEPTEMBE 11.5 11.5 11.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.5 9.6 9.0 10.0 10.0 | 12.5
12.0
12.5
12.0
11.5
10.5
10.5
10.0
9.5
10.0
9.5
10.0
10.5
10.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 13.0
15.5
16.0
15.5
14.0
13.5
13.0
16.0
17.5
16.5
15.5
17.0
18.5
20.0
20.5
20.0
20.5
21.5
21.5
22.0
23.0
22.5 | JUNE 10.5 12.5 14.0 13.5 13.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5 15.0 16.0 17.0 17.0 18.0 17.0 18.0 19.0 | 11.5
13.5
13.5
14.5
13.5
12.5
11.5
14.5
16.0
16.0
14.5
15.0
16.5
17.5
18.5
19.0
19.5
19.5
20.5 | 21.5
22.0
19.5
17.5
17.0
17.0
18.5
19.0
17.5
16.0
15.5
16.5
17.0
17.5
18.5
18.5
18.5 | JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 15.5 14.5 16.0 17.0 16.5 17.0 16.5 16.5 | 19.0
19.5
18.0
16.0
17.0
17.0
16.5
17.0
16.5
15.0
14.0
15.5
16.0
16.5
17.0
16.5
17.0
16.5 | 16.0
17.5
17.5
16.5
16.5
17.0
18.0
17.0
16.0
17.5
19.0
20.5
18.5
16.5
16.0
15.5
16.0
15.5 | AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.0 15.5 16.0 16.0 16.5 15.0 14.5 14.0 13.5 | 15.0
16.5
16.5
15.5
15.5
16.0
16.5
17.0
16.5
16.0
17.0
18.0
17.5
16.0
15.0
15.0
15.0
15.5
14.5 | 13.0
13.0
14.5
13.0
12.0
11.0
11.0
10.5
10.5
10.5
10.5
11.0
11.5
12.0
12.5
11.0
9.5
9.0
9.5 | SEPTEMBE 11.5 11.5 11.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.5 9.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | 12.5
12.0
12.5
12.0
11.5
10.5
10.5
10.0
9.5
10.0
9.5
10.0
10.5
10.0
10.5
10.0
10.5
10.0
10.5
10.0
10.5 | #### 15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY LOCATION.--Lat $60^{\circ}05'41"$, long $152^{\circ}54'38"$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 16, T. 1 S., R. 21 W. (Kenai A-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020602, on the right bank about 20 mi upstream from mouth, 10 mi south of Tuxedni Bay, and 60 mi northeast of Iliamna. DRAINAGE AREA. -- 24.8 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1995 to current year (no winter record). GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map. July 1995 to June 1996, at site 300 ft downstream at same datum. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge $8,800~{\rm ft}^3/{\rm s}$, September 21, 1995 from rating curve extended above $3,500~{\rm ft}^3/{\rm s}$ on the basis of slope-area measurement, gage height $14.60~{\rm ft}$ at site then in use, gage height $16.27~{\rm ft}$ at the current site; minimum not determined, occurs during the winter. EXTREMES FOR CURRENT PERIOD.--Maximum discharge for the period October 2000 and May through
September 2001, 4,690 $\,$ ft $^3/s$, July 19 gage height, 14.35 $\,$ ft; minimum not determined, occurs during the winter. REMARKS.--Records are fair except for estimated discharges, which are poor. Rain gage at station. GOES satellite telemetry at station. DICCULARCE CURTO FEET DED CECOND MATER VEAR OCTORER 2000 TO CERTEMBER 2001 | | | DISCHARGE | , CUBIC | FEET | PER S | ECOND, | WATER | YEAR | OCTOBER | 2000 | TO SEPTI | EMBER | 2001 | | | |-------|------|-----------|---------|------|-------|--------|--------|-------|---------|------|----------|-------|------|-------|-------| | | | | | | | DAIL | Y MEAN | VALUE | ES | | | | | | | | DAY | OCT | NOV | DEC | JAN | | FEB | MAR | | APR | MAY | JUN | r | JUL | AUG | SEP | | DAI | 001 | 110 V | DEC | UAN | | FED | MAIN | | AFK | MAI | 0.01 | | ООП | AUG | SEF | | 1 | 98 | | | | | | | | | e85 | 463 | | 910 | 833 | 703 | | 2 | 91 | | | | | | | | | e85 | 523 | | 933 | 836 | 556 | | 3 | 86 | | | | | | | | | e85 | 559 | | 908 | 742 | 506 | | 4 | 111 | | | | | | | | | e90 | 533 | | 819 | 668 | 648 | | 5 | 176 | | | | | | | | | e90 | 506 | | 807 | 651 | 604 | | _ | 204 | | | | | | | | | 0.5 | 4.50 | | 000 | 677 | 404 | | 6 | 324 | | | | | | | | | e95 | 463 | | 996 | 673 | 434 | | 7 | 354 | | | | | | | | | e100 | 474 | | 1020 | 684 | 345 | | 8 | 195 | | | | | | | | | e100 | 484 | | 907 | 634 | 300 | | 9 | 133 | | | | | | | | | e100 | 528 | | 865 | 573 | 264 | | 10 | 111 | | | | | | | | | e110 | 581 | | 854 | 581 | 250 | | 11 | 100 | | | | | | | | | e110 | 613 | | 893 | 666 | 230 | | 12 | 90 | | | | | | | | | e120 | 613 | | 1030 | 853 | 355 | | 13 | 88 | | | | | | | | | e120 | 603 | | 925 | 908 | 591 | | 14 | 191 | | | | | | | | | e130 | 684 | | 858 | 816 | 508 | | 15 | 167 | | | | | | | | | e140 | 807 | | 884 | 754 | 462 | | 13 | 107 | | | | | | | | | CITO | 007 | | 004 | 754 | 402 | | 16 | 182 | | | | | | | | | e140 | 832 | | 940 | 654 | 405 | | 17 | 139 | | | | | | | | | e140 | 816 | | 985 | 714 | 430 | | 18 | 112 | | | | | | | | | e150 | 799 | | 956 | 766 | 432 | | 19 | 95 | | | | | | | | | e150 | 790 | | 2960 | 947 | 411 | | 20 | 83 | | | | | | | | | e150 | 851 | | 2270 | 1340 | 481 | | | | | | | | | | | | | | | | | | | 21 | 76 | | | | | | | | | e160 | 942 | | 1750 | 1170 | 520 | | 22 | 72 | | | | | | | | | e170 | 994 | | 1470 | 937 | 407 | | 23 | 65 | | | | | | | | | e180 | 1090 | | 1190 | 695 | 564 | | 24 | e65 | | | | | | | | | 192 | 1100 | | 1040 | 762 | 714 | | 25 | e65 | | | | | | | | | 202 | 1080 | | 950 | 742 | 428 | | 26 | C.F. | | | | | | | | | 210 | 1050 | | 002 | 602 | 240 | | 26 | 65 | | | | | | | | | 218 | 1250 | | 903 | 623 | 340 | | 27 | 62 | | | | | | | | | 212 | 1340 | | 932 | 605 | 287 | | 28 | 60 | | | | | | | | | 254 | 1310 | | 867 | 1190 | 266 | | 29 | 59 | | | | | | | | | 291 | 1180 | | 821 | 1040 | 267 | | 30 | 57 | | | | | | | | | 311 | 1030 | | 834 | 1300 | 223 | | 31 | 47 | | | | | | | | | 339 | | | 827 | 1030 | | | TOTAL | 3619 | | | | | | | | | 4819 | 23838 | 3 | 3304 | 25387 | 12931 | | MEAN | 117 | | | | | | | | | 155 | 795 | | 1074 | 819 | 431 | | MAX | 354 | | | | | | | | | 339 | 1340 | | 2960 | 1340 | 714 | | MIN | 47 | | | | | | | | | 85 | 463 | | 807 | 573 | 223 | | AC-FT | 7180 | | | | | | | | | 9560 | 47280 | | 6060 | 50360 | 25650 | | CFSM | 4.71 | | | | | | | | | 6.27 | 32.0 | | 43.3 | 33.0 | 17.4 | | IN. | 5.43 | | | | | | | | | 7.23 | 35.76 | | 9.96 | 38.08 | 19.40 | | | 5.15 | | | | | | | | | 23 | 55.70 | | | 50.00 | 10.10 | e Estimated ### 15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1998 to current year. | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | BARO-
METRIC
PRES-
SURE
(MM OF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ARD
UNITS) | SPE-
CIFIC
CONDUCT
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |-----------------------|--|---|--|---|---|---|--|---|---|--|--|---|---| | MAY 2001
23
JUN | 1300 | 9 | 9 | 174 | 10 | 752 | 14.2 | 102 | 7.2 | 93 | 1.2 | 39 | 13.8 | | 26 | 1230 | 9 | 9 | 1220 | 10 | 762 | 12.8 | 94 | 7.2 | 45 | 2.5 | 18 | 6.38 | | 01
SEP | 1430 | 9 | 9 | 827 | 10 | 757 | 12.9 | 104 | 7.1 | 38 | 5.8 | 15 | 5.34 | | 03 | 1130
1130 | 9
9 | 9
9 | 693
280 | 10
10 | 745
745 | 11.5
13.3 | 90
102 | 7.2
6.9 | 46
58 | 4.3 | 19
25 | 6.68
8.69 | | DATE | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | POTAS-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS K)
(00937) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS NA)
(00929) | CACO3 | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAY 2001
23 | | 1.04 | | .31 | | 1.8 | | 18 | 20 | 23 | 2.0 | <.2 | 4.7 | | JUN
26 | 7.62 | .581 | 2.05 | . 27 | .5 | . 9 | 1.2 | 12 | 12 | 16 | . 7 | <.2 | 2.7 | | AUG
01
SEP | 6.26 | .453 | 1.39 | .27 | . 4 | .6 | .6 | 10 | 12 | 13 | .5 | <.2 | 2.0 | | 03
27 | 6.40
8.31 | .541
.719 | .72
.83 | .21 | <.1
.3 | .7
.9 | 1.5 | 12
14 | 13
16 | 16
18 | .5 | <.2
<.2 | 2.4
3.2 | | DATE | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | DIS.
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
PARTI-
CULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CAR-BON, INORG + ORGANIC PAR-TIC. TOTAL (MG/L AS C) (00694) | | MAY 2001
23 | 17 8 | 44 | 54 | <.002 | <.10 | <.08 | .181 | <.001 | <.022 | <.006 | <.007 | .017 | .1 | | JUN
26 | 5.9 | 23 | 26 | .002 | <.10 | E.06 | .079 | <.001 | .030 | E.003 | <.007 | .059 | .3 | | AUG
01 | 5.3 | 20 | 21 | <.002 | <.10 | <.08 | .025 | <.001 | .043 | <.006 | <.007 | .042 | . 4 | | SEP
03
27 | 7.0
10.8 | 20
34 | 26
34 | E.005 | E.06 | <.08
<.08 | E.023
.024 | <.001
.001 | <.022
<.022 | <.006
<.006 | <.007
<.007 | .012 | .1
<.1 | ### 15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY--Continued | DATE | CAR-
BON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ALUMI-
NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ALUMI-
NUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | ARSENIC
TOTAL
(UG/L
AS AS) | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BAR-
IUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CAD-
MIUM
WATER
UNFIL-
TERED
TOTAL
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | |--
---|--|--|--|--|---|---|--|---|---|--|---|--| | MAY 2001
23 | | 11 | | . 4 | | 14.9 | | <.06 | | 54 | E.03 | | E.4 | | JUN
26 | E.19 | 33 | 4070 | .5 | E1 | 8.8 | 27.0 | <.06 | <2.50 | 17 | E.03 | E.07 | <.8 | | AUG
01 | <.30 | 21 | 2570 | .7 | E1 | 6.3 | 15.7 | <.06 | <2.50 | 16 | < .04 | <.10 | <.8 | | SEP
03 | | 20 | 706 | .8 | М | 6.9 | 10 | <.06 | <2.50 | 19 | E.02 | E.05 | <.8 | | 27 | <.30 | 19 | 353 | . 8 | E1 | 8.7 | 10.1 | <.06 | <2.50 | 33 | .04 | <.10 | <.8 | | DATE | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | COP-
PER,
DIS-
SOLVED
UG/L AS
CU)
(01040) | COP-
PER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LITH-
IUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | LITH-
IUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | | MAY 2001
23 | | .12 | | .6 | | <10 | | <.08 | | 1.4 | | 3.1 | | | JUN
26
AUG | М | .07 | E2 | .6 | <20.0 | 10 | 3510 | E.06 | <1 | E.2 | <7.0 | 4.9 | 79 | | 01
SEP | <1 | .04 | E1 | .5 | <20.0 | <10 | 2240 | <.08 | <1 | E.2 | <7.0 | 4.8 | 52 | | 03 | <1
<1 | .04 | <2
<2 | <.2 | <20.0
<20.0 | M
<10 | 540
310 | <.08 | <1
<1 | E.2 | <7.0
<7.0 | 2.6 | 16
8 | | | | | | | | | | | | | | | | | DATE
MAY 2001 | MER-
CURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SIL-
VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | SIL-
VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | STRON-
TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS AN)
(01090) | | DATE
MAY 2001
23
JUN | CURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | NIUM,
TOTAL
(UG/L
AS SE) | VER,
DIS-
SOLVED
(UG/L
AS AG) | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR) | DIUM,
DIS-
SOLVED
(UG/L
AS V) | DIS-
SOLVED
(UG/L
AS AN)
(01090) | | MAY 2001
23 | CURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS AN)
(01090) | | MAY 2001
23
JUN
26 | CURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 | DIS-
SOLVED
(UG/L
AS NI)
(01065) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3 | | MAY 2001
23
JUN
26
AUG
01 | CURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | DIS-
SOLVED
(UG/L
AS NI)
(01065)
.18 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085)
E.2 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4 | | MAY 2001
23
JUN
26
AUG
01
SEP
03 | CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 <.01 K.01 K.01 K.01 K.01 K.01 K.01 K.01 K | DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .6 NC, UR ITAL NA COV- ABLE S GJL (C ZN) A | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DIVED SUUG/L S U) | DIS-
SOLVED (UG/L
AS NI) (01065)
.18
.15
<.06
<.06
<.06 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 SEDI- MENT, DIS- CHARGE, SUS- PENDED T/DAY) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2
<3.0 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0
<1.0
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077)

<.40
<.40 | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5
10.6 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082)

18.9
14.5 | DIUM,
DIS-
SOLVED
(UG/L
AS
V)
(01085)
E.2
.5
.5 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3
3 | | MAY 2001
23
JUN
26
AUG
01
SEP
03
27 | CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 TO' REG ER; (UU AS (010) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .6 NC, UR ITAL NA COV- ABLE S GJ/L (C ZN) A 092) (2 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DIVED SUUG/L S U) | DIS-
SOLVED (UG/L
AS NI) (01065)
.18
.15
<.06
<.06
<.06 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 SEDI- MENT, DIS- CHARGE, SUS- PENDED T/DAY) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3
<.3
<.3
E.2
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2
<3.0
<3.0 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0
<1.0
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077)

<.40
<.40 | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5
10.6 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082)

18.9
14.5 | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085)
E.2
.5
.5 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3
3 | | MAY 2001 23 JUN 26 AUG 01 SEP 03 27 | CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 TOTAL TOTAL TOTAL TOTAL AS HG) (010 COMMAND TOTAL T | DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DLVED SU UG/L SU) 2703) (8 | DIS-
SOLVED (UG/L
AS NI) (01065)
.18
.15
<.06
<.06
<.06 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 TENT, DIS- CHARGE, SUS- PENDED T/DAY) (80155) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3
<.3
<.3
E.2
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2
<3.0
<3.0 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0
<1.0
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077)

<.40
<.40 | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5
10.6 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082)

18.9
14.5 | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085)
E.2
.5
.5 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3
3 | | MAY 2001 23 JUN 26 AUG 01 SEP 03 27 DATE MAY 2001 23 JUN | CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900) 03 <.01 <.01 <.01 ZII TO' REC ER (UG AS (01) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6 NC, UR TAL NA COV- ABLE S 3/L (ZN) A 092) (2 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL S DIS- DIS- DIVED S UG/L I S U) (2703) (8 | DIS-
SOLVED (UG/L
AS NI) (01065)
.18
.15
<.06
<.06
<.06
<.06
MENT, (SUS-
PENDED (MG/L) (30154) (| TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 Figure 1.5 MENT, DIS- CHARGE, SUS- PENDED T/DAY) (80155) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3
<.3
<.3
E.2
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2
<3.0
<3.0
<3.0 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0
<1.0
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077)

<.40
<.40 | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5
10.6 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082)

18.9
14.5 | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085)
E.2
.5
.5 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3
3 | | DATE MAY 2001 23 JUN 26 AUG 01 SEP 03 27 DATE MAY 2001 23 JUN 26 AUG | CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900) 03 <.01 <.01 <.01 ZIII TO' REC ERA (UGAS (010) ESTABLE ESTABLE ESTABLE (UGAS (010) ESTABLE ESTAB | DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6 NC, UR TAL NA COV- ABLE S 3/L (ZN) A 092) (2 < 23 < 17 < 31 < | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DLVED SUG/L 1 S SU) 2703) (8 | DIS-
SOLVED (UG/L
AS NI) (01065)
.18
.15
<.06
<.06
<.06
<.06
30154) (01065) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <12 <10 MENT, DIS- PENDED T/DAY) (80155) 12 387 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
<.3
<.3
<.3
<.3
E.2
<.3 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)

<3.0
E.2
<3.0
<3.0
<3.0 | VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1.0
<1.0
<1.0 | VER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077)

<.40
<.40 | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080)
26.3
12.5
10.6 | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082)

18.9
14.5 | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085)
E.2
.5
.5 | DIS-
SOLVED
(UG/L
AS AN)
(01090)
4
3
3 | #### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK LOCATION.--Lat $57^{\circ}41'41''$, long $153^{\circ}09'42''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 5, T. 29 S., R. 24 W. (Kodiak C-4 quad), Kodiak Island Borough, Hydrologic Unit 19020701, on Kodiak Island, in Kodiak National Wildlife Refuge, on right bank, 0.9 mi upstream from mouth, 7.5 mi downstream from Terror Lake Dam, and 29 mi southwest of Kodiak. DRAINAGE AREA.--30.7 mi², 45.7 mi² prior to partial diversion of Terror Lake to hydropower plant in February 1985. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1964 to October 1968, October 1981 to current year. REVISED RECORDS.--WDR AK-84-1: 1982-83. WDR AK-96-1: 1995(M). GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1981 at site 0.2 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records fair. Flow from 15 mi² at headwaters regulated by Terror Lake Dam and some flow diverted from Terror Lake to Kizhuyak River. Regulation for construction began in November 1982. Began filling reservoir April 29, 1984. Diversion to hydropower plant began February 12, 1985. GOES satellite telemetry at station. | | | DISCHA | ARGE, CUBI | C FEET PE | | , WATER
LY MEAN | YEAR OCTOB | ER 2000 | TO SEPTEM | BER 2001 | | | |--------------------------------------|--|------------------------------------|--|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--|-------------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 161
161
162
196
231 | 156
150
137
138
138 | 116
127
127
131
176 | 139
119
105
99
94 | 77
86
79
91
95 | 88
89
91
116
116 | 113
128
147
131
125 | 166
169
168
167
164 | 421
411
422
667
566 | 393
391
406
435
451 | 310
299
280
497
355 | 200
209
208
227
212 | | 6
7
8
9
10 | 217
244
204
188
201 | 156
218
171
217
290 | 134
119
113
115
129 | 121
100
87
86
100 | 86
87
89
88 | 95
93
94
95
102 | 124
124
127
130
156 | 167
167
164
162
162 | 525
479
430
414
427 | 455
401
348
369
407 | 285
267
263
298
281 | 194
197
197
190
201 | | 11
12
13
14
15 | 193
186
198
188
180 | 205
170
266
193
180 | 119
117
216
251
161 | 102
89
93
149
246 | 99
90
81
87
75 | 118
113
94
98
96 | 151
127
123
123
124 | 168
174
185
207
226 | 447
440
424
455
447 | 417
411
370
346
478 | 256
244
249
252
253 | 215
208
192
181
193 | | 16
17
18
19
20 | 193
189
181
177
177 | 241
216
175
142
173 | 123
127
126
169
289 | 168
524
407
218
265 | 105
151
105
156
98 | 84
85
85
90
92 | 120
118
124
123
130 | 295
314
264
238
308 | 492
516
479
492
537 | 513
415
487
878
491 | 267
357
294
254
615 | 332
312
240
209
255 | | 21
22
23
24
25 | 199
191
189
224
243 | 271
240
205
283
200 | 196
145
126
206
332 | 190
136
108
100
93 | 86
89
96
99 | 98
97
97
113
97 | 139
157
134
130
129 | 584
402
294
264
253 | 546
563
541
487
456 | 393
401
399
335
288 | 439
296
224
202
234 | 731
1000
550
557
503 | | 26
27
28
29
30
31 | 209
200
192
197
232
191 | 157
137
133
107
109 | 215
186
346
350
227
175 | 103
91
92
86
94
88 | 102
124
95
 | 95
84
85
87
83
91 | 140
136
134
142
135 | 245
218
236
313
344
380 | 506
608
659
557
460 | 277
281
277
288
325
312 | 220
256
264
215
217
197 | 375
349
313
358
283 | | TOTAL
MEAN
MAX
MIN
AC-FT | 6094
197
244
161
12090 | 5574
186
290
107
11060 | 5489
177
350
113
10890 | 4492
145
524
86
8910 | 2708
96.7
156
75
5370 | 2961
95.5
118
83
5870 | 3944
131
157
113
7820 | 7568
244
584
162
15010 | 14874
496
667
411
29500 | 12438
401
878
277
24670 |
8940
288
615
197
17730 | 9391
313
1000
181
18630 | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1986 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 274
427
1995
192
1998 | 184
354
1987
93.8
1995 | 145
313
1986
78.4
1988 | 121
153
1988
81.8
1989 | 110
168
1994
72.6
1989 | 101
152
1998
60.9
1986 | 172
247
1993
115
1986 | 324
454
1993
244
2000 | 500
872
1987
305
1990 | 369
1070
1987
228
1989 | 290
662
1988
183
1994 | 295
707
1995
175
2000 | [#] See Period of Record and Remarks ### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued | SUMMARY STATISTICS | FOR 2000 CAI | LENDAR YEAR | FOR 2001 W | ATER YEAR | WATER YEA | RS 1986 - 2001# | |--------------------------|--------------|-------------|------------|-----------|-----------|-----------------| | ANNUAL TOTAL | 72075 | | 84473 | | | | | ANNUAL MEAN | 197 | | 231 | | 241 | | | HIGHEST ANNUAL MEAN | | | | | 369 | 1987 | | LOWEST ANNUAL MEAN | | | | | 193 | 2000 | | HIGHEST DAILY MEAN | 1110 | Jun 12 | 1000 | Sep 22 | 4610 | Sep 20 1995 | | LOWEST DAILY MEAN | 85 | Feb 19 | 75 | Feb 15 | a26 | Dec 11 1996 | | ANNUAL SEVEN-DAY MINIMUM | 88 | Feb 14 | 86 | Jan 29 | 39 | Nov 19 1985 | | MAXIMUM PEAK FLOW | | | 1730 | Sep 22 | b10000 | Sep 19 1995 | | MAXIMUM PEAK STAGE | | | 3.77 | Sep 22 | 7.67 | Sep 19 1995 | | INSTANTANEOUS LOW FLOW | | | 67 | Jan 9 | a9.8 | Dec 11 1996 | | ANNUAL RUNOFF (AC-FT) | 143000 | | 167600 | | 174500 | | | 10 PERCENT EXCEEDS | 342 | | 449 | | 462 | | | 50 PERCENT EXCEEDS | 175 | | 192 | | 185 | | | 90 PERCENT EXCEEDS | 93 | | 93 | | 85 | | ### PRIOR TO CONSTRUCTION OF TERROR LAKE DAM SUMMARY STATISTICS, WATER YEARS 1965 - 1983 # | ANNUAL MEAN | 293 | | | | |---|------------|-----|----|--------------| | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 421
230 | | | 1983
1967 | | LOWEST ANNOAL MEAN | 250 | | | 100 | | HIGHEST DAILY MEAN | 2600 | Oct | 2 | 1965 | | LOWEST DAILY MEAN | c19 | Feb | 23 | 1967 | | ANNUAL SEVEN-DAY MINIMUM | 20 | Feb | 23 | 1967 | | INSTANTANEOUS PEAK FLOW | 3820 | Sep | 26 | 1966 | | INSTANTANEOUS PEAK STAGE | d6.48 | Sep | 26 | 1966 | | INSTANTANEOUS PEAK STAGE | f7.54 | Mar | 28 | 1964 | | ANNUAL RUNOFF (AC-FT) | | | | | | ANNUAL RUNOFF (CFSM) | | | | | | ANNUAL RUNOFF (IN) | 129.66 | | | | | 10 PERCENT EXCEEDS | 774 | | | | | 50 PERCENT EXCEEDS | 157 | | | | | 90 PERCENT EXCEEDS | 39 | | | | | | | | | | See Period of Record and Remarks Occurred while dam release valve was closed for repair From rating curve extended above 960 $\,$ ft $^3/s$ on basis of slope-area measurement of peak flow Feb. 23 and Mar. 1, 1967 Site and datum then in use Site and datum then in use; from tidal wave ### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1968, 1982 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: December 1981 to current year. INSTRUMENTATION.--Water-temperature recorder since December 10, 1981. Electronic water temperature recorder set 1-hour recording interval. REMARKS.--Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the average for the river by cross section on December 28, and July 17. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 13.5°C, July 19, 1990 and August 8, 1993; minimum, 0.0°C on many days during winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 11.0° C, August 7,13 and 23; minimum, 0.0° C on many days during winter. | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | | |-----------------------------|--|--|--|--------------------------------------|---|-----|---------------------------------| | DEC 28 28 28 28 28 28 | 1330
1331
1332
1333
1334
1335 | 70.0
70.0
70.0
70.0
70.0
70.0 | 2.0
17.0
32.0
47.0
62.0 | 1.68
1.68
1.68
1.68
1.68 | 313
313
313
313
313
313 | 2.5 | 4.5
4.5
4.5
4.5
4.5 | | JUL
17
17
17
17 | 1155
1156
1157
1158
1159 | 71.5
71.5
71.5
71.5
71.5 | 4.5
18.5
33.5
48.5
63.5 | 1.84 | 388
388
388
388
388 | 6.0 | 19.5 | ## SOUTH-CENTRAL ALASKA ### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 2 | 8.0
8.5
8.5
8.5 | 6.0
7.5
7.0
7.5
7.5 | 7.0
8.0
8.0
8.0
7.5 | 4.0
5.0
4.0
4.0
4.5 | 2.0
4.0
3.0
3.0
3.5 | 3.0
4.0
3.5
4.0
4.0 | .5
1.0
1.5
2.0 | .0
.5
1.0
1.0 | .5
.5
1.5
2.0 | 1.5
2.0
1.5
.5 | 1.0
1.0
.5
.5 | 1.5
1.5
1.0
.5 | | 6
7
8
9
10 | 8.5
7.5
6.5
6.0
7.0 | 7.0
6.0
5.0
4.5
5.0 | 7.5
7.0
5.5
5.0
6.0 | 4.5
4.0
4.5
5.0
4.5 | 3.5
3.0
3.0
4.0
3.5 | 4.0
3.5
4.0
4.5
4.0 | 2.5
2.0
1.5
2.5
2.0 | 1.0
1.0
1.0
1.5 | 2.0
1.5
1.0
2.0
2.0 | .5
1.0
1.0
.5 | .0
.5
.5
.0 | .5
1.0
.5
.5 | | 11
12
13
14
15 | 6.5
6.5
7.0
6.5
6.5 | 5.0
4.5
4.5
5.5
5.0 | | | | | 2.5
3.0
2.5
2.0 | | | | | | | 16
17
18
19
20 | 6.5
6.5
6.0
5.5 | 5.5
5.5
5.5
4.5
4.5 | 6.0
6.0
5.5
5.0 | 3.0
3.0
3.0
3.0
3.5 | 2.5
2.5
2.5
2.0
2.0 | 2.5
2.5
2.5
2.5
3.0 | 1.0
1.0
2.0
2.5
2.5 | .5
1.0
.5
2.0 | .5
1.0
1.5
2.0 | 1.5
1.5
2.0
2.0 | 1.0
1.0
1.5
1.5 | 1.5
1.5
1.5
1.5
2.0 | | | 5.0
5.5
4.5
6.0
5.0 | | 5.0
5.0
4.0
5.0
4.0 | 3.0
3.0
3.0
3.0
2.5 | 2.5
2.5
2.5
2.5
2.5 | 3.0
3.0
2.5
3.0
2.5 | 2.0
2.0
2.5
3.0
2.5 | 1.5
2.0
2.0
2.0
2.0 | 1.5
2.0
2.5
2.5
2.0 | 1.5
2.0
1.5
2.0 | 1.0
1.0
.5
.5 | 1.5
1.5
1.0
1.0 | | 26
27
28
29
30
31 | 5.5
5.0
5.0
5.5
5.0
3.5 | 4.0
4.0
3.5
4.5
3.5
2.5 | 4.5
4.5
4.0
5.0
4.0
3.5 | 2.5
2.0
2.0
1.5
.5 | 1.0
.5
1.0
.5
.5 | 2.0
1.5
2.0
1.0
.5 | 2.0
2.5
3.0
2.5
2.0 | 1.5
1.5
2.5
1.5
.5 | 2.0
2.0
2.5
2.0
2.0 | 2.0
1.5
1.5
1.0
.5 | .5
.5
.0
.0 | 1.0
1.0
1.0
.5
.5 | | | | | | | | | 3.0 | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .5
.5
.5
.5 | .0
.0
.0
.5 | .5
.5
.5
.5 | 1.5
1.0
2.5
1.5
2.5 | .0
.0
.5
1.0 | .5
.5
1.5
1.5 | 3.0
3.5
3.5
3.5
4.0 | .0
1.0
1.0
.5 | 1.0
2.0
2.0
1.5 | 6.0
4.0
4.0
5.0
3.5 | 1.0
2.0
.5
.5 | 3.0
2.5
2.0
2.0 | | 6
7
8
9
10 | 2.0
1.0
1.5
1.5 | .5
.0
.0
.5 | 1.0
.5
.5
1.0 | 3.5
2.0
3.0
3.5
3.5 | .5
.0
1.5
2.0 | 1.5
1.0
2.0
2.5
2.5 | 4.0
4.0
5.0
4.0
4.5 | 1.0
1.0
1.5
1.5 | 2.0
2.5
2.5
2.5
3.0 | 4.0
6.5
6.5
4.5
6.0 | 1.5
1.5
1.0
2.0 | 2.5
3.5
3.5
3.0
3.5 | | | | | | 3.5
4.0
3.0
2.5
3.0 | 2.0
2.0
.5
1.5 | 2.5
2.5
2.0
2.0
2.0 | 4.0
4.0
3.5
6.0
4.5 | 1.5
.5
1.5
2.0 | 2.5
2.0
2.5
3.0
2.5 | 6.5
6.5
7.0
6.0
5.0 | 1.0
1.5
2.0
2.5
2.5 | 3.5
3.5
4.0
4.0
3.5 | | 16
17
18
19
20 | 2.0
2.0
2.5
2.0 | 1.0
1.0
1.0
.5 | 1.5
1.5
1.5
1.5 | 3.0
3.0
3.0
2.0
2.5 | 1.5
1.5
.5
.0 | 2.0
2.0
1.5
1.0 | 4.5
4.5
4.5
4.5 | 2.0
2.0
1.5
1.0
2.0 | 3.0
3.0
3.0
2.5
3.0 | 4.5
6.0
7.5
8.5
4.0 | 2.5
3.0
2.5
2.0
3.0 | 3.5
4.0
4.5
4.5
3.5 | | 21
22
23
24
25 | 1.0
.5
1.0
1.0 | .0
.0
.0
.0 | .5
.5
.5
.5 | 1.5
1.5
1.0
.5
2.5 | .0
.0
.0
.0 | .5
.5
.0
.5 | 5.0
5.5
6.0
6.0
5.0 | 2.0
2.5
1.5
2.5
2.0 | 3.5
4.0
3.5
4.0
3.5 | 4.5
6.5
7.0
6.5
8.0 | 3.0
2.5
2.5
3.0
2.5 | 3.5
4.0
4.5
4.5
5.0 | | 26
27
28
29
30
31 | 2.0
2.0
1.5
 | .5
.5
.0
 | 1.0
1.5
.5
 | 3.5
4.0
3.5
3.0
2.5
2.0 | 1.0
.5
.0
.5
.0 | 2.0
1.5
1.5
1.5
1.5 | 5.0
7.0
5.5
4.5
6.0 | 2.5
2.0
2.0
2.5
2.0 | 3.5
4.0
3.5
3.5
4.0 |
5.0
8.5
8.5
8.0
8.5 | 3.0
3.0
3.5
2.5
3.0 | 4.0
5.5
5.5
5.5
5.0
5.0 | | MONTH | 2.5 | . 0 | .9 | 4.0 | .0 | 1.4 | 7.0 | .0 | 2.8 | 8.5 | .5 | 3.8 | ## SOUTH-CENTRAL ALASKA ### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---------------------------------|--|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | S | EPTEMBE | R | | 1
2
3
4
5 | 8.0
8.5
5.5
4.5
5.0 | 2.5
2.5
2.5
3.0
2.5 | 5.0
5.0
4.0
3.5
3.5 | 8.0
8.5
6.5
7.5
6.5 | 3.5
3.5
4.0
4.0
4.5 | 5.5
5.5
5.0
5.5
5.0 | 10.0
9.0
7.5
7.0
9.0 | 5.5
5.5
6.0
6.0
5.5 | 7.5
7.0
6.5
6.5
7.0 | 9.5
9.5
9.0
8.5
7.5 | 6.0
7.0
7.0
7.0
6.5 | 7.5
8.0
8.0
7.5
7.0 | | 6
7
8
9
10 | 5.0
5.0
6.5
8.0
8.5 | 3.0
3.0
3.0
2.5
3.0 | 4.0
4.0
4.5
5.0 | 7.5
7.5
8.5
9.0
6.0 | 4.0
3.5
4.0
4.0
4.5 | 5.5
5.5
6.0
6.0
5.5 | 10.0
11.0
10.5
8.5
8.5 | 5.5
6.0
6.0
7.0
6.5 | 7.5
8.0
8.0
7.5
7.5 | 7.0
8.5
8.0
8.0
7.5 | 5.5
6.0
5.0
4.5
6.5 | 6.0
7.0
6.5
6.0
7.0 | | 11
12
13
14
15 | 8.0
5.5
8.0
8.0 | 3.0
3.0
3.5
2.5
3.0 | 5.0
4.5
5.5
5.0 | 7.0
6.5
6.0
9.0
6.5 | 4.5
4.5
4.0
5.0 | 5.5
5.5
5.0
6.5
5.5 | 10.0
10.5
11.0
10.5
9.5 | 6.5
6.5
6.5
7.0
7.5 | 8.0
8.5
8.5
8.5 | 7.0
7.0
8.0
8.0
7.0 | 6.0
6.0
5.5
5.5
6.5 | 6.5
6.5
6.5
6.5 | | 16
17
18
19
20 | 8.0
7.5
6.5
6.5 | 3.5
3.0
3.0
3.5
3.5 | 5.0
5.0
4.5
4.5 | 7.5
8.0
8.0
6.5
8.0 | 5.0
4.0
5.0
5.0
4.0 | 5.5
6.0
6.5
5.5
6.0 | 9.0
8.5
9.5
8.5
7.5 | 7.5
7.5
7.0
6.5
7.0 | 8.0
8.0
8.0
7.5 | 8.0
8.5
8.0
7.5 | 7.0
7.0
7.0
6.5
5.5 | 7.5
7.5
7.5
7.0
6.5 | | 21
22
23
24
25 | 8.0
8.0
7.5
7.5
8.5 | 3.0
3.5
3.5
3.0
3.5 | 5.0
5.0
5.0
5.0 | 7.5
7.5
7.0
7.0
7.5 | 5.0
5.5
5.0
5.5
5.5 | 6.0
6.5
6.0
6.5 | 10.0
10.0
11.0
8.5
8.5 | 6.0
6.0
7.0
7.5 | 7.5
8.0
8.5
8.0 | 7.0
8.0
6.5
6.5 | 5.5
6.0
5.5
5.5
6.0 | 6.5
7.0
6.0
6.0 | | 26
27
28
29
30
31 | 8.0
8.0
8.0
6.0
5.5 | 3.5
3.5
3.5
3.5
3.5 | 5.5
5.5
5.0
5.0
4.5 | 8.0
9.0
8.5
10.0
8.0
8.0 | 5.5
5.0
5.5
5.5
6.5 | 6.5
7.0
7.0
7.5
7.0
6.5 | 8.5
8.0
8.0
8.0
8.5 | 7.0
7.0
6.5
6.5
6.5 | 8.0
7.5
7.0
7.0
7.5 | 7.0
6.5
7.0
7.5
6.0 | 6.0
5.5
6.0
6.0
4.5 | 6.5
6.5
6.5
5.5 | | MONTH | 8.5 | 2.5 | 4.8 | 10.0 | 3.5 | 6.0 | 11.0 | 5.5 | 7.7 | 9.5 | 4.5 | 6.7 | ### 15297610 RUSSELL CREEK NEAR COLD BAY LOCATION.--Lat 55°10'40", long 162°41'15", (Cold Bay A-3 quad), Aleutians East Borough, Hydrologic Unit 19030101, on left bank, at Russell Creek Fish Hatchery, 2.1 mi upstream from mouth, and 2.6 mi southeast of Cold Bay. Prior to February 27, 1997, at site 0.2 mi downstream. DRAINAGE AREA.--30.9 mi². From rating curve extended above 610 ft³/s on basis of estimate by slope-area measurement of 6,000 ft³/s and gage height of 11.19 ft #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1981 to December 1986, October 1995 to current year. REVISED RECORDS. -- WRD AK-97-1: 1996, Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 7.65 ft above sea level. Prior to February 27, 1997, elevation 3.55 ft above sea level at site 0.2 mi downstream (levels by private engineering firm). REMARKS.--Records good, except for estimated daily discharges, which are poor. | | | DISCHA | RGE, CU | BIC FEET | | , WATER
LY MEAN | YEAR OCTOBER | R 2000 | TO SEPTEMB | ER 2001 | | | |--|---|--|--|--|-------------------------|--|--|--|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e80 | 436 | e190 | 238 | e140 | 177 | 150 | 138 | 156 | 382 | 225 | 346 | | 2 | e75 | 303 | 844 | 237 | e130 | 173 | 398 | 131 | 192 | 377 | 245 | 314 | | 3 | e70 | 260 | 537 | 201 | e130 | 158 | 275 | 129 | 196 | 524 | 251 | 297 | | 4 | e70 | 374 | 353 | 191 | e120 | 243 | 175 | 126 | 208 | 484 | 221 | 291 | | 5 | e80 | 266 | 309 | e190 | e130 | 249 | 224 | 125 | 221 | 632 | 210 | 217 | | 6 | e75 | 236 | 381 | e180 | e140 | 231 | 216 | 116 | 214 | 482 | 192 | 184 | | 7 | e70 | 258 | 555 | e170 | e150 | 193 | 188 | 112 | 207 | 371 | 187 | 160 | | 8 | e65 | 345 | 666 | e170 | e160 | 204 | 173 | 112 | 206 | 345 | 207 | 153 | | 9 | e60 | 462 | 1070 | e170 | e150 | 229 | 172 | 111 | 202 | 319 | 262 | 144 | | 10 | e75 | 349 | 568 | e160 | e160 | 259 | 155 | 108 | 211 | 426 | 235 | 149 | | 11 | e90 | 274 | 499 | e160 | e170 | 276 | e150 | 108 | 207 | 401 | 206 | 231 | | 12 | e110 | 1050 | 696 | e160 | e170 | 205 | e140 | 127 | 213 | 343 | 223 | 367 | | 13 | e120 | 706 | 536 | e150 | e180 | 191 | e150 | 152 | 224 | 284 | 295 | 211 | | 14 | e110 | 488 | 493 | e150 | e190 | 210 | 156 | 139 | 226 | 414 | 342 | 181 | | 15 | e100 | 737 | 459 | e150 | 197 | 186 | 191 | 138 | 245 | 818 | 388 | 216 | | 16 | e420 | 557 | 361 | e150 | 332 | 163 | 174 | 145 | 250 | 525 | 263 | 204 | | 17 | 278 | 619 | 303 | e150 | 252 | 156 | 150 | 162 | 267 | 352 | 212 | 197 | | 18 | 216 | 514 | 710 | e150 | 189 | 145 | 138 | 162 | 281 | 667 | 204 | 165 | | 19 | 183 | 391 | 584 | e160 | 175 | 155 | 163 | 152 | 294 | 565 | 465 | 189 | | 20 | 189 | 530 | 467 | e160 | 178 | 136 | 246 | 153 | 345 | 406 | 337 | 480 | | 21 | 251 | 413 | 366 | e160 | 221 | 139 | 218 | 149 | 352 | 314 | 231 | 349 | | 22 | 183 | 339 | 391 | e150 | 227 | 125 | 189 | 142 | 617 | 264 | 278 | 283 | | 23 | 167 | 316 | 356 | e150 | 257 | e120 | 196 | 136 | 1060 | 231 | 420 | 307 | | 24 | 1230 | 292 | 355 | e150 | 277 | e120 | 179 | 128 | 555 | 219 | 402 | 473 | | 25 | 463 | 269 | 312 | e150 | 219 | e120 | 166 | 129 | 385 | 216 | 306 | 329 | | 26
27
28
29
30
31 | 376
325
277
276
243
235 | 250
232
216
202
195 | 280
312
361
321
267
243 | e150
e150
e150
e150
e140
e140 | 209
183
169
 | e110
e110
e110
e100
e110
e130 | 167
164
158
156
149 | 132
120
121
136
145
152 | 327
338
384
463
382 | 220
325
385
340
289
250 | 276
252
215
206
228
284 | 311
247
209
204
218 | | TOTAL | 6562 | 11879 | 14145 | 5087 | 5205 | 5233 | 5526 | 4136 | 9428 | 12170 | 8268 | 7626 | | MEAN | 212 | 396 | 456 | 164 | 186 | 169 | 184 | 133 | 314 | 393 | 267 | 254 | | MAX | 1230 | 1050 | 1070 | 238 | 332 | 276 | 398 | 162 | 1060 | 818 | 465 | 480 | | MIN | 60 | 195 | 190 | 140 | 120 | 100 | 138 | 108 | 156 | 216 | 187 | 144 | | AC-FT | 13020 | 23560 | 28060 | 10090 | 10320 | 10380 | 10960 | 8200 | 18700 | 24140 | 16400 | 15130 | | CFSM | 6.85 | 12.8 | 14.8 | 5.31 | 6.02 | 5.46 | 5.96 | 4.32 | 10.2 | 12.7 | 8.63 | 8.23 | | IN. | 7.90 | 14.30 | 17.03 | 6.12 | 6.27 | 6.30 | 6.65 | 4.98 | 11.35 | 14.65 | 9.95 | 9.18 | | | | STATISTIC | CS OF MO | ONTHLY MEA | AN DATA FOR | R WATER | YEARS 1982 - | 2001, | BY WATER | EAR (WY)# | | | | MEAN | 274 | 304 | 262 | 169 | 153 | 132 | 139 | 209 | 337 | 347 | 317 | 369 | | MAX | 516 | 530 | 549 | 318 | 272 | 218 | 261 | 300 | 634 | 528 | 403 | 538 | | (WY) | 1986 | 1986 | 1984 | 1982 | 1982 | 1996 | 1998 | 1982 | 2000 | 1982 | 2000 | 1998 | | MIN | 172 | 168 | 86.8 | 59.5 | 71.2 | 75.8 | 80.3 | 133 | 208 | 192 | 256 | 170 | | (WY) | 1997 | 2000 | 2000 | 2000 | 2000 | 1986 | 1985 | 2001 | 1997 | 1997 | 1996 | 2000 | | | STATIST | ICS | FOR | | ENDAR YEAR | | FOR 2001 WAT | ER YEA | R | WATER YE | ARS 1982 | - 2001# | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANI
ANNUAL
ANNUAL
10 PERC
50 PERC
90 PERC | MEAN T ANNUAL ANNUAL M DAILY ME SEVEN-DA 4 PEAK FL 4 PEAK ST TANEOUS L RUNOFF (RUNOFF (RUNOFF (ENTEXTE EXCE LENT EXCE LENT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS EDS | | 102190
279
1570
a55
55
202700
9.
123.
560
212
65 | Jun 2
Jan 6
Jan 6 | | 95265
261
1230
60
70
3060
28.74
189000
8.45
114.69
464
213
128 | Oct 2
Oct
Oct
Nov 1
Nov 1 | 9
3
2
2 |
251
302
206
4000
550
51
c6000
d11.76
f49
181800
8.12
110.37
444
202
92 | Feb
Feb
Oct
Jun | 1982
1983
24 1996
1982
18 1982
22 1981
24 1996
13 1983 | | a Jar
b Fel | e Period o
n. 6-15
b. 19-23, | 1982 | led above | 610 ft ³ /c | on bagig of | | d Site and de Estimated
f Mar. 13-14 | | en in use; f | rom flood ma | arks | | ### 15297610 RUSSELL CREEK NEAR COLD BAY--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1982-83, 1996 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1996 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval. REMARKS.--Records represent water-temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on August 28. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum, 15.5° C, August 13-14, 2001; minimum, 0.0° C on many days during winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 15.5°C, August 13-14; minimum 0.0°C on many days during winter. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | STREAM | SAMPLE
LOC-
ATION,
CROSS
SECTION | GAGE | DIS-
CHARGE,
INST.
CUBIC
FEET | TEMPER-
ATURE | TEMPER-
ATURE | |------|------|--------------------------|--|-----------------------------|---|-----------------------------|---------------------------| | DATE | TIME | WIDTH
(FT)
(00004) | (FT FM
L BANK)
(00009) | HEIGHT
(FEET)
(00065) | PER
SECOND
(00061) | WATER
(DEG C)
(00010) | AIR
(DEG C)
(00020) | | AUG | | | | | | | | | 28 | 1132 | 75.0 | 3.00 | 25.95 | 210 | 6.0 | 11.5 | | 28 | 1133 | 75.0 | 19.0 | 25.95 | 210 | 6.0 | 11.5 | | 28 | 1134 | 75.0 | 39.0 | 25.95 | 210 | 6.0 | 11.5 | | 28 | 1135 | 75.0 | 59.0 | 25.95 | 210 | 6.0 | 11.5 | | 28 | 1136 | 75.0 | 74.0 | 25.95 | 210 | 6.0 | 11.5 | #### TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|-----------------------|-------------------------| | | | OCTOBER | | NO | VEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.0
9.5
8.5
8.0
6.5 | 6.0
6.0
5.0
5.5
4.0 | 7.0
7.0
7.0
6.5
5.5 | 4.5
4.0
5.0
5.5 | 2.5
1.5
3.0
3.5
3.0 | 4.0
2.5
4.0
4.5
4.0 | .5
2.0
1.5
2.0
2.0 | .0
.5
1.0
1.5 | .0
1.5
1.5
1.5 | .5
.5
1.0
1.0 | .0
.0
.5
.0 | .0
.0
1.0
.5 | | 6
7
8
9
10 | 4.0
3.5
6.5
4.5 | 1.0
.5
2.0
2.0
3.0 | 2.5
1.5
3.5
3.5 | 4.0
5.5
6.5
6.0
5.0 | 3.5
2.5
5.0
5.0
3.0 | 3.5
4.0
5.5
5.5
4.5 | 3.0
3.5
4.5
4.0
2.5 | 1.0
1.0
3.0
2.0
1.0 | 2.0
2.5
4.0
3.0
1.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0 | | 11
12
13
14
15 | 6.5
8.0
7.0
5.5
4.5 | 2.5
1.0
4.5
4.0
3.5 | 4.0
4.5
5.5
5.0
4.0 | 4.0
5.0
4.0
4.5
4.5 | 2.0
2.0
2.0
2.0
3.0 | 3.0
3.5
3.0
3.0
4.0 | 3.0
4.0
2.0
2.5
2.0 | 1.5
2.0
1.0
1.5
1.0 | 2.5
3.5
1.5
2.0
1.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0 | | 16
17
18
19
20 | 5.5
4.5
6.0
6.0
5.5 | 3.5
2.5
2.0
1.5
2.5 | 4.5
3.5
3.5
3.0
4.0 | 3.0
2.5
2.5
3.0
2.5 | 2.0
1.5
1.0
1.5 | 2.5
2.0
1.5
2.0
2.0 | 1.5
1.0
2.0
2.0 | .5
.0
.5
.5 | 1.0
.5
1.5
1.5 | .5
1.0
2.0
1.5
2.0 | .0
.5
1.0
.5 | .5
1.0
1.0
1.0 | | 21
22
23
24
25 | 4.5
3.5
5.5
5.5
6.0 | 2.5
1.0
1.5
3.5
3.5 | 4.0
2.0
3.0
4.5
4.5 | 3.0
3.5
3.0
3.0
2.5 | 2.0
2.0
2.5
1.5 | 2.5
2.5
2.5
2.5
2.0 | 2.0
3.0
3.0
3.0
2.5 | 1.0
2.0
2.5
2.5
1.0 | 1.5
2.5
2.5
2.5
2.0 | .5
.5
.5
1.0 | .0
.0
.0
.0 | .0
.0
.0
.5 | | 26
27
28
29
30
31 | 4.5
5.0
5.5
4.5
5.0
4.5 | 2.5
3.0
3.5
3.0
2.0 | 3.5
4.0
4.5
4.0
3.0 | 2.0
1.5
.0
1.0 | .5
.0
.0
.0 | 1.0
.5
.0
.5
.5 | 3.0
3.0
3.0
2.5
2.5 | 1.5
1.5
2.5
2.0
.5 | 2.0
2.0
2.5
2.5
1.5 | 1.5
.5
1.5
.5
.5 | .0.0.0.0.0 | .5
.0
.5
.0 | | MONTH | 9.5 | .5 | 4.2 | 6.5 | .0 | 2.8 | 4.5 | .0 | 1.9 | 2.0 | .0 | . 2 | ## SOUTHWEST ALASKA ### 15297610 RUSSELL CREEK NEAR COLD BAY--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|--|--|---|--|--|---|---|---|---|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0
.0
.0
.0 | .0.0.0 | .0
.0
.0
.0 | 1.5
1.0
3.0
2.0
4.0 | .0
.0
.0
.0 | .5
.5
1.0
.5
2.0 | 2.5
2.0
4.0
3.0
5.0 | .0
.5
.0
.0 | .5
1.5
1.0
1.0
2.5 | 9.5
3.5
6.5
8.0
4.5 | 1.0
.5
.5
1.0 | 4.5
1.5
3.0
3.5
2.0 | | 6
7
8
9
10 | 1.5
2.0
2.0
1.0
2.0 | .0
.5
.0
.0 | .5
1.0
1.0
.5 | 4.0
4.5
5.0
3.5
3.5 | 1.0
1.0
2.0
1.5 | 2.0
2.0
3.0
2.5
2.0 | 6.0
7.5
6.5
6.0
3.0 | .5
1.0
.5
1.5 | 3.0
3.0
3.0
3.5 | 4.5
8.0
7.0
7.5
7.0 | .5
.5
2.0
2.0 | 2.0
3.5
4.5
4.5 | | | | .0
.0
.0
1.0 | | 2.5
6.5
3.0
3.5
2.0 | 1.5
.5
1.0
2.0 | 2.0
2.5
2.0
2.5
1.0 | .0
.5
1.5
1.5 | .0
.0
.0
.0 | .0
.5
.5 | 5.5
3.5
9.0
11.5
10.0 | 2.5
2.5
2.5
1.5
3.5 | 4.0
3.0
4.5
6.0
6.5 | | 16
17
18
19
20 | 2.0
2.0
2.5
2.0
2.5 | .0
.5
.0
.0 | 1.5
1.0
1.0
2.0 | 1.0
.0
4.0
5.0
5.0 | .0.0.0 | | 3.5
3.5
4.0
4.5
5.0 | | | | | | | 21
22
23
24
25 | 2.5
2.5
4.0
3.0
4.5 | 1.5
1.5
2.0
1.0 | 2.0
2.0
2.5
2.0
2.0 | 3.5
3.0
.5
.0 | . 0
. 0
. 0
. 0 | 1.5
1.5
.0
.0 | 5.5
7.5
5.0
4.5
6.5 | 2.0
2.5
2.0
.0
1.5 | 3.5
4.5
3.5
2.0
3.5 | 8.5
7.5
6.5
11.5
8.0 | 2.0
2.0
2.5
2.5
1.5 | 5.0
4.5
4.5
6.0
5.0 | | 26
27
28
29
30
31 | 3.5
2.0
1.0
 | 1.0
.0
.0
 | 2.0
1.0
.0
 | .0
.0
.0
.5
.5 | .0.0.0.0 | .0
.0
.0
.0 | 7.5
10.0
5.5
5.0
6.5 | 1.5
2.5
2.5
1.5
.5 | 4.0
5.5
4.0
3.0
3.5 | 6.0
5.0
5.0
8.0
12.5
10.5 | 2.5
1.5
2.5
3.0
3.0
4.0 | 3.5
3.0
3.5
5.0
6.5
6.5 | | MONTH | | .0 | | | | | 10.0 | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBI | ER. | | | 9.0
10.5
13.0
13.0
9.0 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBI | ER. | | 1
2
3
4
5 | 9.0
10.5
13.0
13.0
9.0 | JUNE | 6.0
7.0
7.5
7.5
5.5 | 9.0
11.5
8.0
13.0
8.0 | JULY 5.0 5.0 5.0 4.0 4.5 | 6.5
7.5
6.5
7.0
6.0 | | AUGUST
6.0
7.0
5.5
5.5
6.0 | 8.0
8.0
7.0
7.0
8.5 | 9.5
9.5
11.5
10.5
12.0 | 5.5
5.5
5.0
6.5
4.5 | 7.0
7.0
7.5
8.0
7.5 | | 1
2
3
4
5 | 9.0
10.5
13.0
13.0
9.0 | JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0 | 6.0
7.0
7.5
5.5
6.0
7.0
6.0
7.5 | 9.0
11.5
8.0
13.0
8.0
6.5
12.5
10.0
8.0 | JULY 5.0 5.0 5.0 4.0 4.5 4.0 3.5 4.5 5.0 |
6.5
7.5
6.5
7.0
6.0 | 12.0
9.0
9.5
9.0
13.0
10.0
14.5
10.5
13.0 | 6.0
7.0
5.5
5.5
6.0
6.0
7.0
7.5
6.0 | 8.0
8.0
7.0
7.0
8.5
8.0
9.0
8.5
9.5 | 9.5
9.5
11.5
10.5
12.0
10.0
11.0
12.0
8.5 | 5.5
5.5
5.0
6.5
4.5
4.5
4.0
5.5
4.0
6.0 | 7.0
7.0
7.5
8.0
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 9.0
10.5
13.0
13.0
9.0
9.5
12.5
11.5
13.5
12.5
10.5
9.0 | JUNE 4.0 4.5 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.0 4.0 | 6.0
7.05
7.5
5.5
6.0
7.0
6.5
7.5
7.5 | 9.0
11.5
8.0
13.0
8.0
6.5
12.5
10.0
8.0
8.0
9.0
6.5
9.0 | JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 5.0 5.0 5.0 6.5 | 6.5
7.5
7.0
6.0
5.0
6.0
5.5
6.5
6.5
6.5
6.5
6.5 | 12.0
9.0
9.5
9.0
13.0
10.0
14.5
13.0
13.5 | AUGUST 6.0 7.0 5.5 5.5 6.0 6.0 6.0 7.5 6.0 5.0 6.5 | 8.0
8.0
7.0
7.0
8.5
8.0
9.0
8.5
9.5
9.0 | 9.5
9.5
11.5
10.5
12.0
10.0
11.0
12.0
8.5
11.5 | SEPTEMBI
5.5
5.5
5.0
6.5
4.5
4.0
5.5
4.0
6.0
5.5
7.0
4.5 | 7.0
7.0
7.5
8.0
7.5
6.5
6.5
7.5
6.5
8.0
7.5
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 9.0
10.5
13.0
9.0
9.5
12.0
9.5
12.5
10.5
10.0
9.5 | JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | 6.0
7.05
7.5
5.5
6.0
7.0
6.5
7.5
7.0
6.5
6.5
8.0
8.0
7.5 | 9.0
11.5
8.0
13.0
8.0
6.5
12.5
10.0
8.0
8.0
9.0
6.5
9.0
11.0
8.5
9.0
9.0
9.0
9.0
9.0 | JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.5 5.5 4.0 7.0 6.0 | 6.55
7.55
7.00
5.00
5.05
6.05
6.55
7.55
7.00
8.00
7.00 | 12.0
9.0
9.5
9.0
13.0
10.0
14.5
13.0
13.5
12.0
15.5
15.5
11.5 | AUGUST 6.0 7.0 5.5 5.5 6.0 6.0 7.0 7.5 6.0 5.0 6.5 7.5 6.5 8.0 6.5 6.5 7.0 | 8.0
8.0
7.0
7.0
8.5
8.0
9.0
8.5
9.5
9.0
8.5
10.0
10.5
10.0
9.5 | 9.5
9.5
11.5
10.5
12.0
10.0
11.0
12.0
8.5
11.5
8.5
10.0
9.0
7.5
7.0 | SEPTEMBI 5.5 5.0 6.5 4.5 4.5 4.0 6.0 5.5 7.0 4.5 6.0 6.5 5.5 6.0 | 7.0
7.0
7.5
8.0
7.5
6.5
6.5
7.5
6.5
7.5
6.0
7.5
7.5
6.0
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 9.0
10.5
13.0
9.0
9.5
12.0
9.5
11.5
10.5
10.0
9.5
14.5
13.5
12.5
10.0
9.5 | JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.0 4.5 4.5 4.0 4.5 | 6.0
7.5
7.5
5.5
6.0
7.0
7.5
7.5
7.0
6.5
6.5
8.0
8.0
7.5
7.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 9.0
11.5
8.0
13.0
8.0
6.5
12.5
10.0
8.0
8.0
9.0
6.5
9.0
11.0
8.5
9.0
9.0
8.5 | JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.5 5.5 4.0 7.0 6.0 5.0 4.5 | 6.5557.00
5.05 5.05 5.5505
7.06 6.5 5.5500
7.06 6.5 7.5 | 12.0
9.0
9.5
9.0
13.0
10.0
14.5
13.0
13.5
12.0
15.5
15.5
11.5
10.5
10.5
11.0
10.0
11.0
10.0 | AUGUST 6.0 7.0 5.5 6.0 6.0 6.0 7.5 6.0 5.0 6.5 7.5 6.5 8.0 6.5 7.5 6.5 8.0 6.5 6.5 7.0 6.0 6.0 6.0 6.0 | 8.0
8.0
7.0
7.0
8.5
9.0
8.5
9.0
8.5
9.0
10.0
9.5
8.5
9.0
7.5
8.0
9.0
7.5 | 9.5
9.5
11.5
10.5
12.0
10.0
11.0
12.0
8.5
11.5
8.5
10.0
9.0
7.5
7.0
8.5
10.0
9.5
8.5
7.5 | SEPTEMBI 5.5 5.0 6.5 4.5 4.0 6.0 5.5 4.0 6.0 5.5 6.0 4.5 5.5 6.0 6.5 5.5 6.0 6.5 5.5 6.0 6.5 6.0 | 7.0
7.0
7.5
8.0
7.5
6.5
7.5
6.5
7.5
6.5
7.5
6.5
7.5
6.5
7.5
6.5
7.5
6.5
7.5
6.5 | ### 15300300 ILIAMNA RIVER NEAR PEDRO BAY LOCATION.--Lat $59^{\circ}45'31''$, long $153^{\circ}50'41''$, in $NE^{1}_{/4}$ SE $^{1}_{/4}$ sec. 10, T. 5 S., R. 27 W.(Iliamna D-3 quad), Lake and Peninsula Borough, Hydrologic Unit 19030206, on left bank 100 ft downstream from bridge on road between Pile Bay and Williamsport, 9.2 mi east of Pedro Bay, and 37 mi east of Iliamna. DRAINAGE AREA.--128 mi². PERIOD OF RECORD. -- May 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map. REMARKS.--Records are good except for estimated daily discharges which are poor. GOES satellite telemetry at station. | DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1 453 e400 e400 e320 e340 e210 e160 e220 1980 2870 1770 2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e290 2450 2530 1270 10 635 838 352 e230 e250 e260 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 15 846 669 419 e400 e230 e180 e150 556 2860 2810 1530 | SEP 1290 1060 949 1120 2010 2730 1790 1240 992 850 | |---|---| | 1 453 e400 e400 e320 e340 e210 e160 e220 1980 2870 1770 2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e230 2480 3100 1390 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 | 1290
1060
949
1120
2010
2730
1790
1240
992
850 | | 2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 <td>1060
949
1120
2010
2730
1790
1240
992
850</td> | 1060
949
1120
2010
2730
1790
1240
992
850 | | 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 4444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 < | 949
1120
2010
2730
1790
1240
992
850 | | 5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 e280 2170 2350 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 <t< td=""><td>2010
2730
1790
1240
992
850</td></t<> | 2010
2730
1790
1240
992
850 | | 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 | 2730
1790
1240
992
850 | | 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280
e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | 1790
1240
992
850 | | 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | 1240
992
850 | | 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | 992
850 | | 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350
12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620
13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580
14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | | | 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | 772 | | 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | | | 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 | 733
801 | | 15 846 669 419 e4NN e23N e18N e15N 556 286N 201N 152N | 791 | | 15 010 005 415 0400 0250 0100 0150 550 2000 2010 1550 | 884 | | 16 771 669 388 e440 e230 e180 e150 721 3040 3280 1650 17 690 806 e420 e500 e240 e180 e160 765 3330 2900 1490 | 867 | | 17 690 806 e420 e500 e240 e180 e160 765 3330 2900 1490
18 680 857 e440 e600 e250 e180 e160 859 3470 2630 1750 | 848
838 | | 19 615 869 e460 e650 e250 e170 e170 959 3200 7460 1710 | 848 | | 20 557 901 e440 e650 e240 e170 e170 1070 3210 6990 3510 | 801 | | 21 512 1150 e420 e625 e240 e170 e180 1160 3740 3900 1850 | 1410 | | 22 477 1370 e380 e600 e230 e170 e180 1160 4060 2790 1550
23 426 1030 e400 e600 e230 e170 e190 1240 4250 2540 1170 | 1110
1340 | | 24 457 815 e420 521 e220 e170 e190 1170 4070 2410 1180 | 2090 | | 25 983 669 e420 477 e220 e170 e200 1200 3820 2110 1690 | 1250 | | 26 732 571 e440 546 e220 e160 e200 1310 4280 1940 1210 | 1050 | | 27 624 502 e440 502 e210 e160 e210 1170 4300 2150 1060 28 548 518 e420 430 e210 e160 e210 1210 4500 1930 1260 | 987
872 | | 29 498 470 e420 393 e160 e220 1470 3820 1870 1870 | 782 | | 30 464 420 e400 365 e160 e220 1610 3520 2210 2240 31 419 e360 342 e160 1750 2190 1800 | 694 | | | | | TOTAL 19637 19433 12775 12401 7080 5560 5170 23327 92170 90860 48870
MEAN 633 648 412 400 253 179 172 752 3072 2931 1576 | 33799
1127 | | MAX 1280 1370 511 650 340 210 220 1750 4500 7460 3510 | 2730 | | MIN 408 292 352 230 210 160 150 220 1980 1870 1060 | 694 | | AC-FT 38950 38550 25340 24600 14040 11030 10250 46270 182800 180200 96930 CFSM 4.95 5.06 3.22 3.13 1.98 1.40 1.35 5.88 24.0 22.9 12.3 | 67040
8.80 | | IN. 5.71 5.65 3.71 3.60 2.06 1.62 1.50 6.78 26.79 26.41 14.20 | 9.82 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2001, BY WATER YEAR (WY)# | | | MEAN 588 427 208 168 128 175 278 986 2557 1741 1240 | 1454 | | MAX 861 748 412 400 253 407 500 1313 3790 2931 1631 | 2178 | | (WY) 2000 1999 2001 2001 2001 1998 1998 1998 1998 2001 1999 MIN 289 161 84.5 75.2 61.6 60.6 87.8 752 1716 788 692 | 1999
627 | | (WY) 1997 1997 1998 1998 1999 1999 2001 1996 1997 1997 | 1996 | | SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1996 | - 2001# | | ANNUAL TOTAL 291542 371082 | | | ANNUAL MEAN 797 1017 874 HIGHEST ANNUAL MEAN 1083 | 1998 | | LOWECT ANNUAL MEAN | 1007 | | 20,201 111,012 11211 | 8 1000 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun 10MEST DAILY MEAN 3140 Mar 8 b150 Apr 12 328 Jan | 5 1007 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan | 5 1997
2 1997 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun | 0 100 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun | 5 1997
2 1997
8 1998
8 1998 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun ANNUAL RUNOFF (AC-FT) 578300 736000 633500 633500 ANNUAL RUNOFF (CFSM) 6.22 7.94 6.83 | 0 100 | | HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun ANNUAL RUNOFF (AC-FT) 578300 736000 633500 | 0 100 | 180 85 150 90 PERCENT EXCEEDS See Period of Record; partial year used in monthly statistics From Mar. 8-27 From Apr. 12-16 From Jan. 5-6, 1997 Estimated ### 15303700 TATALINA RIVER NEAR TAKOTNA LOCATION.--Lat $62^{\circ}53'06''$, long $155^{\circ}56'22''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 12, T.32 N., R.36 W.(McGrath D-6 quad), Hydrologic Unit 19030405, at downstream side of bridge on right bank, 1.2 mi southeast of Tatalina Airstrip, and 8.1 mi southeast of Takotna. DRAINAGE AREA. -- 76.9 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1987 to current year (no winter record), except May only in 1989, and annual maximum in water year 1991. GAGE.--Water-stage recorder, non-recording gage, and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. Prior to May 9, 1990 at site 20 ft downstream at same datum. REMARKS.--Records fair, except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft³/s, July 8, 1998, gage-height 10.97 ft; maximum gage height 11.46 ft, 1996, date and time unknown, backwater from ice, discharge not determined; minimum discharge not determined, occurs during winter. EXTREMES FOR CURRENT PERIOD.-- October 2000 and May to September 2001: maximum discharge during period, $686~{\rm ft}^3/{\rm s}$, August 20, gage height $8.41~{\rm ft}$; maximum observed gage height $10.95~{\rm ft}$, May 13, backwater from ice, discharge not determined; minimum discharge not determined, occurs during winter. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | , | | DAII | LY MEAN V | ALUES | | | | | | |--------|--------|-----|-----|-----|------|-----------|-------|-------|------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 121 | | | | | | | e100 | 413 | 67 | 180 | 123 | | 2 | e120 | | | | | | | e110 | 368 | 66 | 138 | 115 | | 3 | e110 | | | | | | | e120 | 332 | 68 | 123 | 110 | | 4 | e110 | | | | | | | e130 | 296 | 79 | 112 | 125 | | 5 | e100 | | | | | | | e140 | 263 | 70 | 106 | 168 | | _ | - 1.00 | | | | | | | -150 | 0.20 | 6.77 | 99 | 1 2 2 | | 6 | e100 | | | | | | | e150 | 238 | 67 | | 133 | | 7 | e95 | | | | | | | e160 | 220 | 63 | 94 | 117 | | 8 | e90 | | | | | | | e170 | 244 | 62 | 89 | 108 | | 9 | e85 | | | | | | | e180 | 227 | 61 | 83 | 102 | | 10 | e80 | | | | | | | e190 | 196 | 64 | 79 | 97 | | 11 | e75 | | | | | | | e210 | 180 | 128 | 80 | 92 | | 12 | e70 | | | | | | | e250 | 164 | 172 | 82 | 89 | | 13 | e65 | | | | | | | e280 | 153 | 130 | 78 | 84 | | 14 | e60 | | | | | | | e320 | 143 | 114 | 98 | 79 | | 15 | e55 | | | | | | | e350 | 129 | 100 | 126 | 77 | | | | | | | | | | | | | | | | 16 | e50 | | | | | | | e380 | 121 | 109 | 387 | 73 | | 17 | e48 | | | | | | | e410 | 117 | 127 | 221 | 71 | | 18 | e46 | | | | | | | e440 | 111 | 112 | 240 | 70 | | 19 | e44 | | | | | | | e470 | 104 | 118 | 296 | 69 | | 20 | e42 | | | | | | | e500 | 99 | 174 | 582 | 68 | | 21 | - 10 | | | | | | | - 520 | 94 | 180 | 242 | 67 | | | e40 | | | | | | | e530 | | | 343 | | | 22 | e38 | | | | | | | e545 | 90 | 154 | 271 | 65 | | 23 | e36 | | | | | | | e530 | 87 | 182 | 243 | 65 | | 24 | e34 | | | | | | | 494 | 88 | 144 | 226 | 64 | | 25 | e32 | | | | | | | 492 | 88 | 123 | 203 | 62 | | 26 | e30 | | | | | | | 520 | 81 | 117 | 184 | 61 | | 27 | e28 | | | | | | | 468 | 77 | 156 | 169 | 64 | | 28 | e26 | | | | | | | 526 | 75 | 130 | 157 | 64 | | 29 | e24 | | | | | | | 559 | 72 | 115 | 146 | 60 | | 30 | e22 | | | | | | | 522 | 69 | 132 | 137 | 59 | | 31 | e20 | | | | | | | 470 | | 230 | 130 | | | moma r | 1006 | | | | | | | 10716 | 4020 | 2614 | 5500 | 0601 | | TOTAL | 1896 | | | | | | | 10716 | 4939 | 3614 | 5502 | 2601 | | MEAN | 61.2 | | | | | | | 346 | 165 | 117 | 177 | 86.7 | | MAX | 121 | | | | | | | 559 | 413 | 230 | 582 | 168 | | MIN | 20 | | | | | | | 100 | 69 | 61 | 78 | 59 | | AC-FT | 3760 | | | | | | | 21260 | 9800 | 7170 | 10910 | 5160 | | CFSM | .80 | | | | | | | 4.50 | 2.14 | 1.52 | 2.31 | 1.13 | | IN. | .92 | | | | | | | 5.18 | 2.39 | 1.75 | 2.66 | 1.26 | e Estimated ### 15303700 TATALINA RIVER NEAR TAKOTNA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1992 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: July 1992 to current year (seasonal). INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval. REMARKS.--Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross sections on July 19 and September 6. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR
PERIOD OF RECORD.-- WATER TEMPERATURE.--Maximum recorded, 16.5° C, July 30 to August 2, and 4, 1997; minimum, 0.0° C, several days in October, May, and September most water years. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum, 11.5°C, June 23,29-30 and July 2; minimum, 0.0°C, several days in October and May. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLE
TYPE
(CODE)
(84164 | |------|------|------------------------------------|--|-------------------------------------|---|---|---|--|------------------------------------| | JUL | | | | | | | | | | | 19 | 1616 | 33.0 | 4.0 | 4.44 | 121 | 8.5 | 17.0 | 10 | 8010 | | 19 | 1618 | 33.0 | 12.0 | 4.44 | 121 | 8.5 | 17.0 | 10 | 8010 | | 19 | 1620 | 33.0 | 20.0 | 4.44 | 121 | 8.5 | 17.0 | 10 | 8010 | | 19 | 1622 | 33.0 | 28.0 | 4.44 | 121 | 8.5 | 17.0 | 10 | 8010 | | 19 | 1624 | 33.0 | 33.0 | 4.44 | 121 | 8.5 | 17.0 | 10 | 8010 | | SEP | | | | | | | | | | | 06 | 1532 | 34.0 | 8.0 | 4.53 | 130 | 5.5 | 7.5 | 10 | 8010 | | 06 | 1534 | 34.0 | 16.0 | 4.53 | 130 | 5.5 | 7.5 | 10 | 8010 | | 06 | 1536 | 34.0 | 24.0 | 4.53 | 130 | 5.5 | 7.5 | 10 | 8010 | | 06 | 1538 | 34.0 | 32.0 | 4.53 | 130 | 5.5 | 7.5 | 10 | 8010 | | 06 | 1540 | 34.0 | 34.0 | 4.53 | 130 | 5.5 | 7.5 | 10 | 8010 | ### TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|-----------------|-----------------|----------------|--------------|----------|----------|----------|--------|----------|--------------|----------|----------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 |

 |

 |

 |

 | |

 |

 |

 |

 | | 6
7
8
9 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 |

 | |

 |

 | |

 |

 | | | | 11
12
13
14
15 | . 0

 | . 0

 | .0

 |

 | | |

 | | |

 | |

 | | 16
17
18
19
20 |

 |

 |

 |

 |

 | | 21
22
23
24
25 | |

 |

 | ==== | |

 |

 | |

 | | | | | 26
27
28
29
30
31 | | | |

 | |

 |

 | |

 |

 | | | | MONTH | | | | | | | | | | | | | ## SOUTHWEST ALASKA ### 15303700 TATALINA RIVER NEAR TAKOTNA--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|--|---|--|---|--|---|--|---|---|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2
3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18
19 | | | | | | | | | | | . 0 | | | 20 | | | | | | | | | | .5 | .0 | .0 | | 21 | | | | | | | | | | 1.0 | . 0 | .5 | | 22 | | | | | | | | | | 1.0 | .0 | .5 | | 23
24 | | | | | | | | | | 1.0
1.5 | .0 | . 5
. 5 | | 25 | | | | | | | | | | 1.0 | .5 | .5 | | 26 | | | | | | | | | | 1.5 | . 0 | .5 | | 27 | | | | | | | | | | 2.5 | .5 | 1.5 | | 28
29 | | | | | | | | | | 3.5
4.0 | 1.0 | 2.5
3.0 | | 30 | | | | | | | | | | 4.0 | 2.5 | 3.0 | | 31 | | | | | | | | | | 4.0 | 3.0 | 3.5 | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY
1 | MAX
4.5 | | MEAN | MAX
11.0 | | MEAN | | | MEAN | | | | | 1
2 | 4.5
5.0 | JUNE
3.0
3.5 | 3.5
4.0 | 11.0
11.5 | JULY
9.0
9.0 | 10.0
10.0 | 9.0
8.5 | AUGUST
7.0
7.0 | 8.0
7.5 | 5.5
6.0 | SEPTEMBE
5.0
5.0 | R
5.0
5.5 | | 1
2
3 | 4.5
5.0
5.0 | JUNE
3.0
3.5
4.5 | 3.5
4.0
5.0 | 11.0
11.5
10.5 | JULY
9.0
9.0
9.0 | 10.0
10.0
9.5 | 9.0
8.5
8.0 | 7.0
7.0
7.0
7.0 | 8.0
7.5
7.5 | 5.5
6.0
6.0 | SEPTEMBE
5.0
5.0
5.5 | F 5.0
5.5
6.0 | | 1
2 | 4.5
5.0 | JUNE
3.0
3.5 | 3.5
4.0 | 11.0
11.5 | JULY
9.0
9.0 | 10.0
10.0 | 9.0
8.5 | AUGUST
7.0
7.0 | 8.0
7.5 | 5.5
6.0 | SEPTEMBE
5.0
5.0 | R
5.0
5.5 | | 1
2
3
4
5 | 4.5
5.0
5.0
5.5
5.5 | JUNE 3.0 3.5 4.5 4.5 4.0 | 3.5
4.0
5.0
5.0
4.5 | 11.0
11.5
10.5
9.0
8.5 | JULY 9.0 9.0 9.0 8.0 8.0 | 10.0
10.0
9.5
8.5
8.0 | 9.0
8.5
8.0
7.0
7.0 | 7.0
7.0
7.0
7.0
6.0
5.0 | 8.0
7.5
7.5
6.5
6.0 | 5.5
6.0
6.0
6.0 | 5.0
5.0
5.5
5.5
5.5 | 5.0
5.5
6.0
5.5
5.5 | | 1
2
3
4
5 | 4.5
5.0
5.0
5.5
5.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 | 3.5
4.0
5.0
5.0
4.5 | 11.0
11.5
10.5
9.0
8.5
8.5 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0 | 9.0
8.5
8.0
7.0
7.0 | 7.0
7.0
7.0
7.0
6.0
5.0 | 8.0
7.5
7.5
6.5
6.0
7.0
7.5 | 5.5
6.0
6.0
6.0
6.0 | 5.0
5.0
5.5
5.5
5.5
5.5 | S.0
5.5
6.0
5.5
5.5
5.5 | | 1
2
3
4
5 | 4.5
5.0
5.0
5.5
5.5
6.5
4.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.0
8.5
9.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0 | 7.0
7.0
7.0
7.0
6.0
5.0
6.0
6.5
7.5 | 8.0
7.5
7.5
6.5
6.0
7.0
7.5
8.5 | 5.5
6.0
6.0
6.0
6.0
6.0 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 | 5.0
5.5
6.0
5.5
5.5
5.5
4.5
4.0 | | 1
2
3
4
5 | 4.5
5.0
5.0
5.5
5.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 | 3.5
4.0
5.0
5.0
4.5 | 11.0
11.5
10.5
9.0
8.5
8.5 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0 | 9.0
8.5
8.0
7.0
7.0 | 7.0
7.0
7.0
7.0
6.0
5.0 | 8.0
7.5
7.5
6.5
6.0
7.0
7.5 | 5.5
6.0
6.0
6.0
6.0 | 5.0
5.0
5.5
5.5
5.5
5.5 | S.0
5.5
6.0
5.5
5.5
5.5 | | 1
2
3
4
5
6
7
8
9 | 4.5
5.0
5.5
5.5
6.5
4.5
5.6 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
4.5
5.0 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5
10.5
9.0 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5 | 7.0
7.0
7.0
7.0
6.0
5.0
6.0
6.5
7.5
8.0 |
8.0
7.5
7.5
6.5
6.0
7.0
7.5
8.5
9.0 | 5.5
6.0
6.0
6.0
6.0
6.0
4.5
4.5 | 5.0
5.0
5.5
5.5
5.5
5.5
5.3
4.0
4.0
3.5
3.0 | 5.0
5.5
6.0
5.5
5.5
5.5
4.5
4.0
3.5 | | 1
2
3
4
5
6
7
8 | 4.5
5.0
5.0
5.5
5.5
6.5
4.5
5.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 | 3.5
4.0
5.0
5.0
4.5
5.5
5.5
4.0
4.5 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5
10.5
9.0 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.0
8.5
9.0
8.5 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0 | 7.0
7.0
7.0
7.0
6.0
5.0
6.0
6.5
7.5 | 8.0
7.5
7.5
6.5
6.0
7.0
7.5
8.5
9.0 | 5.5
6.0
6.0
6.0
6.0
6.0
4.5 | 5.0
5.0
5.5
5.5
5.5
5.0
4.0
4.0
3.5 | 5.0
5.5
6.0
5.5
5.5
5.5
4.0
4.0 | | 1
2
3
4
5
6
7
8
9
10 | 4.5
5.0
5.5
5.5
6.5
5.5
6.5
6.5
6.5
6.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 5.0 5.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
4.5
5.0
5.5 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5
10.5
9.0
9.0 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
9.0
8.5
7.5
7.5 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
7.5
8.0 | 8.0
7.5
7.5
6.0
7.0
7.5
8.5
9.0
8.0
7.5 | 5.5
6.0
6.0
6.0
6.0
6.0
4.5
4.5
4.0
4.0 | 5.0
5.0
5.5
5.5
5.5
5.5
5.3
4.0
4.0
3.5
3.0
3.0 | S.0
5.5
6.0
5.5
5.5
4.5
4.0
4.0
3.5
3.5
3.0
3.0 | | 1
2
3
4
5
6
7
8
9
10 | 4.5
5.0
5.5
5.5
6.5
5.5
6.5
6.0
6.5
6.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.0
5.0
4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 11.0
11.5
10.5
9.0
8.5
9.5
9.5
9.0
9.0
8.5
7.5
8.5 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 8.0 7.0 6.5 7.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
7.5 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.0
8.5 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
8.0
7.5
7.5
8.0
9.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0 | S.0
5.5
6.0
5.5
5.5
5.5
4.5
4.0
3.5
3.5
3.0
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 4.5
5.0
5.5
5.5
6.5
5.5
6.5
6.5
6.5
6.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 5.0 4.5 5.0 5.0 4.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
4.5
5.0
5.5
4.5
5.0 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5
10.5
9.0
9.0
8.5
7.5
8.6
8.5 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 8.0 7.0 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
9.0
8.5
7.5
7.5
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.0
8.5
10.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
7.5
8.0
9.0 | 8.0
7.5
7.5
6.5
6.0
7.0
7.5
8.5
9.0
8.0
9.5
9.0 | 5.5
6.0
6.0
6.0
6.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5 | 5.0
5.0
5.5
5.5
5.5
5.5
5.0
4.0
4.0
3.5
3.0
2.5
2.5
3.0 | S.0
5.5
6.0
5.5
5.5
4.0
4.0
3.5
3.5
3.0
3.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 4.5
5.0
5.5
5.5
6.5
5.5
6.5
6.0
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
4.5
5.0
5.0
5.0
7.0 | 11.0
11.5
10.5
9.0
8.5
9.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
7.5
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.0
8.5
10.0
10.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
8.0
7.5
7.5
8.0
9.0
9.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5
9.0 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 3.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 | S.0
5.5
6.0
5.5
5.5
5.5
4.0
4.0
3.5
3.5
3.0
3.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 4.50
5.05
5.55
6.55
6.55
6.55
6.55
6.55
6 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 7.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
5.5
4.5
5.0
7.0
8.0 | 11.0
11.5
10.5
9.0
8.5
8.5
9.5
10.5
9.0
8.5
7.5
8.0
8.5
8.5 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
7.5
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
9.0
9.0
8.0
7.5
7.5 | 8.057.557.556.07.0558.007.558.009.059.009.059.009.5509.009.5507.55 | 5.5
6.0
6.0
6.0
6.0
4.5
4.5
4.0
4.0
4.5
5.5 | 5.0
5.0
5.5
5.5
5.5
5.5
5.5
5.0
4.0
4.0
3.5
3.0
2.5
2.5
3.0
4.0 | S.0
5.5
6.0
5.5
5.5
4.5
4.0
3.5
3.5
3.0
3.5
4.5
4.0
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 4.500555555555566555685000000000000000000 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.0 7.0 8.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
6.0
5.5
6.0
5.0
7.0
8.0
8.0
8.5 | 11.0
11.5
10.5
9.0
8.5
9.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5
8.5 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.0
8.5
10.0
10.0
9.0 | 7.0
7.0
7.0
6.0
5.0
6.5
8.0
8.0
7.5
7.5
8.0
9.0
9.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5
9.0
9.5
9.0
9.5
7.5 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.0
4.0
4.0
4.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.0 4.0 | S.0
5.0
5.5
6.0
5.5
5.5
4.0
4.0
3.5
4.0
3.5
4.5
4.0
3.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 4.5.0
5.05
5.55
6.55
6.55
6.50
6.50
5.55
6.55
6 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
5.5
5.0
5.5
4.5
5.0
7.0
8.0
8.0
8.5
9.0 | 11.0
11.5
10.5
9.0
8.5
10.5
9.5
10.5
9.5
10.5
9.0
8.5
7.5
8.0
8.5
8.5
8.0 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
7.5
8.0
8.0
8.0
8.5 | 9.0
8.5
8.0
7.0
7.0
7.0
8.5
9.5
9.0
8.5
10.0
9.0
9.0
8.5
7.5
7.5 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
9.0
9.0
8.0
7.5
7.5
8.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.5
9.0
8.0
7.5
9.0
9.5
9.0
9.5
7.0
7.0 | 5.5
6.0
6.0
6.0
6.0
4.5
4.0
4.0
4.0
4.5
5.5
4.0
5.5 | \$\frac{5.0}{5.0}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.0}{4.0}\$ \$\frac{4.0}{3.5}\$ \$\frac{3.0}{3.0}\$ \$\frac{2.5}{3.0}\$ \$\frac{4.0}{4.0}\$ \$\frac{3.5}{3.0}\$ \$\frac{4.5}{4.5}\$ | S.0
5.5
6.0
5.5
5.5
4.5
4.0
3.5
3.5
3.0
3.5
4.0
3.5
4.0
5.0
5.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 4.5
5.0
5.5
5.5
6.5
5.5
6.5
6.5
6.5
6.5
6.5
6.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.0 6.5 7.0 8.0 8.0 8.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.5
6.0
5.5
6.0
5.5
7.0
8.0
8.5
9.0
9.0 | 11.0
11.5
10.5
9.0
8.5
9.5
10.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
8.5
8.5
8.0
7.5
8.0
8.0
7.5
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
8.0
7.5
7.5
8.0
9.0
9.0
9.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5
9.0
9.5
9.0
7.5
7.0
7.5 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5
4.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.0 4.5 4.5 |
S.0
5.0
5.5
6.0
5.5
5.5
4.0
4.0
3.5
4.0
3.5
4.5
4.0
3.5
4.5
4.0
4.0
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 4.5.0
5.05
5.55
6.55
6.55
6.50
6.50
5.55
6.55
6 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 7.0 8.0 8.0 8.0 8.0 8.5 9.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.0
5.5
5.0
5.5
4.5
5.0
7.0
8.0
8.0
8.5
9.0 | 11.0
11.5
10.5
9.0
8.5
10.5
9.5
10.5
9.5
10.5
9.0
8.5
7.5
8.0
8.5
8.5
8.0 | JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
7.5
8.0
8.0
8.0
8.5 | 9.0
8.5
8.0
7.0
7.0
7.0
8.5
9.5
9.0
8.5
10.0
9.0
9.0
8.5
7.5
7.5 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
9.0
9.0
8.0
7.5
7.5
8.0 | 8.0
7.5
6.5
6.0
7.0
7.5
8.5
9.0
8.0
7.5
9.0
9.5
9.0
9.5
7.0
7.0 | 5.5
6.0
6.0
6.0
6.0
4.5
4.0
4.0
4.0
4.5
5.5
4.0
5.5 | \$\frac{5.0}{5.0}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.0}{4.0}\$ \$\frac{4.0}{3.5}\$ \$\frac{3.0}{3.0}\$ \$\frac{2.5}{3.0}\$ \$\frac{4.0}{4.0}\$ \$\frac{3.5}{3.0}\$ \$\frac{4.5}{4.5}\$ | S.0
5.5
6.0
5.5
5.5
5.5
4.0
3.5
3.5
3.0
3.5
4.0
3.5
4.0
5.0
5.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 4.5
5.0
5.5
5.5
6.5
6.5
6.5
6.0
6.5
6.5
6.5
9.0
9.0
9.5
10.0
11.0
11.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 4.5 3.5 5.7 0 8.0 8.0 8.0 8.5 9.5 | 3.5
4.0
5.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
6.0
5.5
4.5
5.0
7.0
8.0
8.5
9.0
9.5
9.0
9.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 11.0
11.5
10.5
9.0
8.5
9.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5
8.5
8.5 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.0
7.5
8.0
8.0
7.5
8.0
8.5
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.6 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
8.0
7.5
7.5
8.0
9.0
9.0
8.0
7.5
7.0
6.5 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5
9.0
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5
4.5
5.5
5.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 4.5 | S.0
5.0
5.5
6.0
5.5
5.5
4.0
4.0
3.5
4.0
3.5
4.5
4.0
5.0
5.0
5.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 4.5
5.0
5.5
5.5
6.5
4.5
5.6
6.0
6.5
6.5
6.5
6.5
9.0
9.0
9.5
10.0
11.5
10.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 7.0 8.0 8.0 8.0 8.0 8.5 9.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
4.5
5.0
7.0
8.0
8.0
8.5
9.0
9.5
10.0
10.0
9.5 | 11.0
11.5
10.5
9.0
8.5
8.5
9.0
9.0
8.5
7.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
7.5
7.5
8.0
8.0
8.0
8.0
7.5
8.0
8.0
8.5
8.0 | 9.0
8.5
8.0
7.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
9.0
9.0
8.5
7.5
7.5
7.5 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
9.0
8.0
9.0
8.0
7.5
7.5
8.0
9.0
6.5 | 8.0
7.5
6.5
6.0
7.0
7.5
9.0
8.0
7.5
9.0
9.5
9.0
7.5
6.5
7.0
7.5
6.5
7.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 5.5
6.0
6.0
6.0
6.0
4.5
4.0
4.5
4.0
4.5
5.5
4.0
5.0
5.5
5.5
5.0
6.0 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 4.5 4.5 | S. 0
5.5
6.0
5.5
5.5
5.5
4.0
3.5
3.5
3.0
3.0
3.5
4.0
5.0
5.0
4.0
5.0
5.0
5.0
4.0
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 4.5
5.0
5.5
5.5
6.5
6.5
6.5
6.0
6.5
5.0
6.5
8.5
9.0
9.0
9.5
10.0
11.5
10.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 6.5 7.0 8.0 8.0 8.5 9.5 8.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
6.5
4.5
5.0
7.0
8.0
8.5
9.0
9.5
10.0
9.5
10.0
9.5 | 11.0
11.5
10.5
9.0
8.5
9.5
10.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5
8.5
8.0
8.0
8.5
8.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.5
8.0
8.0
7.5
8.0
8.0
8.5
8.0
8.0
8.5
8.0
8.5
8.0
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.5
7.6
6.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
7.5
8.0
9.0
9.0
8.0
7.5
7.5
7.0
6.5 | 8.0
7.5
6.5
6.0
7.0
7.5
8.0
7.5
8.0
9.5
9.0
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5
4.5
5.5
5.5
5.5
5.5
5.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 4.5 1.5 1.0 2.0 | S.0
5.0
5.5
5.5
5.5
4.0
3.5
4.0
3.5
4.0
3.5
4.0
3.5
4.5
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 4.5
5.0
5.5
5.5
6.5
6.5
4.5
6.0
6.5
6.5
6.5
6.5
9.0
9.0
9.5
10.0
11.5
10.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 7.0 8.0 8.0 8.0 8.5 9.0 9.5 8.5 8.5 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
6.0
5.5
5.0
7.0
8.0
8.5
9.0
9.5
10.0
9.5
10.0
9.5
9.5 | 11.0
11.5
10.5
9.0
8.5
9.5
9.0
9.0
8.5
7.5
8.0
8.0
8.0
8.0
8.0
8.0
9.0
9.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
7.5
8.0
8.0
7.5
8.0
8.0
8.5
8.0
8.0
8.5
8.0
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.5
7.5
6.0
6.0 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
8.0
8.0
7.5
8.0
9.0
9.0
8.0
7.5
7.5
7.0
6.5
7.5
8.0
9.0 | 8.0
7.5
6.0
7.5
6.0
7.5
8.0
7.5
8.0
9.0
9.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 5.5
6.0
6.0
6.0
6.0
4.5
4.0
4.0
4.0
4.0
5.5
5.5
5.5
5.5
5.5
5.5
3.0
3.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0 4.0 3.5 3.5 4.5 4.5 1.5 1.0 2.0 2.5 | 8 5.0 5.5 6.0 5.5 5.5 4.5 4.0 3.5 3.0 3.0 5.0 5.0 4.5 4.0 5.0 5.0 4.5 2.0 2.5 2.5 2.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 4.5
5.0
5.5
5.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
9.0
9.5
10.0
11.5
10.5 | JUNE 3.0 3.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.0 5.0 6.0 8.0 8.0 8.0 8.5 9.5 8.5 8.5 8.5 8.5 | 3.5
4.0
5.0
4.5
5.5
4.5
5.5
4.5
7.0
8.0
8.5
9.0
9.5
10.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 11.0
11.5
10.5
9.0
8.5
9.5
10.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5
9.0
8.5
8.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0 8.0 8.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.0
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
7.5
8.0
9.0
9.0
8.0
7.5
7.0
6.5
7.5
7.0
6.5
7.5
7.0
6.5 | 8.0555566.0 7.55500 7.55500 8.05555 5.55555555555555555555555 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 1.5 1.0 2.0 2.5 1.5 1.5 |
S.0
5.0
5.5
5.5
5.5
4.0
4.0
3.5
4.0
3.5
4.5
4.0
5.0
5.0
5.0
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 4.5
5.0
5.5
5.5
6.5
6.5
6.5
6.0
6.5
6.5
6.0
9.0
9.0
9.5
10.5
10.5
10.5
10.5
11.5 | JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 5.0 6.6 6.6 6.7 6.7 6.0 6.7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | 3.5
4.0
5.0
5.0
4.5
5.5
4.5
5.0
5.5
6.0
5.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 11.0
11.5
10.5
9.0
8.5
9.5
9.0
9.0
8.5
7.5
8.6
8.0
8.0
8.0
8.0
8.0
9.0
9.0
9.0
9.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
7.5
8.0
8.0
7.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
9.0
9.5
9.0
8.5
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.5
7.5
6.0
5.5
5.5 | 7.0
7.0
7.0
6.0
5.0
6.5
8.0
7.5
7.5
8.0
9.0
9.0
8.0
7.5
7.5
7.0
6.5
7.5
8.0
9.0
9.0
4.5 | 8.05.55.66.0 7.55.50 7.55.50 8.05.55.5 5.55.55.55.55.50 | 5.5
6.0
6.0
6.0
6.0
4.5
4.0
4.0
4.0
4.0
5.5
5.5
5.5
5.5
5.0
3.0
3.5
2.5
1.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0 4.0 3.5 3.5 4.5 4.5 1.5 1.0 2.0 2.5 1.5 1.0 | S.0
5.0
5.5
6.0
5.5
5.5
5.5
4.0
3.5
4.0
3.5
4.0
3.5
4.0
5.0
5.0
4.0
2.5
2.0
2.5
2.0
1.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 4.5
5.0
5.5
5.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
9.0
9.5
10.0
11.5
10.5 | JUNE 3.0 3.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.0 5.0 6.0 8.0 8.0 8.0 8.5 9.5 8.5 8.5 8.5 8.5 | 3.5
4.0
5.0
4.5
5.5
4.5
5.5
4.5
7.0
8.0
8.5
9.0
9.5
10.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 11.0
11.5
10.5
9.0
8.5
9.5
10.5
9.0
9.0
8.5
7.5
8.5
8.5
8.5
8.5
9.0
8.5
8.0 | JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0 8.0 8.0 | 10.0
10.0
9.5
8.5
8.0
8.5
9.0
8.5
8.5
7.0
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 9.0
8.5
8.0
7.0
7.0
8.5
8.5
9.0
9.5
9.0
8.5
10.0
10.0
9.0
8.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 7.0
7.0
7.0
6.0
5.0
6.5
7.5
7.5
8.0
9.0
9.0
8.0
7.5
7.0
6.5
7.5
7.0
6.5
7.5
7.0
6.5 | 8.0555566.0 7.55500 7.55500 8.05555 5.55555555555555555555555 | 5.5
6.0
6.0
6.0
6.0
5.0
4.5
4.5
4.0
4.0
4.0
4.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 1.5 1.0 2.0 2.5 1.5 1.5 | S.0
5.0
5.5
5.5
5.5
4.0
3.5
4.0
3.5
4.0
3.5
4.5
4.0
5.0
5.0
5.0
5.0
5.5
5.5
5.5
5.5
5.5
5 | ### 15303900 KUSKOKWIM RIVER AT LISKYS CROSSING NEAR STONY RIVER LOCATION.--Lat $62^{\circ}02'51''$, long $156^{\circ}12'42''$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 27, T. 23 N., R. 38 W. (Iditarod A-1 quad), Hydrologic Unit 19030405, on the downstream point of the first channel island located 0.25 mi above Lisky's house site (historic, house since destroyed), 22 mi northeast of the village of Stony River. PERIOD OF RECORD.--May 1996 to current year (no winter record). GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level from topographic map. REMARKS. -- GOES satellite telemetry at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 33.80 ft, July 11, 1998, but may have been higher during a period of missing record. Minimum gage height observed 22.94 ft, October 11, 1997, but may have been lower during a period of missing record. EXTREMES FOR CURRENT PERIOD.--October 1-13, 2000, June 7 to September 30 2001; Maximum gage height 32.89 ft, August 21; minimum gage height 24.95 ft, September 22. GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DA. | ILY MEAN | VALUES | | | | | | |----------|-------|-----|-----|-----|-----|----------|--------|-----|----------------|----------------|----------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 29.37 | | | | | | | | | 28.15 | 30.77 | 28.96 | | 2 | 28.75 | | | | | | | | | 28.14 | 30.65 | 28.61 | | 3 | 28.18 | | | | | | | | | 28.05 | 30.99 | 28.33 | | 4 | 27.70 | | | | | | | | | 28.17 | 31.22 | 28.10 | | 5 | 27.25 | | | | | | | | | 28.02 | 31.01 | 27.87 | | 6 | 26.98 | | | | | | | | | 27.87 | 30.64 | 27.63 | | 7 | 26.65 | | | | | | | | 29.02 | 27.96 | 30.19 | 27.55 | | 8 | 26.47 | | | | | | | | 29.09 | 27.92 | 29.73 | 27.73 | | 9 | 26.31 | | | | | | | | 29.06 | 27.89 | 29.12 | 27.88 | | 10 | 26.09 | | | | | | | | 29.05 | 27.98 | 28.67 | 27.73 | | | 20.05 | | | | | | | | 23.03 | 27.50 | 20.07 | 27.75 | | 11 | 25.81 | | | | | | | | 29.15 | 27.88 | 28.39 | 27.37 | | 12 | 25.55 | | | | | | | | 29.03 | 27.68 | 28.23 | 27.03 | | 13 | 25.47 | | | | | | | | 28.65 | 27.46 | 28.06 | 26.85 | | 14 | | | | | | | | | 28.45 | 27.48 | 27.95 | 26.57 | | 15 | | | | | | | | | 28.32 | 27.69 | 27.80 | 26.34 | | | | | | | | | | | | | | | | 16 | | | | | | | | | 28.21 | 27.85 | 27.99 | 26.10 | | 17 | | | | | | | | | 28.14 | 27.81 | 28.23 | 26.00 | | 18 | | | | | | | | | 28.08 | 27.68 | 29.12 | 25.84 | | 19 | | | | | | | | | 27.83 | 27.67 | 30.83 | 25.61 | | 20 | | | | | | | | | 27.89 | 27.83 | 32.32 | 25.46 | | 0.1 | | | | | | | | | 07.00 | 28.03 | 20 70 | 05 33 | | 21 | | | | | | | | | 27.83 | | 32.79 | 25.33 | | 22 | | | | | | | | | 28.08 | 28.37 | 32.83 | 25.26 | | 23
24 | | | | | | | | | 28.31
28.36 | 28.89
29.51 | 32.59
32.27 | 25.37
25.43 | | 24
25 | | | | | | | | | 28.36 | | | | | 25 | | | | | | | | | 28.38 | 29.76 | 32.01 | 25.44 | | 26 | | | | | | | | | 28.38 | 29.92 | 31.64 | 25.62 | | 27 | | | | | | | | | 28.45 | 30.08 | 31.21 | 25.65 | | 28 | | | | | | | | | 28.55 | 30.12 | 30.90 | 25.52 | | 29 | | | | | | | | | 28.55 | 30.23 | 30.47 | 25.43 | | 30 | | | | | | | | | 28.35 | 30.62 | 29.89 | 25.35 | | 31 | | | | | | | | | | 30.93 | 29.38 | | | MEAN | | | | | | | | | | 28.50 | 30.25 | 26.60 | | MAX | | | | | | | | | | 30.93 | 30.25 | 28.96 | | MIN | | | | | | | | | | 27.46 | 27.80 | 28.96 | | MITIM | | | | | | | | | | 27.40 | 2/.80 | ∠5.∠6 | #### 15304000 KUSKOKWIM RIVER AT CROOKED CREEK LOCATION.--Lat $61^{\circ}52'16''$, long $158^{\circ}06'03''$, in $NE^{1}_{/4}$ Nec $^{1}_{/4}$ sec. 32, T. 21 N., R. 48 W. (Sleetmute D-6 quad), Hydrologic Unit 19030501, on right bank at village of Crooked Creek, 0.1 mi upstream from Crooked Creek. DRAINAGE AREA. -- 31,100 mi², approximately. PERIOD OF RECORD.--June 1951 to September 1994, October 1995 to current year. GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map. Prior to August 6, 1977, non-recording gage at site 1,600 ft upstream at same datum. From August 6, 1977, to September 30, 1991, water-stage recorder at site 2,300 ft upstream at same datum. From October 1, 1991 to September 30, 1994, and October 1, 1995 to August 7, 1997 non-recording gage. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|---|--|--|--|---|--|--|--|--|--|--| | 1
2
3
4
5 | 76300
71300
67300
63800
60700 | e29000
e28000
e28000
e27000
e27000 | e22000
e21000
e21000
e21000
e21000 | e16000
e16000
e16000 | e12000
e12000 | e11000
e11000
e11000
e11000
e11000 | e9000
e9000
e9000
e9000 | e30000
e30000
e28000
e27000 | 116000
113000
113000
113000
112000 | 75400
73300
71300
69500
68600 | 96700
97500
94000
91800
89800 | 81200
78100
74600
72200
71400 | | 6
7
8
9
10 | 58700
57200
55200
52900
50600 | e26000
e26000
e25000
e25000
e25000 | e20000
e20000
e20000
e20000
e19000 | e15000
e15000
e15000 | e12000
e12000
e12000 | e10000
e10000
e10000
e10000
e10000 | e9500
e9500
e9500
e9500
e9500 | e27000
e27000
e28000
e30000
e36000 | 114000
115000
117000
119000
118000 |
68100
68000
66600
64200
61900 | 85300
80700
76300
71700
68100 | 71800
74200
75500
73700
71600 | | 11
12
13
14
15 | 48800
47600
46100
44400
41500 | e26000
e27000
e27000
e27000
e27000 | e20000 | e15000
e15000
e15000
e15000
e14000 | e12000
e12000
e12000 | e10000
e10000
e10000
e10000
e10000 | e9500
e9500
e10000
e10000
e10000 | e75000 | 117000
116000
115000
112000
108000 | 61200
61700
63100
64200
64700 | 65300
62900
61000
60500
60200 | 69000
65700
62900
60400
58300 | | 16
17
18
19
20 | 40900
40400
38800
39100
37500 | e27000
e27000
e27000
e26000
e26000 | e19000
e19000
e19000
e20000
e19000 | e14000
e14000
e14000 | e11000
e11000 | e10000 | e11000 | e80000
e90000
e100000
e110000
118000 | 104000
99100
94000
89000
86300 | 64900
65500
67000
69400
70500 | 62600
70600
82500
90500
104000 | 56000
54200
52700
51000
49900 | | 21
22
23
24
25 | 36300
e36000
e34000
e34000
e32000 | e25000
e25000
e24000
e24000
e24000 | e18000 | e14000
e14000
e14000
e13000
e13000 | e11000
e11000
e11000
e11000 | e9500
e9500
e9500
e9500 | e16000
e17000
e18000 | 124000
123000
122000
121000 | 85800
86300
86300 | 82600
87700 | 120000
114000
107000 | 45600
44600 | | 26
27
28
29
30
31 | e30000
e30000 | e23000
e23000
e23000
e22000
e22000 | e17000
e17000
e17000
e17000
e17000
e16000 | e13000
e13000
e13000
e13000
e13000
e13000 | e11000
e11000
e11000 | e9500
e9500
e9500
e9500
e9500 | e20000
e21000
e23000
e26000
e28000 | 120000 | 85400
83300
81000
79300
77300 | 90900
92900
95200
95300
92500
92400 | 103000
101000
96000
91900
86900
83000 | 43600
42800
42500
42400
41000 | | MEAN
MAX
MIN
AC-FT | 1394400
44980
76300
29000
2766000
1.45
1.67 | 29000
22000 | 590000
19030
22000
16000
1170000
.61
.71 | 882700 | 11540
12000
11000
640700 | 309500
9984
11000
9500
613900
.32
.37 | 13080
28000
9000 | | 100900
119000
77300 | 74070
95300
61200 | 87510
122000
60200 | 58970
81200
41000 | | | | STATIST | ICS OF MO | NTHLY MEAN | I DATA FOR | WATER | YEARS 1951 | L - 2001, | BY WATER | YEAR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) | 44350
102000
1994
22650
1979 | 21300
36400
1991
12730
1981 | 15290
25000
1962
10000
1957 | 13020
22450
1991
8400
1966 | 11640
20710
1991
6900
1966 | 10720
19550
1991
6100
1966 | 14500
41000
1967
8600
1953 | 79880
161700
1957
22130
1964 | 82860
235100
1964
33880
1954 | 68170
119500
1980
40910
1997 | 76270
169800
1963
41840
1955 | 0 69430
0 150900
3 1951
0 30550
7 1976 | | SUMMARY | Y STATIST | ICS | FOR | 2000 CALEI | NDAR YEAR | | FOR 2001 V | WATER YEAR | R | WATER | YEARS 19 | 51 - 2001# | | ANNUAI
ANNUAI
HIGHES
LOWEST | L TOTAL
L MEAN
ST ANNUAL
I ANNUAL | MEAN
MEAN | 1 | 4941200
40820 | | | 16447000
45060 | | | 42290
62120
28600 | | 1963
1997 | | HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU MAXIMU | ST DAILY DAILY M SEVEN-D JM PEAK F JM PEAK S TM DEAK S | MEAN
EAN
AY MINIMU
LOW
TAGE
TAGE | М | 110000
a9600
9600 | May 3
Mar 16
Mar 16 | | 124000
b9000
9140
125000
11.4 | May 22
Apr 1
Mar 30
May 23
49 May 23 | 2
L
)
3
3 | 391000
c6100
6100
392000 | Jun
Mar
Mar
Jun | 5 1964
1 1966
1 1966
5 1964 | | INSTAN
ANNUAI
ANNUAI
ANNUAI
10 PEF | TANEOUS L RUNOFF L RUNOFF L RUNOFF RCENT EXC | LOW FLOW
(AC-FT)
(CFSM)
(INCHES)
EEDS
EEDS | 2 | 29640000
1.3
17.8
78500
32000 | 1
7 | | 32620000
1.4
19.6
102000
28000 | 45
57 | 3 | 6100
80640000
1.3
94000
26000 | Mar
36 | 1963
1997
5 1964
1 1966
1 1966
5 1964
5 1964
1 1966 | | 20 101 | 2110 | | | ,,,,, | | | 20000 | | | 10000 | | | See Period of Record, partial years used in monthly computations See Period of Record, partial years Mar. 1-31, 1966 Mar. 16 to Mar. 31 From floodmarks, backwater from ice Apr. 1 to Apr. 5 Estimated From floodmarks, backwater from ice, at different site, same datum #### 15304060 KUSKOKWIM RIVER AT ANIAK LOCATION.--Lat $61^{\circ}35'14''$, long $159^{\circ}32'54''$, in $SE^1/_4$ $SE^1/_4$ sec. 2, T. 17 N., R. 57 W. (Russian Mission C-2 quad), Hydrologic unit 19030502, on the left bank near the NW corner of the west end of the runway in the village of Aniak. #### WATER-STAGE RECORDS PERIOD OF RECORD. -- May 1996 to present (no winter record). GAGE.--Water-stage recorder. A supplementary stage gage was installed April 23, 1998 approximately 1 mi upstream from gage of record. This gage records water elevation at the Aniak city dike system during ice break-up events. Elevation of the gage is 75 ft above sea level from topographic map. REMARKS.--GOES satellite telemetry at station. Supplementary stage records are available from the computer files of the Alaska District. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 26.55 ft, July 12,1998, but may have been higher during periods of missing record. Minimum gage height observed 15.33 ft, October 12, 1997, but may have been lower during periods of missing record. EXTREMES FOR CURRENT PERIOD.--October 1-29, 2000 and June 5 to September 30, 2001: Maximum gage height observed 24.11 ft, June 9, but may have been higher during periods of missing record. Minimum gage height observed 14.37 ft, Oct. 27, but may have been lower during periods of missing record. GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-------|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------| | 1 | 18.74 | | | | | | | | | 20.01 | 20.84 | 20.62 | | 2 | 18.31 | | | | | | | | | 19.83 | 21.05 | 20.75 | | 3 | 17.96 | | | | | | | | | 19.66 | 20.93 | 20.40 | | 4 | 17.68 | | | | | | | | | 19.55 | 20.68 | 20.12 | | 5 | 17.48 | | | | | | | | 23.24 | 19.44 | 20.51 | 19.94 | | 6 | 17.30 | | | | | | | | 23.41 | 19.33 | 20.28 | 19.90 | | 7 | 17.12 | | | | | | | | 23.59 | 19.24 | 19.97 | 20.00 | | 8 | 16.92 | | | | | | | | 23.82 | | 19.65 | 20.12 | | 9 | 16.77 | | | | | | | | 24.07 | | 19.32 | 20.01 | | 10 | 16.64 | | | | | | | | 23.97 | | 19.01 | 19.80 | | 11 | 16.47 | | | | | | | | 23.77 | 18.70 | 18.74 | 19.61 | | 12 | 16.28 | | | | | | | | 23.60 | 18.77 | 18.52 | 19.36 | | 13 | 16.03 | | | | | | | | 23.40 | 18.90 | 18.35 | 19.09 | | 14 | 15.96 | | | | | | | | 23.11 | 18.99 | 18.25 | 18.86 | | 15 | 15.87 | | | | | | | | 22.77 | 19.03 | 18.24 | 18.65 | | | | | | | | | | | | | | | | 16 | 15.61 | | | | | | | | 22.45 | 19.07 | 18.41 | 18.44 | | 17 | 15.45 | | | | | | | | 22.16 | 19.14 | 18.70 | 18.23 | | 18 | 15.39 | | | | | | | | 21.85 | 19.14 | 19.44 | 18.09 | | 19 | 15.20 | | | | | | | | 21.51 | 19.26 | 20.21 | 17.94 | | 20 | 15.22 | | | | | | | | 21.23 | 19.53 | 21.00 | 17.68 | | 21 | 15.15 | | | | | | | | 21.08 | 19.64 | 22.19 | 17.67 | | 22 | 15.12 | | | | | | | | 21.03 | 19.75 | 22.84 | 17.55 | | 23 | 15.06 | | | | | | | | 20.99 | 19.96 | 22.91 | 17.48 | | 24 | 14.84 | | | | | | | | 21.00 | 20.13 | 22.44 | 17.39 | | 25 | 14.65 | | | | | | | | 20.98 | 20.33 | 22.03 | 17.28 | | 26 | 14.63 | | | | | | | | 20.89 | 20.61 | 21.63 | 17.16 | | 27 | 14.62 | | | | | | | | 20.72 | 20.77 | 21.49 | 17.06 | | 28 | 14.48 | | | | | | | | 20.49 | 20.89 | 21.31 | 16.97 | | 29 | 14.56 | | | | | | | | 20.30 | 20.96 | 20.99 | 16.90 | | 30 | | | | | | | | | 20.16 | 20.86 | 20.84 | 16.79 | | 31 | | | | | | | | | | 20.75 | 20.54 | | | MEAN | | | | | | | | | | | 20.36 | 18.66 | | MAX | | | | | | | | | | | 22.91 | 20.75 | | MIN | | | | | | | | | | | 18.24 | 16.79 | #### 15304060 KUSKOKWIM RIVER AT ANIAK--Continued River ice break-up hydrograph for Kuskokwim River at Dike (supplementary gage) at Aniak, 2001. #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1998 to current year. PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: May 1998 to current year (seasonal). INSTRUMENTATION.--Electronic water temperature recorder set for 1-hour recording interval. REMARKS.--Records represent water temperature from sensor within 0.5°C No water temperature record October 31-May 15 and July 8-9 when water level dropped below probe. No water temperature record from May 16-June 4 with probe broken by shifting ice. Partial water temperature record on Oct.30,July 8,10,16-17, and August 3. A temperature cross section on September 20 found a variation of 1.0°C. Temperature from the sensor could not be compared with the cross section average for the river on September 20 because of a faulty sensor probe. The sensor probe gave faulty temperature record from August 4-September 30 and was not used. EXTREMES FOR PERIOD OF RECORD. -- WATER TEMPERATURE: Maximum recorded, 15.5°C, July 22-24, 1998, may have been higher during periods of missing record; minimum, 0.0°C, May 14-15, 1999. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURE: Maximum recorded, 14.5°C, July 28-29, August 1-2, may have been higher during periods of missing record; minimum recorded, 1.5°C, October 30, may have been lower during periods of missing record. | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | GAGE
HEIGHT
(FEET)
(00065) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SAM-
PLING
METHOD,
CODES
(82398) | |------|------
------------------------------------|--|-------------------------------------|---|--| | SEP | | | | | | | | 20 | 1240 | 1600 | 10.0 | 17.38 | 7.5 | 10 | | 20 | 1242 | 1600 | 300 | 17.38 | 8.5 | 10 | | 20 | 1244 | 1600 | 600 | 17.38 | 8.5 | 10 | | 20 | 1246 | 1600 | 900 | 17.38 | 8.5 | 10 | | 20 | 1248 | 1600 | 1200 | 17.38 | 8.5 | 10 | ### 15304060 KUSKOKWIM RIVER AT ANIAK --Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|---|---|--|---|--|--------------------------|---------------------------------------|----------------------|-------------------|--------------------------|-----------| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1 | 5.5 | 5.5 | 5.5 | | | | | | | | | | | 2
3 | 5.5
5.0 | 5.0
5.0 | 5.0
5.0 | | | | | | | | | | | 4 | 5.0 | 5.0 | 5.0 | | | | | | | | | | | 5 | 5.0 | 5.0 | 5.0 | | | | | | | | | | | 6 | 5.0 | 5.0 | 5.0 | | | | | | | | | | | 7
8 | 5.0
4.5 | 4.5
4.0 | 5.0
4.5 | | | | | | | | | | | 9 | 4.5 | 4.0 | 4.0 | | | | | | | | | | | 10 | 4.0 | 4.0 | 4.0 | | | | | | | | | | | 11 | 4.0 | 3.5 | 4.0 | | | | | | | | | | | 12 | 4.0 | 3.5 | 3.5 | | | | | | | | | | | 13
14 | 3.5
3.5 | 3.5
3.5 | 3.5
3.5 | | | | | | | | | | | 15 | 3.5 | 3.0 | 3.0 | | | | | | | | | | | 16 | 3.0 | 3.0 | 3.0 | | | | | | | | | | | 17 | 3.0 | 3.0 | 3.0 | | | | | | | | | | | 18 | 3.0 | 3.0 | 3.0 | | | | | | | | | | | 19
20 | 3.0
3.0 | 3.0
3.0 | 3.0
3.0 | 21
22 | 3.0
2.5 | 2.5
2.5 | 2.5
2.5 | | | | | | | | | | | 23 | 2.5 | 2.5 | 2.5 | | | | | | | | | | | 24 | 2.5 | 2.0 | 2.0 | | | | | | | | | | | 25 | 2.0 | 2.0 | 2.0 | | | | | | | | | | | 26 | 2.0 | 2.0 | 2.0 | | | | | | | | | | | 27 | 2.0 | 2.0 | 2.0 | | | | | | | | | | | 28
29 | 2.0 | 2.0 | 2.0 | | | | | | | | | | | 30 | 2.0 | 1.5 | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | EMPERATURE | | | | | | | | | | | DAY | MAX | MIN | EMPERATURE
MEAN | , WATER | (DEG. C) | , WATER | YEAR OCTOR | BER 2000
MIN | TO SEPTE | EMBER 2001
MAX | MIN | MEAN | | DAY | MAX | | | | | | MAX | | | MAX | MIN
SEPTEMBE | | | 1 | | MIN
JUNE | MEAN | MAX
9.0 | MIN
JULY
8.5 | MEAN
9.0 | MAX
14.5 | MIN
AUGUST
13.0 | MEAN
13.5 | MAX | SEPTEMBE | R
 | | 1
2 | | MIN
JUNE | MEAN | MAX
9.0
9.5 | MIN
JULY
8.5
9.0 | MEAN
9.0
9.0 | MAX | MIN
AUGUST
13.0
13.5 | MEAN | MAX | SEPTEMBE | R | | 1 |

 | MIN
JUNE
 | MEAN
 | MAX
9.0 | MIN
JULY
8.5 | MEAN
9.0 | MAX
14.5
14.5 | MIN
AUGUST
13.0 | MEAN
13.5
14.0 | MAX
:
 | SEPTEMBE | R
 | | 1
2
3 | | MIN
JUNE

 | MEAN

 | 9.0
9.5
10.0 | MIN
JULY
8.5
9.0
9.5 | 9.0
9.0
10.0 | MAX
14.5
14.5 | MIN
AUGUST
13.0
13.5
13.0 | MEAN
13.5
14.0 | MAX : | SEPTEMBE | R

 | | 1
2
3
4 |

 | MIN
JUNE

 | MEAN | 9.0
9.5
10.0
9.5 | MIN
JULY
8.5
9.0
9.5
8.5 | 9.0
9.0
10.0
9.5 | MAX 14.5 14.5 | MIN
AUGUST
13.0
13.5
13.0 | 13.5
14.0 | MAX

 | SEPTEMBE | R

 | | 1
2
3
4
5 |

9.5
9.5 | MIN JUNE 9.0 9.0 8.5 | MEAN 9.0 9.0 9.0 | 9.0
9.5
10.0
9.5
8.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 | 9.0
9.0
9.0
10.0
9.5
8.0 | 14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | 13.5
14.0
 | MAX | SEPTEMBE

 | R | | 1
2
3
4
5 |

9.5
9.5
9.5
8.5 | MIN JUNE 9.0 9.0 8.5 7.5 | MEAN 9.0 9.0 9.0 8.0 | 9.0
9.5
10.0
9.5
8.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 | 9.0
9.0
9.0
10.0
9.5
8.0 | 14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | 13.5
14.0
 | MAX | SEPTEMBE

 | R | | 1
2
3
4
5 |

9.5
9.5 | MIN JUNE 9.0 9.0 8.5 | MEAN 9.0 9.0 9.0 | 9.0
9.5
10.0
9.5
8.5
9.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 | 9.0
9.0
9.0
10.0
9.5
8.0
9.5 | 14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9 | 9.5
9.5
9.5
8.5
8.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 | 9.0
9.0
10.0
9.5
8.0
9.5 | 14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | 13.5
14.0
 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 |

9.5
9.5
9.5
8.5
8.0
9.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5 | 14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 | 9.5
9.5
9.5
8.5
8.0
9.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.5 | 9.0
9.0
10.0
9.5
8.0
9.5

8.5
8.5
9.0 | 14.5
14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 |

9.5
9.5
9.5
8.5
8.0
9.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
9.5
8.5
8.5 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.5 8.5 7.5 7.5 8.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 9.0 8.0 8.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.5 9.0 9.5 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
9.5
8.5
8.5 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 8.5 10.0 | MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 8.0 9.5 10.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5
9.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.0 9.0 9.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5 | 14.5
14.5
14.5
 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 9.5
9.5
9.5
8.5
9.0
10.0
10.0
9.5
8.5
10.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 8.5 10.0 10.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5
10.0
11.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 10.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | 9.5
9.5
9.5
8.0
9.0
10.0
10.0
9.5
8.5
10.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 8.5 10.0 10.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 9.5 10.5 11.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 9.0 9.5 | 9.0
9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

9.5
9.5
9.5
8.5
9.0
10.0
10.0
9.5
8.5
10.0
11.0
11.0
11.5 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5 | MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0
10.5 11.0 11.0 11.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
10.0
11.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.0 9.5 10.0 11.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
11.0
11.0
11.0
11.0
11. | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 11.5 12.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5
11.0
11.5
11.5
12.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0 | 9.0
9.0
10.0
9.5
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
9.5
8.5
10.0
11.0
11.0
11.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5 11.5 12.0 12.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.1 1.0 11.0 11.0 11.0 11.0 12.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
11.0
11.5
11.5
11.5
12.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0 | 9.0
9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
11.0
11.0
11.0
11.0
11. | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 11.5 12.0 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5
11.0
11.5
11.5
12.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0 | 9.0
9.0
10.0
9.5
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
9.5
8.5
10.0
11.0
11.0
11.0
11.0
12.0
12.0
12.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 9.5 10.5 11.0 11.0 11.0 11.0 11.0 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
10.0
11.5
11.5
11.5
12.5
12.0
13.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0 | MEAN 9.0 9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 13.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 9.5
9.5
9.5
9.0
10.0
10.0
11.0
11.0
11.0
11.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 9.0 9.0 9.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 12.0 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
9.5
11.0
11.5
11.5
12.5
12.0
13.5 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5
11.5
11.5
12.0
12.5
13.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 9.5
9.5
9.5
8.5
8.0
9.0
10.0
10.0
11.0
11.0
11.0
11.0
12.0
12 | MIN JUNE 9.0 9.0 8.5 7.5 8.0 9.0 9.5 8.5 7.5 8.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.0 8.0 9.5 10.5 11.0 11.0 11.0 11.0 11.0 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
11.5
11.5
11.5
12.5
12.0
13.0
14.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.5 12.0 13.0 13.0 | 9.0
9.0
9.0
10.0
9.5
8.0
8.5
8.5
9.0
9.5

10.5
11.5
11.5
12.0
12.5
13.0
14.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 9.5
9.5
9.5
9.0
10.0
10.0
11.0
11.0
11.0
11.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 9.0 9.0 9.5 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 12.0 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
10.0
11.5
11.0
11.5
12.5
12.0
13.0
14.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0 11.0 11.5 12.0 13.0 13.0 14.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5
11.5
11.5
12.0
12.5
13.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 9.5
9.5
9.5
9.5
8.0
9.0
10.0
10.0
9.5
8.5
10.0
11.0
11.0
11.5
12.0
12.0
12.0
10.0
11.0
11.0 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10 | MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.1 1.0 11.0 11.5 12.0 11.0 11.0 9.5 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
11.5
11.5
11.5
12.5
12.0
13.0
14.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.5 12.0 13.0 13.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.5

10.5
10.5
11.5
11.5
11.5
12.0
12.5
13.0
14.0
14.0 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 9.5
9.5
9.5
9.5
8.5
8.0
9.0
10.0
11.0
11.0
11.0
11.0
12.0
12.0
12 | MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 | MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 11.0 11.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0 | 9.0
9.5
10.0
9.5
8.5
9.0
10.5

10.0
9.5
9.5
9.5
11.5
11.5
11.5
12.5
11.0
11.5
12.5
12.0
13.5
14.0 | MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0 13.0 14.0 13.0 | 9.0
9.0
10.0
9.5
8.0
8.0
9.5

8.5
8.5
9.0
9.0
9.5
10.5
11.5
11.5
12.0
12.5
13.0
14.0
14.0
13.5 | MAX 14.5 14.5 | MIN AUGUST 13.0 13.5 13.0 | MEAN 13.5 14.0 | MAX | SEPTEMBE | R | ### 15320100 WADE CREEK TRIBUTARY NEAR CHICKEN LOCATION.-- Lat $64^{\circ}07'06''$, long $141^{\circ}33'13''$, in $SE^{1}/_{4}$ sec. 18, T. 27 N., R. 20 E. (Eagle A-2 quad), Hydrologic Unit 19040104, on left bank, 600 ft upstream from Taylor Highway, 0.4 mi upstream from the culvert at mi 86.1 Taylor Highway and 12 mi northeast of Chicken. DRAINAGE AREA. -- 4.24 mi². PERIOD OF RECORD.--Annual maximum, water year 1995. May 1996 to current year (no winter records). GAGE.--Water-stage recorder. Elevation of gage is 1970 ft above sea level, from topographic map. Prior to June 19, 1997, recording gage was at a site 700 ft downstream at a different datum. REMARKS. -- No estimated daily discharges. Records poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 236 ${\rm ft}^3/{\rm s}$, June 13, 1997, from rating curve extended above 14 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow, gage height, 22.7 ft, from floodmarks; no flow most days during the winter. EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 127 ft³/s, July 24, gage height, 22.04 ft, no flow most days during the winter. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|-----|-----|-----|-----|-----|-----|-----|-----|------------|------------|------------|------------| | 1 | | | | | | | | | 16 | . 47 | 15 | 1.4 | | 2 | | | | | | | | | 9.5 | .64 | 9.7 | 2.9 | | 3
4 | | | | | | | | | 6.8
6.5 | .79
2.9 | 7.1
7.0 | 5.2
5.2 | | 4
5 | | | | | | | | | 6.5 | 4.1 | 7.0
5.5 | 5.2
4.5 | | 5 | | | | | | | | | 0.0 | 4.1 | 3.3 | 4.5 | | 6 | | | | | | | | | 4.8 | 6.2 | 4.6 | 13 | | 7 | | | | | | | | | 4.5 | 16 |
3.5 | 6.6 | | 8 | | | | | | | | | 5.5 | 8.7 | 2.4 | 3.5 | | 9 | | | | | | | | | 4.3 | 5.1 | 2.1 | 2.4 | | 10 | | | | | | | | | 3.3 | 3.9 | 1.8 | 1.6 | | | | | | | | | | | | | | | | 11 | | | | | | | | | 2.6 | 3.8 | 1.6 | 1.2 | | 12 | | | | | | | | | 2.6 | 3.1 | 2.0 | .88 | | 13 | | | | | | | | | 24 | 2.2 | 2.0 | .68 | | 14 | | | | | | | | | 19 | 1.8 | 1.6 | .52 | | 15 | | | | | | | | | 10 | 1.7 | 1.4 | .45 | | 1.0 | | | | | | | | | F 0 | 1 6 | 1 2 | 7.0 | | 16
17 | | | | | | | | | 5.8
3.8 | 1.6
1.3 | 1.3
1.7 | .70
1.4 | | 18 | | | | | | | | | 2.8 | 1.3 | 1.7 | 1.4 | | 19 | | | | | | | | | 2.0 | 1.1 | 1.9 | 2.0 | | 20 | | | | | | | | | 1.8 | .91 | 1.8 | 2.0 | | 20 | | | | | | | | | 1.0 | | 1.0 | 2.0 | | 21 | | | | | | | | | 1.8 | .94 | 1.5 | 2.0 | | 22 | | | | | | | | 24 | 1.5 | 2.6 | 1.4 | | | 23 | | | | | | | | 26 | 1.3 | 26 | 1.4 | | | 24 | | | | | | | | 31 | 1.1 | 59 | 1.3 | | | 25 | | | | | | | | 27 | 1.0 | 20 | 1.3 | | | | | | | | | | | | | | | | | 26 | | | | | | | | 25 | .80 | 16 | 1.5 | | | 27 | | | | | | | | 25 | .44 | 14 | 1.6 | | | 28 | | | | | | | | 23 | .42 | 10 | 1.8 | | | 29 | | | | | | | | 14 | .45 | 8.4 | 1.5 | | | 30 | | | | | | | | 12 | .42 | 11 | 2.0 | | | 31 | | | | | | | | 20 | | 17 | 1.6 | | | TOTAL | | | | | | | | | 151.63 | 252.45 | 92.6 | | | MEAN | | | | | | | | | 5.05 | 8.14 | 2.99 | | | MAX | | | | | | | | | 2.03 | 59 | 15 | | | MIN | | | | | | | | | .42 | .47 | 1.3 | | | AC-FT | | | | | | | | | 301 | 501 | 184 | | | CFSM | | | | | | | | | 1.19 | 1.92 | .70 | | | IN. | | | | | | | | | 1.33 | 2.21 | .81 | | | | | | | | | | | | | | | | ### 15356000 YUKON RIVER AT EAGLE (International Gaging Station) LOCATION.--Lat $64^{\circ}47'22''$, long $141^{\circ}11'52''$, in $NW^{1}/_{4}$ sec. 31, T. 1 S., R. 33 E. (Eagle D-1 quad), Hydrologic Unit 19040401, on left bank at Eagle, 0.1 mi upstream from Mission Creek, 1.1 mi downstream from Castalia Creek, and 11 mi downstream from the international boundary. DRAINAGE AREA. -- 113,500 mi², approximately. PERIOD OF RECORD.--January 1911 to December 1913, June 1950 to current year. Monthly discharge only for some periods, published in WSP 1372. GAGE.--Water-stage recorder. Elevation of gage is 850 ft above sea level, from topographic map. See WSP 1936 for history of changes prior to October 1, 1963. Nonrecording gage prior to June 26, 1982 at same site and datum. REMARKS.--Records good except for the period May 18 to 21 and estimated daily discharges, which are poor. GOES satellite telemetry at station. > DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | 211. | | *************************************** | | | | | | |--|---|--|---|--|--|--|--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 197000
196000
190000
182000
174000 | e66000
e62000
e59000
e56000
e54000 | e45000
e45000
e44000
e44000
e43000 | e33500
e33000
e33000
e32500
e32500 | e27500
e27500
e27500
e27000
e27000 | e23500
e23500
e23000
e23000
e23000 | e21000
e21000
e21000
e21000
e21000 | e26000
e28000
e30000
e32000
e34000 | 176000
194000
205000
215000
231000 | 193000
189000
188000
191000
198000 | | 121000
121000
123000
128000
129000 | | 6
7
8
9
10 | 167000
161000
156000
155000
152000 | e52000
e51000
e51000
e52000
e53000 | e43000
e42000
e42000
e41000
e41000 | e32000
e32000
e32000
e31500
e31500 | e27000
e26500
e26500
e26500
e26000 | e23000
e23000
e23000
e22500
e22500 | e21000
e21000
e21000 | e37000
e41000
e45000
e50000 | 257000
270000
279000
286000
288000 | 206000
218000
232000
239000
242000 | 199000
195000
192000
188000
183000 | 128000
137000
147000
149000
147000 | | 11
12
13
14
15 | 149000
148000
146000
143000
138000 | e54000
e55000
e56000
e57000 | e41000
e40000
e40000
e39000
e39000 | e31500
e31000
e31000
e30500
e30500 | e26000
e26000
e25500
e25500
e25500 | e22500
e22500
e22500
e22500
e22000 | e21000
e21000
e21000 | e68000 | 286000
292000
305000
323000
333000 | 235000
227000
218000
208000
200000 | 178000
173000
167000
162000
157000 | 140000
135000
132000
129000
125000 | | 16
17
18
19
20 | 134000
131000
128000
125000
121000 | e57000
e56000
e56000
e55000
e54000 | e39000
e38000
e38000
e38000
e37000 | e30500
e30000
e30000
e30000
e29500 | e25000
e25000
e25000
e24500
e24500 | e22000
e22000
e22000
e22000
e22000 | e21000 | e105000
e115000
126000
122000
131000 | 341000
348000
360000
358000
353000 | 200000
206000
204000
204000
205000 | 153000
152000
151000
152000
152000 | 122000
119000
116000
115000
114000 | | 21
22
23
24
25 | 118000
112000
109000
106000
103000 | e53000
e52000
e51000
e50000
e49000 | e37000
e36000
e36000
e36000
e35000 | e29500
e29000
e29000
e29000
e28500 | e24500
e24500
e24000
e24000
e24000 | e22000
e21500
e21500
e21500
e21500 | e21500
e21500 | 133000
e142000
153000
162000
165000 | 344000
335000
318000
297000
281000 | 205000
204000
208000
228000
268000 | 152000
147000
142000
137000
133000 | 115000
117000
121000
121000
120000 | | 26
27
28
29
30
31 | 99500
e89000
e82000
e78000
e73000
e69000 | e48000
e48000
e47000
e47000
e46000 | e35000
e35000
e34500
e34000
e34000
e33500 | e28500
e28500
e28000
e28000
e28000
e28000 | e24000
e23500
e23500
 | e21500
e21500
e21500
e21500
e21000 | e23000
e23500
e24000
e25000 | 159000
155000
156000
154000
150000 | 265000
250000
231000
214000
200000 | 261000
282000
305000
305000
277000
246000 | 132000
131000
129000
128000
127000
123000 | 118000
116000
114000
111000
109000 | | MEAN
MAX
MIN | 4131500
133300
197000
69000
8195000
1.17
1.35 | 1604000
53470
66000
46000
3182000
.47
.53 | 1205000
38870
45000
33500
2390000
.34
.39 | 942000
30390
33500
28000
1868000
.27
.31 | 713500
25480
27500
23500
1415000
.22
.23 | 688000
22190
23500
21000
1365000
.20
.23 | 21520
25000
21000 | 3044000
98190
165000
26000
6038000
.87
1.00 | 8435000
281200
360000
176000
16730000
2.48
2.76 | 6992000
225500
305000
188000
13870000
1.99
2.29 | 5112000
164900
229000
123000
10140000
1.45
1.68 | 3739000
124600
149000
109000
7416000
1.10
1.23 | | | | STATIST | ICS OF MO | NTHLY ME | AN DATA FO | R WATER | YEARS 195 | 0 - 2001, | BY WATER | YEAR (W | Y)# | | | MEAN
MAX
(WY)
MIN
(WY) | 74500
133300
2001
45870
1959 | 38070
62500
1953
24000
1959 | 25650
38870
2001
13000
1951 | 21010
30390
2001
9000
1951 | 18780
28000
1977
7200
1951 | 17210
25480
1977
7800
1956 | 41530
1990
8650 | 124100
201500
1993
61770
1964 | | 1992
108900 | | | | SUMMAR | RY STATIS | TICS | FOR | 2000 CAL | ENDAR YEA | R | FOR 2001 | WATER YEA | AR | WATER | YEARS 195 | 0 - 2001 | | ANNUAL
ANNUAL
HIGHES
LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
MAXIMU
MAXIMU
ANNUAL | TOTAL MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-D JM PEAK F JM PEAK S RUNOFF | MEAN
MEAN
MEAN
EAN
AY MINIMU
LOW
TAGE
TAGE
(AC-FT) | M | 38480600
105100
320000
a16500
16500 | Jun 2
Jun 2
Apr :
Apr : | 0
1
1 | 37251500
102100
360000
b21000
21000
362000
26
d33
73890000 | Jun 1
Mar 3
Mar 3
Jun 1
.83 Jun 1 | | 84230
110900
61020
545000
c7200
7200
545000
33. | Jun
Feb
Feb
Jun
85 Jun | 1964
1958
12 1964
1 1951
1 1951
12 1964 | | ANNUAL
ANNUAL
10 PEF
50 PEF
90 PEF | RUNOFF CENT EXC CENT EXC CENT EXC | (CFSM)
(INCHES)
EEDS
EEDS
EEDS | | 12.
223000
57000
16600 | 93
61 | | 12
228000
56000
22000 | .90
.21 | | 10
199000
45000
16000 | .74
.08 | | See Period of Record; partial years used in monthly statistics See Period of Record, partial years From Apr. 1-20 From Mar. 30 - Apr. 21 Feb. 1-28, 1951 From floodmarks, backwater from ice c d Estimated # 15356000 YUKON RIVER AT EAGLE--Continued (International Gaging Station) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1950-57, 1962-70, 1974-76, 1978-79, and 2001. PERIOD OF DAILY RECORD.--SUSPENDED SEDIMENT: 1962
TO 1966. | DATE | | TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN
DIS-
SOLVE
(MG/L | CENT
D SATUR
) ATION | 1)
5-
L
-
ED | | | | |--------------------------------|--------------|--|--|--|---|---|---|---|--|--|------------|--|---| | JUN 04 04 04 04 20 20 20 20 20 | | 1916
1918
1920
1925
1927
1415
1418
1446
1454 | 440.0
650.0
800.0
970.0
1190
1190
960.0
800.0
650.0
430.0 | 164
162
159
160
159
185
181
185
184 | 7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
8.0 | 10.0
10.0
10.0
10.0
10.0
13.5
13.5
13.5
13.5 | 745
745
745
745
745
746
746
746
746 | 10.9
10.8
10.9
10.6
9.5
9.5
9.5 | 99
98
99
98
96
93
93
93
93 | | | | | | 11
11
11
11
AUG | | 1251
1253
1254
1256
1257 | 1190
960.0
800.0
650.0
430.0 | 201
201
202
202
206 | 8.0
8.0
8.0
8.0 | 14.0
14.0
14.0
14.0
14.0 | 747
747
747
747
747 | 9.2
9.2
9.0
9.1
9.1 | 91
91
90
90
90 | | | | | | 09
09
09
09
SEP | | 1248
1249
1250
1251
1252 | 430.0
650.0
800.0
960.0
1190 | 218
216
216
216
216
216 | 7.5
7.6
7.7
7.7 | 14.5
14.5
14.5
14.5
14.5 | 754
754
754
754
754 | 9.7
9.6
9.6
9.4
9.3 | 96
95
95
93
92 | | | | | | 11
11
11
11 | | 1241
1244
1249
1251
1253 | 500.0
700.0
800.0
960.0
1150 | 188
187
187
187
186 | 8.0
8.0
8.1
8.0
8.1 | 8.5
8.5
8.5
8.5
8.5 | 751
751
751
751
751 | 11.0
11.1
11.1
11.0
10.7 | 96
96
96
96
93 | | | | | | DATE | TIME | MEDIU
CODE | | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | TEMPERA
TURE
AIR
(DEG C)
(00020) | TEMP-
ERATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1530 | 9 | 9 | 1520 | 17.63 | 180000 | 20 | 3055 | 1 | 208 | 8.2 | -1.0 | 1.0 | | MAR
23 | 1140 | 9 | 9 | 1120 | | 21500 | 20 | 3060 | 30 | 244 | 7.4 | -23.0 | .00 | | JUN
04
20
JUL | 1900
1330 | 9
9 | 9
9 | 1550
1540 | 19.95
26.50 | 219000
355000 | 20
20 | 3055
3055 | 100
100 | 163
184 | 7.9
7.9 | 16.5 | 10.0
13.6 | | 11
AUG | 1210 | 9 | 9 | 1550 | 20.87 | 230000 | 20 | 3055 | 30 | 202 | 8.0 | 18.0 | 14.0 | | 09
SEP | 1145 | 9 | 7 | 1550 | 18.09 | 188000 | 20 | 3055 | 100 | 216 | 7.6 | 17.5 | 14.6 | | 11 | 1140 | 9 | 9 | 1380 | 15.03 | 140000 | 20 | 3055 | 30 | 187 | 8.1 | | 8.4 | ## YUKON ALASKA ### 15356000 YUKON RIVER AT EAGLE--Continued | DATE | TURBID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSOR-BANCE 254 NM, WTR FLT (UNITS/ CM) (50624) | UV
ABSOR-
BANCE
280 NM,
(UNITS/
CM)
(61726) | BARO-METRIC
PRES-SURE
(MM OF
HG) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CAL-
CIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |--|--|--|--|---|---|--|--|---|---|---|---|--|--| | OCT
04 | 32 | 42 | .204 | .151 | 750 | | | 100 | 27.3 | 8.00 | 2.2 | 76 | .92 | | MAR
23 | .7 | 4.2 | .040 | .028 | 767 | 10.8 | 73 | 120 | 34.1 | 9.21 | 2.7 | 99 | 1.16 | | JUN
04
20 | | 180
270 | .400
.173 | .302
.129 | 745
746 | 10.8
9.5 | 98
93 | 81
92 | 22.1
25.2 | 6.12
7.09 | 1.8
1.7 | 55
65 | 1.08 | | JUL
11 | | .5 | | | 747 | 9.1 | 90 | 96 | 26.1 | 7.51 | 2.1 | 68 | 1.17 | | AUG
09
SEP | | | .108 | .078 | 754 | 9.5 | 94 | 100 | 28.3 | 8.06 | 2.5 | 76 | 1.55 | | 11 | | 63 | .192 | .140 | 751 | 11.0 | 95 | 100 | 27.4 | 8.04 | 2.3 | 70 | 1.06 | | DATE OCT 04 MAR 23 JUN 04 20 JUL 11 AUG 09 SEP 11 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 93 121 67 78 81 92 84 | CO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
76
99
55
64
66
76
69 | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
29.7
30.7
19.5
26.2
28.9
31.5 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
.5
.8
.4
.4 | FLOU-RIDE DIS-SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1 E.1 E.1 | SIL-
ICA,
DIS-
SOLVED (MG/L
AS
SIO2) (00955)
7.7
6.5
5.4
6.0
6.3
6.3
7.1 | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
141
153
114
130
128
130 | ENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
.001
.008
.001
<.001
<.001 | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.007
.056
.004
.005
.007
<.002 | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.31
.08
.68
.59
.41
E.38 | | | | | | | | | | | | | | | | | DATE OCT 04 MAR 23 JUN 04 | . 26 |
.004
.931 | <.006
<.006 | .001
<.007
<.007 | NITRO-
GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845) | .08 | 6.5

6.5 | ALUMI -
NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
21
2 | 1.0 | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.12
.10 | ARSENIC SED, SUSP. (UG/G) (29818) | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) <2.0 .4 .6 | BARIUM
SED.
SUSP.
(UG/G)
(29820)
960
 | | OCT 04 MAR 23 JUN 04 20 JUL | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .18 E.06 .26 E.09 | PHORUS
TOTAL
(MG/L
AS P)
(00665)

.004
.931
.825 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.001
<.007
<.007 | GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845)
.10

<.10
<.10 | PHORUS
SEDI-
MENT
SUSP.
PER-
CENT
(30282) | NUM
SED,
SUS
PER-
CENT
(30221)
6.5

6.5
6.7 | NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
21
2
45
25 | MONY
SED,
SUSP.
(UG/G)
(29816)
1.0

1.5
1.6 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.12
.10
.14
.17 | SED,
SUSP.
(UG/G)
(29818)
8.9

12 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
<2.0
.4
.6
.7 | SED.
SUSP.
(UG/G)
(29820)
960

930
910 | | OCT
04
MAR
23
JUN
04
20
JUL
11 | GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.18
E.06
.26
E.09 | PHORUS
TOTAL
(MG/L
AS P)
(00665)

.004
.931
.825
.503 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006
.007
E.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.001
<.007
<.007
<.007 | GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845)
.10

<.10
<.10 | PHORUS
SEDI-
MENT
SUSP.
PER-
CENT
(30282)
.08 |
NUM
SED,
SUS
PER-
CENT
(30221)
6.5

6.5
6.7 | NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
21
2
45
25
30 | MONY
SED,
SUSP.
(UG/G)
(29816)
1.0

1.5
1.6 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.12
.10
.14
.17 | SED,
SUSP.
(UG/G)
(29818)
8.9

12
11 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
<2.0
.4
.6
.7 | SED.
SUSP.
(UG/G)
(29820)
960

930
910
830 | | OCT 04 MAR 23 JUN 04 20 JUL 11 | GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .18 E.06 .26 E.09 .12 .11 | PHORUS
TOTAL
(MG/L
AS P)
(00665)

.004
.931
.825 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.006
<.006 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.001
<.007
<.007 | GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845)
.10

<.10
<.10 | PHORUS
SEDI-
MENT
SUSP.
PER-
CENT
(30282) | NUM
SED,
SUS
PER-
CENT
(30221)
6.5

6.5
6.7 | NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
21
2
45
25 | MONY
SED,
SUSP.
(UG/G)
(29816)
1.0

1.5
1.6 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.12
.10
.14
.17 | SED,
SUSP.
(UG/G)
(29818)
8.9

12 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
<2.0
.4
.6
.7 | SED.
SUSP.
(UG/G)
(29820)
960

930
910 | ### 15356000 YUKON RIVER AT EAGLE--Continued | DATE | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM
SED,
SUSP.
(UG/G)
(29822) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON
DIS-
SOLVED
(UG/L
AS B)
(01020) | CAD-
MIUM
SED.
SUSP.
(UG/G)
(29826) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM
SED.
SUSP.
(UG/G)
(29829) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT
SEDI-
MENT
SUSP.
(UG/G)
(35031) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
SED.
SUSP.
(UG/G)
(29832) | COP-
PER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON
SEDI-
MENT
SUSP.
PERCENT
(30269) | |------------------|---|--|---|--|---|--|---|--|---|---|---|--|---| | OCT
04 | 36.7 | 1 | <.06 | <16 | .6 | .04 | 95 | E.6 | 13 | .14 | 28 | 2.0 | 3.3 | | MAR
23
JUN | 52.0 | | <.06 | 12 | | E.03 | | <.8 | | .06 | | .9 | | | 04
20 | 33.4
39.5 | 2 | <.06
<.06 | E6
8 | .7
.6 | E.03 | 93
97 | <.8
<.8 | 16
18 | .12 | 33
35 | 3.6
2.5 | 3.8
3.8 | | JUL
11
AUG | 36.0 | 2 | E.04 | 8 | .5 | < .04 | 98 | <.8 | 18 | .07 | 35 | 2.2 | 3.8 | | 09
SEP | 40.0 | 1 | <.06 | E6 | .5 | < .04 | 94 | <.8 | 17 | .06 | 34 | 1.2 | 4.3 | | 11 | 38.2 | 1 | <.06 | 12 | .6 | E.02 | 110 | E.4 | 15 | .08 | 31 | 2.1 | 3.6 | | DATE | IRON
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD
SED.
SUSP.
(UG/G)
(29836) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITH-
IUM
SEDI-
MENT
SUSP.
(UG/G) | LITH-
IUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE
SED.
SUSP.
(UG/G)
(29839) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MER-
CURY
SED,
SUSP.
(UG/G)
(29841) | MOLYB-
DENUM
SED.
SUSP.
(UG/G)
(29843) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/LAS
MO)
(01060) | NICKEL
SED.
SUSP.
(UG/G0
(29845) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM
SED.
SUSP.
(UG/G)
(29847) | | OCT
04 | 30 | 11 | E.04 | 22 | <3.9 | 720 | 5.9 | .05 | <5 | 1.0 | 48 | 2.50 | М | | MAR
23
JUN | М | | .10 | | 2.3 | | 1.5 | | | 1.3 | | .74 | | | 04
20
JUL | 100
30 | 14
10 | E.05 | 22
27 | 1.6
2.0 | 850
840 | 7.2
5.1 | .05 | 2
2 | .7 | 46
47 | 2.02
1.35 | M
M | | 11
AUG | 20 | 9.0 | <.08 | 27 | 2.7 | 780 | 3.0 | .06 | 3 | 1.0 | 51 | .99 | М | | 09
SEP | М | 10 | <.08 | 25 | 2.7 | 760 | 1.5 | .01 | 2 | 1.3 | 49 | .29 | М | | 11 | 40 | 10 | <.08 | 23 | 2.5 | 760 | 4.2 | .03 | 4 | 1.1 | 56 | .77 | М | | DATE | SELE-
NIUM
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER
SED.
SUSP.
(UG/G)
(29850) | SIL-
VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM
SEDI-
MENT
SUSP,
(UG/G) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM
SUS SED
(UG/G)
(49955) | TITA-
NIUM
SEDI-
MENT
SUSP.
PERCENT
(30317) | VANA-
DIUM
SED,
SUSP.
(UG/G)
(29853) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC
SED.
SUSP.
(UG/G)
(29855) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URA- NIUM SEDI- MENT SUSP. (UG/G) (35046) | URA-
NIUM
NATU-
RAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | OCT
04 | <2.4 | <.500000 | <1.0 | 350 | 129 | <50 | .410 | 120 | <10.0 | 120 | 2 | <50 | .75 | | MAR
23 | .7 | | <1.0 | | 171 | | | | .6 | | 3 | | 1.02 | | JUN
04
20 | | .500000
1 | <1.0
<1.0 | 330
320 | 102
108 | <50
<50 | .460
.490 | 130
130 | .5
.5 | 110
110 | 1
1 | <50
<50 | .66
.67 | | JUL
11 | E.2 | 4 | <1.0 | 330 | 124 | <50 | .460 | 120 | .5 | 100 | 5 | <50 | .75 | | AUG
09 | .5 | .500000 | <1.0 | 360 | 136 | <50 | .460 | 120 | . 4 | 97 | <1 | <50 | .89 | | SEP
11 | .4 < | .500000 | <1.0 | 390 | 131 | <50 | .430 | 120 | . 4 | 100 | 1 | <50 | .85 | ## YUKON ALASKA ### 15356000 YUKON RIVER AT EAGLE--Continued | | | CARBON, | CARBON, | CARBON, | | | NITRO- | SEDI- | | SEDI- | SED | | |------|----------|----------|----------|----------|---------|---------|----------|---------|---------|---------|---------|--| | | CARBON, | INOR- | ORGANIC | INORG + | | CARBON, | GEN, | MENT | | MENT, | SUSP. | | | | ORGANIC | GANIC, | PARTICU- | ORGANIC | | ORGANIC | PARTICU- | SUSP., | SEDI- | DIS- | SIEVE | | | | DIS- | PARTIC. | LATE | PARTIC. | CARBON | SUS- | LATE WAT | FLOW- | MENT, | CHARGE, | DIEM. % | | | | SOLVED | TOTAL | TOTAL | TOTAL | SED, | PENDED, | FLT SUSP | THROUGH | SUS- | SUS- | FINER | | | | (MG/L AS | (MG/L AS | (MG/L AS | (MG/L AS | SUSP. | TOTAL | (MG/L AS | CENTRIF | PENDED | PENDED | THAN | | | | C) | C) | C) | C) | PERCENT | PERCENT | N) | (MG/L) | (MG/L) | (T/DAY) | .062 MM | | | DATE | (00681) | (00688) | (00689) | (00694) | (30244) | (50465) | (49570) | (50279) | (80154) | (80155) | (70331) | | | | | | | | | | | | | | | | | OCT | | | | | | | | | | | | | | 04 | E5.9 | <.1 | 2.2 | 2.2 | 2.3 | 1.0 | .186 | 175 | 187 | 90900 | 45 | | | MAR | | | | | | | | | | | | | | 23 | 1.7 | <.1 | <.1 | <.1 | | | <.022 | | 2 | 116 | | | | JUN | | | | | | | | | | | | | | 04 | 10.0 | <.1 | 16.0 | 16.0 | 2.3 | 1.1 | .628 | 817 | 883 | 522000 | 62 | | | 20 | 4.5 | 1.8 | 5.5 | 7.3 | 2.1 | .8 | .253 | 831 | 873 | 837000 | 67 | | | JUL | | | | | | | | | | | | | | 11 | 4.8 | 4.9 | 3.5 | 8.3 | 2.2 | 1.0 | .174 | 521 | 554 | 344000 | 68 | | | AUG | | | | | | | | | | | | | | 09 | 3.3 | 11.0 | 3.8 | 15.0 | 2.6 | .6 | E.162 | 723 | 730 | 371000 | 79 | | | SEP | | | | | | | | | | | | | | 11 | E6.0 | E.2 | E3.6 | E3.9 | 2.2 | 1.0 | E.116 | 205 | 207 | 78200 | 55 | | #### 15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY (International Gaging Station) $\texttt{LOCATION.--Lat } ~67^{\circ}25'27'', ~\texttt{long } ~140^{\circ}53'28'', ~\texttt{3.1} ~\texttt{mi } ~\texttt{upstream } ~\texttt{from old } ~\texttt{townsite } ~\texttt{of } ~\texttt{Ramparts } ~\texttt{House, } ~\texttt{at } ~\texttt{Alaska-Yukon } ~\texttt{long ~\texttt{l$ Territory Boundary. DRAINAGE AREA.--23,100 \mbox{mi}^{2} , approximately. PERIOD OF RECORD. -- October 1987 to current year. GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Differences between data published herein and corresponding data in the reports of the Water Survey of Canada are due to variations in automated program techniques. After December 1978, data published in reports of the Water Survey of Canada are in International System (SI) units, and have been converted to inch-pound units for this report. Because the Water Survey of Canada computes discharge records by calandar year, data reported here are one year prior to those reported for U.S. gages. COOPERATION.--Discharge records furnished by the Water Survey of Canada. | | | DISCH | ARGE, CUE | IC FEET F | PER SECOND, | | YEAR OCT | OBER 1999 | TO SEPTEM | MBER 2000 | | | |--
---|---|---|---|---|---|--------------------------------------|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e4450
e4100
e3740
e3530
e3440 | e1430
e1400
e1370
e1350
e1320 | e975
e971
e960
e946
e936 | e802
e798
e798
e798
e794 | e759
e759
e759
e756
e756 | e727
e727
e727
e727
e727 | e717
e717
e717
e720
e720 | e759
e766
e780
e791
e798 | 89700
91500
90000
88600
84000 | 14600
13100
11800
11100
10800 | 29300
25900
21900
19100
16700 | 17700
16000
14100
12600
11300 | | 6
7
8
9
10 | e3390
e3320
e3200
e3200
e3170 | e1310
e1290
e1280
e1270
e1250 | e922
e918
e911
e904
e897 | e794
e794
e794
e791
e791 | e756
e752
e752
e752
e752 | e727
e727
e724
e724
e724 | | e809
e823
e844
e865
e883 | 80900
79800
80500
81600
90000 | 12300
13900
13900
15200
19800 | 14200
12100
10600
9750
9390 | 10300
9530
8860
8440
e8190 | | 11
12
13
14
15 | e3060
e2560
e2320
e2250
e2230 | e1220
e1200
e1180
e1160
e1140 | e886
e883
e876
e869
e862 | e791
e787
e787
e784
e784 | e749
e749
e745
e745
e742 | e724
e724
e724
e724
e724 | e727
e727
e727 | e929
e996
e1100
e1340
e1840 | 96400
93900
89300
80200
70300 | 21500
18900
15500
12900
11600 | 9640
9960
10100
11700
14100 | e7870
e7630
e7380
e7060
e6570 | | 16
17
18
19
20 | e2250
e2320
e2370
e2380
e2380 | e1130
e1120
e1110
e1090
e1080 | e858
e851
e847
e844
e840 | e780
e780
e777
e777
e773 | e742
e742
e742
e738
e738 | e724
e724
e724
e724
e724 | e731
e734
e734 | e6920 | 64600
65300
67100
66000
63600 | 12000
16800
22400
21800
18100 | 15400
42400
62500
51600
39900 | e6180
e6070
e5930
e5680
e5540 | | 21
22
23
24
25 | e2330
e2290
e2230
e1920
e1780 | e1060
e1050
e1030
e1020
e1020 | e837
e826
e826
e823
e823 | e773
e770
e770
e770
e770 | e734
e734
e734
e734
e731 | e724
e724
e724
e724
e724 | e738
e738
e742 | e17800
e23300
e30500
e38800
e49400 | 59700
52600
43800
36400
30600 | 14700
12900
17500
23200
21000 | 33100
30600
29300
27700
24800 | e5400
e5330
e5260
e5080
e4840 | | 26
27
28
29
30
31 | e1720
e1660
e1600
e1550
e1500
e1460 | e1010
e1010
e999
e989
e985 | e819
e819
e816
e816
e812
e802 | e770
e766
e766
e766
e763
e763 | e731
e727
e727
e727
 | e724
e720
e720
e720
e717 | e742
e745
e745
e749
e756 | e67100
e70600
e81200
e84700
e87200
89700 | 26700
23400
20500
18100
16100 | 17500
14800
14500
16100
18800
26200 | 21900
19400
17600
16700
17500
18500 | e4700
e4590
e4450
e4270
e4060 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 79700
2571
4450
1460
158100
.11
.13 | 34873
1162
1430
985
69170
.05 | 26975
870
975
802
53500
.04
.04 | 24221
781
802
763
48040
.03
.04 | 21564
744
759
727
42770
.03
.03 | 22439
724
727
717
44510
.03
.04 | | 692153
22330
89700
759
1373000
.97
1.11 | 1941200
64710
96400
16100
3850000
2.80
3.13 | 505200
16300
26200
10800
1002000
.71
.81 | 693340
22370
62500
9390
1375000
.97
1.12 | 230910
7697
17700
4060
458000
.33
.37 | | | | STATIST | CS OF MC | NTHLY MEA | N DATA FOR | WATER | YEARS 19 | 88 - 2000 | , BY WATER | R YEAR (W | Y) | | | MEAN
MAX
(WY)
MIN
(WY) | 4652
8241
1996
2571
2000 | 1781
3161
1999
1122
1997 | 1062
1479
1999
870
2000 | 788
991
1999
551
1997 | 661
855
1998
398
1997 | 631
852
1998
383
1997 | 768
1711
1998
562
1997 | 37330
63160
1990
5991
1997 | 43810
86470
1992
20410
1999 | 15030
29580
1994
6041
1999 | 18610
37940
1991
10090
1994 | 17150
34320
1995
7697
2000 | | SUMMAR | Y STATIST | 'ICS | FOR | 1999 CALE | ENDAR YEAR | | FOR 2000 | WATER YEA | R | WATER | YEARS 1988 | - 2000 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL | T ANNUAL MANUAL | EAN EAN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) | | 671
4365000
.2
3.5 | 26 | | 8518000
6 | Mar 2
Jun 1
.89 Jun 1 | 0
8
1 | 369
250000
50.
470
8617000 | Mar
Mar
Jun
76 Jun
Mar | 1995
1999
1 1992
3 1997
1 1997
1 1992
1 1992
19 1990 | | 50 PER | CENT EXCE
CENT EXCE
CENT EXCE | EDS | | 18800
1180
701 | | | 34100
1190
727 | | | 33900
1980
614 | | | From Apr. 29 to May 7 From Mar. 30 to Apr.3 From Mar. 3 to 6, 1997 Estimated #### 15453500 YUKON RIVER NEAR STEVENS VILLAGE LOCATION.--Lat $65^{\circ}52'32''$, long $149^{\circ}43'04''$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec. 7, T. 12 N., R. 10 W. (Livengood D-6 quad), Hydrologic Unit 19040404, on right bank, 115 ft upstream from bridge at MP 56.0 on Dalton Highway, 0.5 mi downstream from Woodcamp Creek, 2.5 mi upstream from Ray River, and 21 mi southwest of Stevens Village. DRAINAGE AREA.--196,300 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1976 to current year. GAGE.--Water-stage recorder and supplementary water-stage recorder on bridge pier at same site and datum. Datum of gage is 240.00 ft above sea level. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge observed, 950,000 $\rm ft^3/s$, June 15-16, 1964, "at Rampart" (station 15468000), drainage area, 199,400 $\rm mi^2$, approximately. > DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OC' | T NO | V DE | C JA | N FE | B M | AR AP | R MA | JU Y | JN JU | JL AU | G SEP | |--|--|--|--|--|--|--|--|--|--|---|--|---| | 1
2
3
4
5 | 240000
244000
242000
237000
231000 |
e81000
e75000
e70000
e65000
e61000 | e48000
e48000
e48000
e47000
e46000 | e35000
e35000
e34000
e34000
e34000 | e29000
e28500
e28500
e28500
e28000 | e25000
e25000
e25000
e24500
e24500 | e23000
e23000
e23000 | e26500
e27000
e28000
e29000
e30000 | 436000
432000
421000
410000
407000 | 301000
288000
274000
258000
246000 | 340000
339000
322000
302000
286000 | 170000
165000
161000
156000
153000 | | 6
7
8
9
10 | 225000
218000
209000
196000
190000 | | e46000
e45000
e45000
e44000 | e34000
e33500
e33500
e33000
e33000 | e28000
e28000
e27500
e27500
e27500 | e24500
e24500
e24500
e24500
e24000 | e23000
e23000
e23000
e23000
e23000 | e32000
e34000
e36000
e39000
e42000 | 412000
426000
448000
475000
503000 | | 275000
265000
257000
249000
241000 | 151000
153000
155000
156000
157000 | | | 165000
163000 | e59000
e60000 | | e33000
e32500
e32500
e32000
e32000 | e27000
e27000
e27000
e26500
e26500 | e24000
e24000
e24000 | e23000
e23000 | e45000
e49000
e55000
e61000
e68000 | 525000
541000
552000
550000
534000 | 293000 | 228000
222000
215000 | 163000
173000
182000
185000
181000 | | 18
19 | | e59000
e59000
e58000 | | e31500
e31500
e31000
e31000
e31000 | e26500
e26500
e26000
e26000
e26000 | e23500 | e23000
e23000
e23000 | | 502000 | 279000
270000 | 207000
211000
219000 | 176000
173000
169000
163000
157000 | | 22
23
24 | e126000
e121000 | e56000
e55000
e55000
e54000
e53000 | e39000
e39000
e38000
e38000
e38000 | e30500
e30500
e30500
e30000
e30000 | e26000
e25500
e25500
e25500
e25500 | e23500
e23500
e23500 | e23000
e23500 | e200000
e300000
e320000
314000
281000 | 474000
463000 | 255000
253000
247000
241000
237000 | 237000
247000
256000
255000
242000 | 152000
147000
143000
140000
139000 | | 27
28 | e111000
e106000 | e52000
e51000
e51000
e50000
e49000 | e37000
e37000
e37000
e36000
e36000
e36000 | e30000
e29500
e29500
e29500
e29000
e29000 | e25000
e25000
e25000 | e23500
e23500 | e24500
e25000
e25500
e26000 | 279000
297000
325000
376000
409000
428000 | 349000 | 235000
251000
288000
301000
307000
326000 | 211000
198000 | 139000
140000
140000
138000
136000 | | MEAN
MAX
MIN
AC-FT1 | 164500
244000
87000
10120000
.84 | 49000
3461000
.30 | 41390
48000
36000
2545000
.21 | .16 | 1486000
.14 | 23920
25000
23000
1471000
.12 | 1392000
.12 | 151600
428000
26500
9319000
.77 | 454000
552000
314000
27020000
2.31 | 268300
326000
232000
16500000
1.37 | 241100
340000
175000
14820000
1.23 | 157100
185000
136000
9348000
.80 | | IN. | .97 | .33 | .24 | .19 | .14 | .14 | .13
YEARS 197 | .89 | 2.58 | 1.58 | 1.42 | .89 | | MEAN
MAX
(WY)
MIN
(WY) | 99620
164500
2001
75340
1993 | | | | | | 22220
28170
1981
14800
1997 | | | | | 163100
229500
2000
116500
1989 | | SUMMAR | | TICS | FOR | 2000 CAL | ENDAR YEA | R | FOR 2001 | | | | | | | ANNUAI
ANNUAI
HIGHES
LOWEST
LOWEST
ANNUAI
MAXIMU
MAXIMU | TOTAL T MEAN ST ANNUAL T ANNUAL T DAILY T DAILY M SEVEN-D JM PEAK T DINOSE | MEAN
MEAN
MEAN
EAN
AY MINIMUI
LOW
TAGE | М 1 | 53092800
145100
508000
a20000
20000 | Jun 2
Apr
Apr | 3
5
5 | 50130000
137300
552000
b23000
23000
554000
50.
99430000
99323000
58000
23500 | Jun 1
Mar 2
Mar 2
Jun 1
17 Jun 1 | .3
29
29
3
3 | 119800
144400
93910
823000
c14000
14000
827000
593 | Jun
Apr
Apr
Jun
.60 Jun | 1992
1996
11 1992
14 1997
14 1997
11 1992
11 1992 | | ANNUAI
ANNUAI
10 PEF
50 PEF
90 PEF | RUNOFF L RUNOFF RCENT EXC RCENT EXC | (CFSM)
(INCHES)
EEDS
EEDS
EEDS | 1 | 10.
303000
60000
20200 | 74
06 | | 9.
323000
58000
23500 | 70
50 | | 278000
56000
22000 | .61
.29 | | From Apr. 5 to 20 From Mar. 29 to Apr. 22 From Apr. 14 to 25 Estimated ## 15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1970-72, 1978, and 2001. | DATE | TIME | ATION,
CROSS
SECTION
(FT FM
R BK) | ANCE (US/CM) | WHOLE
FIELD
(STAND-
ARD
UNITS) | | (MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | CENT
SATUR-
ATION) | |-----------|--------------|---|--------------|--|------------|------------------|-------------------------------------|--------------------------| | JUN | | | | | | | | | | 02 | 1820 | 350.0 | 123 | 7.4 | 9.0 | 762 | 10.2 | 88 | | 02 | 1824 | 750.0 | 125 | 7.5 | 9.0 | 762 | 10.1 | 87 | | 02 | 1827 | 1070 | 124 | 7.6 | 9.0 | 762 | 10.1 | 87 | | 02 | 1835 | 1420 | 126 | 7.5 | 9.0 | 762 | 10.1 | 87 | | 02 | 1839 | 1790 | 126 | 7.6 | 9.0 | 762 | 10.0 | 86 | | 18 | 1657 | 340.0
644.0 | 180 | 7.8 | 14.5 | 764 | 9.5 | 93 | | 18 | | 644.0 | 178 | 7.8 | 14.5 | 764 | 9.5 | 93 | | 18 | 1703 | | 181 | 7.8 | 14.5 | 764 | 9.5 | 93 | | 18 | 1706 | | 181 | 7.8 | 14.5 | | 9.5 | 93 | | 18
JUL | 1709 | 1708 | 181 | 7.8 | 14.5 | 764 | 9.5 | 93 | | 13 | 1512 | 1710 | 205 | 7.6 | 15.5 | 761 | 9.0 | 90 | | 13 | 1514 | 1320 | 206 | 7.6 | 15.5 | 761 | 8.9 | 90 | | 13 | 1515 | 970.0 | 206 | 7.6 | 15.5 | 761 | 8.9 | 90 | | 13 | | 640.0 | 206 | 7.6 | 15.5 | 761 | 8.9 | 90 | | 13 | 1519 | 340.0 | 206 | 7.6 | 15.5 | 761 | 8.9 | 89 | | AUG | | | | | | | | | | 14 | 1642 | 1700 | 228 | 7.6 | 14.0 | | 9.5 | 92 | | 14 | 1644 | 1360 | 226 | 7.7 | 14.0 | | 9.6 | 93 | | 14 | 1646 | 1050 | 225 | 7.7 | 14.0 | | 9.6 | 93 | | 14 | | 700.0 | 227 | 7.8 | 14.0 | | 9.6 | 93 | | 14 | 1652 | 350.0 | 228 | 7.8 | 14.0 | 762 | 9.4 | 91 | | SEP | 1255 | 200 0 | 020 | п. с | 7 - | 752 | 11 1 | 0.4 | | 21
21 | 1355
1357 | | 232
233 | 7.6
7.7 | 7.5
7.5 | 753
753 | 11.1
11.2 | 94
94 | | 21 | 1357 | 1020 | 233 | 7.7 | 7.5 | 753
753 | 11.2 | 94 | | 21 | | 1350 | 233 | 7.8 | 7.5 | 753 | 11.1 | 94 | | 21 | 1402 | 1670 | 233 | 7.8 | 7.5 | 753 | 11.1 | 94 | | 22 | 1102 | _0,0 | 200 | | , | | | | | | | | | | | DIS- | | | QUALITY | | PH | | | |------|------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | | | CHARGE, | | | ASSUR- | SPE- | WATER | | | | | | | | | | INST. | | | ANCE | CIFIC | WHOLE | | | | | | | | | | CUBIC | SAM- | | DATA | CON- | FIELD | TEMPERA | TEMP- | | | | | | STREAM | GAGE | FEET | PLING | SAMPLER | INDICA- | DUCT- | (STAND- | TURE | ERATURE | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | TOR | ANCE | ARD | AIR | WATER | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | CODE | (US/CM) | UNITS) | (DEG C) | (DEG C) | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (99111) | (00095) | (00400) | (00020) | (00010) | | OCT | | | | | | | | | | | | | | | 02 | 1550 | 9 | 9 | 2020 | 35.44 | 260000 | 20 | 8010 | 30 | 206 | 8.1 | -0.5 | 2.5 | | MAR | | | | | | | | | | | | | | | 21 | 1630 | 9 | 9 | 1950 | | 23400 | 20 | 8010 | 30 | 267 | 7.2 | -23.0 | .00 | | JUN | | _ | _ | | | | | | | | | | | | 02 | 1800 | 9 | 9 | 2190 | 45.09 | 423000 | 20 | 3055 | 30 | 125 | 7.5 | 15.0 | 9.2 | | 18 | 1620 | 9 | 7 | 2250 | 48.12 | 480000 | 20 | 3055 | 30 | 180 | 7.8 | 24.0 | 14.3 | | JUL | | | | | | | | | | | | | | | 13 | 1430 | 9 | 9 | 1970 | 38.25 | 296000 | 20 | 3055 | 100 | 206 | 7.6 | 21.0 | 15.5 | | AUG | | | | | | | | | | | | | | | 14 | 1515 | 9 | 9 | 2130 | 33.57 | 214000 | 20 | 3055 | 30 | 227 | 7.7 | | 14.1 | | SEP | | | | | | | | | | | | | | | 21 | 1230 | 9 | 9 | 2100 | 28.96 | 152000 | 20 | 3055 | 100 | 233 | 7.7 | 15.0 | 7.5 | ## 15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued | DATE | TURBID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSOR- BANCE 254 NM, WTR FLT (UNITS/ CM) (50624) | UV ABSOR- BANCE 280 NM, (UNITS/ CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM OF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXY-
GEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CAL-
CIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |------------------|--|--|--|--|--|--|---|---|--|---|--
---|---| | OCT
02 | 64 | 120 | | | 763 | 13.2 | 97 | 100 | 28.5 | 7.79 | 2.5 | 73 | .91 | | MAR
21 | 1.9 | 3.7 | .045 | .032 | 787 | 8.5 | 56 | 150 | 42.3 | 10.1 | 2.8 | 113 | 1.13 | | JUN
02
18 | | 150
180 | .636
.236 | .480
.174 | 762
764 | 10.1
9.5 | 88
93 | 66
89 | 19.7
25.7 | 3.98
5.92 | .7
1.5 | 48
64 | .89
.92 | | JUL
13
AUG | | 300 | .178 | .131 | 761 | 8.9 | 89 | 98 | 27.2 | 7.19 | 2.1 | | 1.21 | | 14
SEP | | 4.3 | .120 | .086 | 762 | 9.5 | 92 | 110 | 30.3 | 8.14 | 2.7 | 80 | 1.53 | | 21 | | 27 | .167 | .121 | 753 | 11.1 | 94 | 110 | 30.1 | 8.14 | 2.4 | 79 | .94 | | DATE
OCT | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | 02
MAR | 88 | .0 | 72 | 28.1 | .6 | <.1 | 7.3 | 135 | 119 | .001 | .062 | <.002 | .42 | | 21
JUN | 138 | . 0 | 113 | 33.1 | 1.1 | E.1 | 6.8 | 173 | 166 | .001 | <.005 | <.002 | E.05 | | 02
18
JUL | 58
77 | .0 | 47
64 | 12.9
22.1 | . 5
. 4 | E.1
<.2 | 3.2
4.6 | 115
121 | 71
99 | .002 | .021 | .004 | .92
.72 | | 13
AUG | | | | 28.3 | . 4 | E.1 | 5.7 | 131 | 116 | .002 | .040 | .003 | . 29 | | 14
SEP | 95 | . 0 | 78 | 33.5 | .8 | . 2 | 6.1 | 152 | 131 | <.001 | .029 | .012 | . 41 | | 21 | 95 | .0 | 78 | 35.2 | .5 | <.2 | 6.0 | 145 | 130 | .001 | .028 | .002 | . 23 | | DATE | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | NITRO-
GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845) | PHOS-PHORUS SEDI-MENT SUSP. PER-CENT (30282) | ALUMI -
NUM
SED,
SUS
PER-
CENT
(30221) | ALUMI-
NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY
SED,
SUSP.
(UG/G)
(29816) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
SED,
SUSP.
(UG/G)
(29818) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM
SED.
SUSP.
(UG/G)
(29820) | | OCT
02 | .20 | .313 | E.003 | <.001 | .08 | .09 | 6.6 | 22 | . 9 | .14 | 11 | <2.0 | 850 | | MAR
21 | E.07 | .016 | E.003 | .070 | | .09 | | 2 | | .09 | | .3 | | | JUN
02 | .43 | .590 | .015 | <.007 | .13 | .09 | 6.6 | 65 | 1.3 | .11 | 11 | .5 | 900 | | 18
JUL | . 23 | .523 | .016 | <.007 | .12 | .10 | 6.5 | 23 | 1.5 | .19 | 12 | .6 | 980 | | 13
AUG | .14 | .489 | <.006 | <.007 | <.10 | .10 | 6.4 | 26 | 1.7 | .19 | 12 | .6 | 800 | | 14
SEP | . 22 | .467 | <.006 | <.007 | <.10 | .10 | 6.7 | 20 | 1.9 | .20 | 14 | .6 | 760 | | 21 | .13 | .161 | <.006 | <.007 | <.10 | .08 | 6.2 | 20 | 1.4 | .15 | 11 | .6 | 950 | ## 15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued | DATE | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM
SED,
SUSP.
(UG/G)
(29822) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON
DIS-
SOLVED
(UG/L
AS B)
(01020) | CAD-
MIUM
SED.
SUSP.
(UG/G)
(29826) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM
SED.
SUSP.
(UG/G)
(29829) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT
SEDI-
MENT
SUSP.
(UG/G)
(35031) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
SED.
SUSP.
(UG/G)
(29832) | COP-
PER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON SEDI- MENT SUSP. PERCENT (30269) | |------------------------|---|--|---|---|---|--|---|--|---|---|---|--|---| | OCT
02 | 42.1 | 1 | <.06 | <16 | . 5 | E.03 | 96 | E.5 | 17 | .12 | 35 | 2.6 | 3.8 | | MAR
21 | 64.8 | | <.06 | 9 | | < .04 | | <.8 | | .07 | | .8 | | | JUN
02
18
JUL | 32.6
44.3 | 2
2 | <.06
<.06 | E5
E6 | .6
.6 | E.02
E.03 | 100
99 | <.8
<.8 | 15
18 | .22 | 28
36 | 4.4
2.9 | 3.6
3.8 | | 13
AUG | 43.8 | 2 | <.06 | 8 | .6 | E.03 | 96 | <.8 | 18 | .10 | 37 | 2.8 | 4.0 | | 14
SEP | 49.5 | 1 | <.06 | 20 | .6 | < .04 | 96 | <.8 | 17 | .07 | 36 | 2.0 | 4.3 | | 21 | 41.8 | 1 | <.06 | 7 | .7 | <.04 | 100 | <.8 | 15 | .08 | 28 | 2.0 | 3.2 | | DATE | IRON
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD
SED.
SUSP.
(UG/G)
(29836) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITH-
IUM
SEDI-
MENT
SUSP.
(UG/G)
(35050) | LITH-
IUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE
SED.
SUSP.
(UG/G)
(29839) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MER-
CURY
SED,
SUSP.
(UG/G)
(29841) | MOLYB-
DENUM
SED.
SUSP.
(UG/G)
(29843) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/LAS
MO)
(01060) | NICKEL
SED.
SUSP.
(UG/G0
(29845) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM
SED.
SUSP.
(UG/G)
(29847) | | OCT
02 | 50 | 10 | E.04 | 24 | <3.9 | 730 | 4.5 | .04 | <5 | .9 | 53 | 2.03 | М | | MAR
21 | 10 | | <.08 | | 2.5 | | 8.9 | | | 1.1 | | . 25 | | | JUN
02
18
JUL | 230
60 | 17
13 | .14 | 32
33 | 2.4 | 720
840 | 18.5
4.8 | .05
.15 | 2
2 | . 4 | 48
54 | 3.15
1.49 | M
M | | 13
AUG | 20 | 11 | E.07 | 30 | 2.5 | 770 | 2.4 | .08 | 3 | .9 | 55 | 1.22 | M | | 14
SEP | М | 13 | <.08 | 29 | 3.0 | 780 | 3.1 | .04 | 3 | 1.2 | 52 | .38 | М | | 21 | 50 | 10 | .17 | 24 | 2.9 | 740 | 6.2 | .03 | 3 | . 9 | 53 | .93 | М | | DATE | SELE-
NIUM
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER
SED.
SUSP.
(UG/G)
(29850) | SIL-
VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM
SEDI-
MENT
SUSP,
(UG/G)
(35040) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM
SUS SED
(UG/G)
(49955) | TITA-
NIUM
SEDI-
MENT
SUSP.
PERCENT
(30317) | VANA-
DIUM
SED,
SUSP.
(UG/G)
(29853) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC
SED.
SUSP.
(UG/G)
(29855) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URA-
NIUM
SEDI-
MENT
SUSP.
(UG/G)
(35046) | URA-
NIUM
NATU-
RAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | OCT
02 | <2.4 | .500000 | <1.0 | 310 | 127 | <50 | .420 | 120 | <10.0 | 100 | <1 | <50 | .75 | | MAR
21 | .6 | | <1.0 | | 176 | | | | .5 | | 2 | | 1.03 | | JUN
02
18
JUL | | .500000 | <1.0
<1.0 | 260
270 | 61.2
97.0 | <50
<50 | .440
.470 | 140
140 | 1.1 | 110
130 | 1
1 | <50
<50 | .37
.64 | | 13
AUG | .4 M | I | <1.0 | 290 | 123 | <50 | .440 | 120 | .5 | 110 | 1 | <50 | .75 | | 14
SEP | <.3 < | .500000 | <1.0 | 310 | 145 | <50 | .430 | 130 | . 4 | 110 | <1 | <50 | .84 | | 21 | .5 < | .500000 | <1.0 | 350 | 128 | <50 | .400 | 120 | . 5 | 110 | 2 | <50 | .76 | ## 15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued | | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L AS | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L AS | CARBON, ORGANIC PARTICU- LATE TOTAL (MG/L AS | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L AS | CARBON
SED,
SUSP. | CARBON,
ORGANIC
SUS-
PENDED,
TOTAL | NITRO-
GEN,
PARTICU-
LATE WAT
FLT SUSP
(MG/L AS | SEDI-
MENT
SUSP.,
FLOW-
THROUGH
CENTRIF | SEDI-
MENT,
SUS-
PENDED | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED | SED SUSP. SIEVE DIEM. % FINER THAN | |-----------|--|--|--|---|-------------------------|--|--|--|----------------------------------|---|------------------------------------| | DATE | C)
(00681) | C)
(00688) | C)
(00689) | C)
(00694) | PERCENT (30244) | PERCENT (50465)
 N)
(49570) | (MG/L)
(50279) | (MG/L)
(80154) | (T/DAY)
(80155) | .062 MM | | DAIL | (00681) | (00688) | (00689) | (00694) | (30244) | (50405) | (49570) | (50279) | (80154) | (80155) | (70331) | | OCT | | | | | | | | | | | | | 02 | E7.2 | | | | 2.1 | 1.1 | .059 | 305 | 302 | 212000 | 80 | | MAR | | | | | | | | | | | | | 21 | 1.9 | <.1 | .2 | .3 | | | <.022 | | 11 | 695 | | | JUN | | | | | | | | | | | | | 02 | 17 | 2.2 | 5.1 | 7.3 | 2.2 | 1.5 | .418 | 599 | 622 | 710000 | 71 | | 18
JUL | 6.6 | 2.4 | 5.7 | 8.1 | 2.2 | 1.3 | .371 | 483 | 504 | 653000 | 79 | | 13 | 5.9 | 1.1 | 6.1 | 7.2 | 2.6 | 1.1 | .133 | 502 | 507 | 405000 | 79 | | AUG | | | | | | | | | | | | | 14 | 3.5 | 4.4 | 6.0 | 10 | 2.5 | 1.0 | .184 | 453 | 466 | 269000 | 83 | | SEP | | | | | | | | | | | | | 21 | 5.0 | .6 | 1.7 | 2.3 | 2.0 | 1.2 | .077 | 164 | 168 | 68900 | 48 | ### 15477730 LIESE CREEK NEAR BIG DELTA LOCATION.--Lat $64^{\circ}26'53''$, long $144^{\circ}52'59''$, in $SW^{1}/_{4}$ sec.25, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 1.7 mi upstream from mouth, 1.5 mi east of Pogo Mine Camp site, and 34 mi northeast of Big Delta. DRAINAGE AREA.--1.08 mi². PERIOD OF RECORD. -- October 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2200 ft above sea level, from topographic map. REMARKS.--Records fair except for discharges below 0.2 ${\rm ft}^3/{\rm s}$, estimated daily discharges and the period July 30 to September 24 which are poor. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER | R 2000 T | O SEPTEMBEI | R 2001 | | | |---|--|---------------------------------------|--|---|--|--|--|--|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 e
3 e
4 e | 90
80
70
62 | e.14
e.14
e.12 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.36
e.30
e.28
e.26
e.24 | .89
.91
1.0
1.1 | .80
.97
.58
.43 | 2.7
2.2
2.0
1.7
1.6 | . 42
. 45
. 50
. 49
. 48 | | 7 e
8 e
9 e | 56
54
52
48 | e.10
e.10
e.10 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.26
e.30
e.32
e.36
e.44 | 1.1
2.0
3.9
1.7 | 1.2
3.6
2.9
1.7 | 1.5
1.5
1.3
1.3 | . 45
. 47
. 50
. 53
. 53 | | 12 e
13 e
14 e | :.40
:.38
:.36
:.34 | e.10
e.10
e.08 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.46
e.50
e.56
e.62
e.74 | .84
.72
.61
.65 | 1.0
.87
.77
.78
.70 | 1.1
1.1
1.1
.78
.69 | .53
.52
.50
.46 | | 17 e
18 e
19 e | :.32
:.30
:.30
:.28 | e.08
e.08
e.08 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | | e.80
e.84
e.96
e1.1
e1.6 | .60
.55
.47
.41 | .53
.42
.41
.42 | .66
.58
.59
.58 | . 43
. 43
. 44
. 42
. 43 | | 22 e
23 e
24 e | 26
24
22
22 | e.06
e.06
e.06 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.02
e.04
e.06 | e2.3
e3.5
e6.6
e4.6
e3.4 | .27
.22
.19
.14 | .41
.36
.35
.72 | .54
.57
.49
.54 | . 43
. 42
. 40
. 40
. 38 | | 27 e
28 e
29 e
30 e | 20
18
18
16
16 | e.04
e.02
e.02
e.00 | e.00
e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.10
e.20 | e2.5
2.0
1.9
.99
.87 | .08
.15
.27
.44
.86 | .74
1.3
1.4
5.5
5.7
3.7 | .59
.59
.57
.54
.53 | .35
.31
.30
.31
.30 | | MEAN
MAX
MIN
MED
AC-FT
CFSM | .62
.37
.90
.16
.32
.23
.35 | .083 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | .042 | 40.86
1.32
6.6
.24
.80
81
1.22
1.41 | 23.62
.79
3.9
.08
.63
47
.73 | 41.44
1.34
5.7
.35
.78
82
1.24
1.43 | 30.41
.98
2.7
.44
.66
60
.91 | 13.00
.43
.53
.30
.43
.26
.40 | | STATISTICS | OF MON | THLY MEAN | DATA FOR | WATER YE | ARS 2000 | - 2001 | , BY WATER Y | EAR (WY |) | | | | | MAX
(WY) 2
MIN . | .20
.37
001
032 | .083
2001
.000 | .000
.000
2000
.000
2000 | .000
.000
2000
.000
2000 | .000
.000
2000
.000
2000 | .000
.000
2000
.000
2000 | .021
.042
2001
.000
2000 | 1.47
1.62
2000
1.32
2001 | 1.55
2.31
2000
.79
2001 | .86
1.34
2001
.39
2000 | 1.58
2.17
2000
.98
2001 | .93
1.43
2000
.43
2001 | | SUMMARY ST | 'ATISTICS | S | FOR 20 | 00 CALEND | AR YEAR | | FOR 2001 WAT | ER YEAR | | WATER YE | ARS 2000 | - 2001 | | ANNUAL TOT ANNUAL MEA HIGHEST ANN HIGHEST DA LOWEST ANN HIGHEST DA LOWEST DAI ANNUAL SEV MAXIMUM PE MAXIMUM PE MAXIMUM PE ANNUAL RUN ANNUAL RUN ANNUAL RUN 50 PERCENT | N INUAL MEAN ILLY MEAN LY MEAN ILLY MEAN IEN-DAY INAK FLOW INAK STAGIOFF (ACTIONF (ING) IN EXCEDS EXCEDS | N N N N N N N N N N N N N N N N N N N | | 255.69
.70
7.0
a.00
.00
507
.65
8.81
2.4
.10 | May 22
Jan 1
Jan 1 | | 164.69
.45
6.6
b.00
.00
8.0
20.32
c22.2
327
.42
5.67
1.1
.16 | May 23
Nov 30
Nov 30
Jul 29
Jul 29
May 23 | | .56
.66
.45
7.0
.00
.00
9.6
20.39
404
.52
7.01
1.6
.06 | May
Oct
Oct
Aug
Aug | 2000
2001
22 2000
30 1999
30 1999
13 2000
13 2000 | Jan. 1 to May 7 Nov. 30 to Apr. 21 From floodmarks backwater from ice Estimated ### 15477740 GOODPASTER RIVER NEAR BIG DELTA LOCATION.--Lat $64^{\circ}27'02''$, long $144^{\circ}56'32''$, in $SE^{1}/_{4}$ sec.27, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 0.2 mi northwest of Pogo Mine Camp site, 7 mi upstream from Central Creek, and 34 mi northeast of Big Delta. DRAINAGE AREA. -- 677 mi². PERIOD OF RECORD. -- August 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1350 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHAN | .GE, CODI | C PEBI FER | | MEAN VA | LUES | . 2000 10 | OBF I BMD | EK ZUUI | | | |---------------|--------------|--------------------|----------------------|--------------|---|--------------|-----------------|--------------|---------------|-----------------|---------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 844 | e160 | e130 | e96 | e86 | e80 | e74 | e310 | 773 | 888 | 2730 | 591 | | 2 | 682 | e160 | e130 | e96 | e86 | e80 | e74 | e300 | 959 | 814 | 1940 | 579 | | 3
4 | 606
580 | e150
e140 | e120
e120 | e94
e94 | e86
e84 | e80
e78 | e74
e74 | e280
e270 | 1090
1090 | 708
594 | 1530
1310 | 796
834 | | 5 | e570 | e140 | e120 | e94 | e84 | e78 | e74 | e260 | 1470 | 538 | 1150 | 785 | | 6 | e560 | e140 | e120 | e94 | e84 | e78 | e74 | e260 | 1490 | 950 | 1040 | 772 | | 7 | e540 | e130 | e120 | e92 | e84 | e78 | e74 | e260 | 1530 | 1740 | 939 | 778 | | 8
9 | e520
e500 | e130
e130 | e120
e120 | e92
e92 | e84
e84 | e78
e78 | e74
e74 | e270
e280 | 2260
1380 | 1660
1310 | 850
787 | 772
757 | | 10 | e450 | e140 | e120 | e92 | e84 | e78 | e76 | e290 | 1070 | 981 | 740 | 724 | | 11 | e410 | e140 | e120 | e92 | e82 | e78 | e76 | e310 | 967 | 785 | 715 | 691 | | 12 | e390 | e140 | e110 | e92 | e82 | e78 | e76 | e320 | 943 | 665 | 812 | 664 | | 13 | e380 | e150 | e110 | e90
e90 | e82 | e78 | e78 | 354 | 899 | 590 | 922 | 639 | | 14
15 | e360
e340 | e150
e150 | e110
e110 | e90
e90 | e82
e82 | e76
e76 | e78
e80 | 424
602 | 740
818 | 658
894 | 860
811 | 607
575 | | 16 | e320 | | e110 | e90 | e82 | e76 | e82 | 717 | 772 | 755 | 779 | 555 | | 17 | e310 | e150
e150 | e110 | e90 | e82 | e76 | e84 | 721 | 630 | 633 | 762 | 541 | | 18 | e290 | e150 | e110 | e90 | e82 | e76 | e86 | 781 | 578 | 561 | 744 | 524 | | 19 | e280 | e150 | e100 | e90 | e80 | e76 | e90 | 816 | 570 | 511 | 724 | 507 | | 20 | e270 | e150 | e100 | e90 | e80 | e76 | e96 | 906 | 542 | 477 | 701 | 492 | | 21 | e260 | e150 | e100 | e90 | e80 | e76 | e105 | 1030 | 489 | 461 | 663 | 483 | | 22 | e250 | e150 | e100 | e90 | e80 | e74 |
e120 | 1130 | 450 | 506 | 634 | 470 | | 23
24 | e240
e230 | e140
e140 | e100
e100 | e88
e88 | e80
e80 | e74
e74 | e140
e150 | 1440
1450 | 432
400 | 524
837 | 623
633 | 460
443 | | 25 | e230 | e140 | e98 | e88 | e80 | e74 | e170 | 1020 | 362 | 1580 | 687 | 431 | | 26 | e220 | e140 | e98 | e88 | e80 | e74 | e200 | 836 | 332 | 1480 | 737 | 418 | | 27 | e210 | △13N | _ Q Q | e88 | e80 | e74 | e230 | 848 | 671 | 1220 | 707 | 404 | | 28 | e200 | e130 | e98
e98 | e88
e88 | e80 | e74 | e260 | 1120 | 643 | 1490 | 665 | 388 | | 29
30 | e190
e180 | e130
e130 | e98
e96 | e88
e86 | | e74
e74 | e290
e300 | 821
590 | 655
782 | 2170
3600 | 623
595 | 373
372 | | 31 | e170 | | e96 | e86 | | e74 | | 667 | | 3260 | 588 | | | TOTAL | 11582 | 4280 | 3392 | 2808 | 2302 | 2368 | 3533 | 19683 | 25787 | 33840 | 28001 | 17425 | | MEAN | 374 | 143 | 109 | 90.6 | 82.2 | 76.4 | 118 | 635 | 860
2260 | 1092 | 903 | 581 | | MAX | 844
170 | 143
160
130 | 130 | 96 | 86 | 80 | 300
74 | 1450 | 2260 | 3600 | 2730 | 834 | | MIN | 170 | 130 | 96 | 86 | 2302
82.2
86
80
4570
.12 | 74 | | 260 | 332 | 461 | 588 | 372 | | AC-FT
CFSM | 22970
.55 | 8490
.21 | 6730 | 5570 | 4570 | 4700 | 7010
.17 | 39040
.94 | 51150
1.27 | 67120
1.61 | 55540
1.33 | 34560
.86 | | IN. | .64 | .24 | .19 | .15 | .13 | .13 | .19 | 1.08 | 1.42 | 1.86 | 1.54 | .96 | | | | CTATTCTTCC | OF MONT | UIV MEAN I | NTN EOD W | .TED VE | DC 1007 _ | 2001 PV | MATED V | EAR (WY) # | | | | | | | OF MONI | DDI MEAN I | MIA FOR W | HIEK IEM | IKS 1997 - | 2001, BI | WAIER I | EAR (WI) # | | | | MEAN | 218 | 105
143
2001 | 77.3 | 54.9 | 42.8 | 39.6 | 109 | 830 | 991 | 735 | 983 | 596 | | MAX | 374
2001 | 143 | 109
2001 | 90.6
2001 | 82.2
2001 | 76.4
2001 | 155 | 1262
2000 | 1993
2000 | 1092
2001 | 1651 | 985
2000 | | (WY)
MIN | 149 | 2001
90.1 | 2001
57 5 | 28.9 | 13.6 | 10.5 | 1998
73.1 | 635 | 468 | 419 | 2000
590 | 421 | | (WY) | 2000 | 1999 | 2001
57.5
1999 | 1999 | 1999 | 1999 | 2000 | 2001 | 1998 | 1999 | 1999 | 1999 | | SUMMARY | STATIST: | ICS | FOR 2 | 000 CALENI | DAR YEAR | FO | R 2001 WAT | ER YEAR | | WATER YEAR | S 1997 | - 2001 # | | ANNUAL | TOTAL | | | 227564 | | | 155001 | | | | | | | ANNUAL | MEAN | | | 622 | | | 425 | | | 406 | | | | | ANNUAL I | | | | | | | | | 595 | | 2000 | | | ANNUAL M | | | 7500 | Aug 14 | | 3600 | Jul 30 | | 272
7500 | λιια | 1999
14 2000 | | | DAILY ME | | | a29 | Feb 18 | | b74 | Mar 22 | | c10 | | 8 1999 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 29 | Feb 18 | | 74 | Mar 22 | | 10 | Mar | 8 1999 | | | PEAK FL | | | | | | 4120 | Jul 30 | | 10100 | | 14 2000 | | | PEAK STAR | | | 451400 | | | 15.86
307400 | 5 Jul 30 | | 19.49
294400 | Aug | 14 2000 | | | RUNOFF (| | | .92 | ? | | .63 | 3 | | .60 | | | | ANNUAL | RUNOFF (| INCHES) | | 12.50 | | | 8.52 | 2 | | 8.16 | | | | | CENT EXCE | | | 1630 | | | 929 | | | 981 | | | | | CENT EXCE | | | 195
31 | | | 220
78 | | | 180
33 | | | | > 0 1 LIC | | | | <i>3</i> ± | | | , 0 | | | 33 | | | See Period of Record; partial years used in monthly statistics From Feb. 18 to Mar. 1 From Mar. 22 to Apr. 9 From Mar 8 to 24, 1999 Estimated ### 15477761 UPPER WEST CREEK NEAR BIG DELTA LOCATION.--Lat $64^{\circ}25'01''$, long $144^{\circ}50'55''$, in SW $^{1}/_{4}$ sec.6, T.6 S., R.15 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 5.1 mi upstream from mouth, 3.4 mi southeast of Pogo Mine Camp site, and 31 mi northeast of Big Delta. DRAINAGE AREA.--1.64 mi². PERIOD OF RECORD. -- October 1999 to current year. ${\tt GAGE.--Water-stage\ recorder.\ Elevation\ of\ gage\ is\ 1,900\ ft\ above\ sea\ level,\ from\ topographic\ map.}$ REMARKS.--Records fair except for estimated daily discharges, which are poor. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN V | | ER 2000 T | O SEPTEMB | ER 2001 | | | |--|---|--|--|---|--|--|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3 | 2.3
2.2
2.2 | e1.6
e1.6 | e.98
e.96
e.92 | e.52
e.50
e.50 | e.38
e.36
e.36 | e.28
e.28
e.28 | e.24
e.24
e.24 | .44
.36
.35 | .38
.37
.37 | .72
.76
.75 | 1.6
1.4
1.4 | 1.2
1.3
1.2 | | 4
5 | 2.2
e2.1 | e1.5
e1.5 | e.90
e.86 | e.50
e.48 | e.36
e.34 | e.28
e.28 | e.24
e.24 | .33 | .42
.52 | .74
.75 | 1.3 | 1.2 | | 6
7
8
9 | e2.1
e2.1
e2.1
e2.0
e2.0 | e1.5
e1.5
e1.4
e1.4 | | e.48
e.48
e.48 | e.34
e.34
e.34 | e.28
e.28
e.28 | e.24
e.24
e.24
e.24 | .38
.36
.43
.45 | .47
.50
.61 | .82
1.0
1.2
1.0 | 1.4
1.4
1.5
1.5 | 1.2
1.1
1.1 | | 10
11 | e2.0
e1.9 | e1.4
e1.4 | e.76
e.74 | e.46
e.46 | e.32
e.32 | e.28
e.28 | e.24
e.24 | .42 | .49 | .91 | 1.5 | 1.1 | | 12
13
14
15 | e1.9
e1.9
e1.9
e1.9 | e1.4
e1.4
e1.4
e1.4 | e.72
e.72
e.70
e.68 | e.46
e.44
e.44 | e.32
e.32
e.32
e.32 | e.26
e.26
e.26
e.26 | e.24
e.24
e.24
e.26 | . 42
. 48
. 48
. 47 | .50
.51
.72
.73 | .87
.87
.87
.87 | 1.5
1.5
1.5
1.5 | 1.1
1.1
1.0
1.0 | | 16
17
18
19
20 | e1.9
e1.9
e1.9
e1.9 | | e.66
e.66
e.64
e.62
e.62 | e.44
e.44
e.42
e.42
e.42 | e.32
e.30
e.30
e.30
e.30 | e.26
e.26
e.26
e.26
e.26 | e.26
e.26
e.26
e.26
e.26 | .56
.50
.45
.53 | .61
.57
.56
.56 | .84
.83
.83
.83 | 1.5
1.5
1.4
1.4 | .99
.96
.96
.95 | | 21
22
23
24
25 | e1.9
e1.8
e1.8
e1.8 | e1.3
e1.2
e1.2
e1.2
e1.1 | e.60
e.60
e.58
e.58
e.56 | e.42
e.42
e.42
e.42
e.40 | e.30
e.30
e.30
e.30
e.28 | e.26
e.26
e.26
e.24
e.24 | e.28
e.28
e.30
e.32
e.36 | .84
.81
1.2
.77 | .56
.58
.59
.60 | .88
.89
.92
1.2
1.1 | 1.4
1.4
1.3
1.4 | .92
.91
.91
.90 | | 26
27
28
29
30
31 | e1.7
e1.7
e1.7
e1.7
e1.7 | e1.1
e1.1
e1.1
e1.0
e1.0 | e.54
e.54
e.54
e.52 | e.40
e.40
e.40
e.40
e.38
e.38 | e.28
e.28
e.28 | e.24
e.24
e.24
e.24
e.24 | e.40
.54
.52
.55
.53 | .48
.42
e.42
e.40
e.40
e.38 | .62
.68
.68
.68 | 1.1
1.2
1.2
1.6
1.6 | 1.3
1.3
1.3
1.3
1.3 | .87
.87
.86
.85
.83 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 59.6
1.92
2.3
1.7
1.9
118
1.17 | 39.8
1.33
1.6
1.0
1.3
79
.81 | 21.52
.69
.98
.52
.66
43
.42 | 13.68
.44
.52
.38
.44
.27
.27 | 8.92
.32
.38
.28
.32
.18
.19 | 8.12
.26
.28
.24
.26
.16
.16 | 9.00
.30
.55
.24
.26
.18
.18 | 15.42
.50
1.2
.33
.44
.31
.30 | 16.77
.56
.73
.37
.56
.33
.34 | 30.50
.98
1.6
.72
.88
60
.60 | 43.6
1.41
1.6
1.2
1.4
86
.86 | 30.60
1.02
1.3
.83
1.0
61
.62 | | | | STATISTI | CS OF MONT | THLY MEAN | DATA FOR | WATER Y | EARS 2000 | - 2001, 1 | BY WATER | YEAR (WY) | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.24
1.92
2001
.55
2000 | .87
1.33
2001
.41
2000 | .52
.69
2001
.34
2000 | .36
.44
2001
.28
2000 | .28
.32
2001
.25
2000 | .25
.26
2001
.23
2000 | .28
.30
2001
.25
2000 | .75
1.00
2000
.50
2001 | 1.11
1.67
2000
.56
2001 | 1.22
1.45
2000
.98
2001 | 2.12
2.83
2000
1.41
2001 | 2.04
3.06
2000
1.02
2001 | | SUMMARY | STATISTI | :CS | FOR 2 | 000 CALENI | AR YEAR | FC | OR 2001 WA | ATER YEAR | | WATER YE | ARS 2000 | - 2001 | | LOWEST | MEAN
'ANNUAL M
ANNUAL ME | AN | | 457.32
1.25 | Aug 30 | | 297.53
.82 .92
1.03 .2000
.82 .2001 | | | | | | | LOWEST
ANNUAL
MAXIMUM
MAXIMUM | DAILY MEA
SEVEN-DAY
PEAK FLO
PEAK STA | AN
MINIMUM
W
AGE | | a.23
.23 | b.24 Mar 24
.24 Mar 24
c1.8 Jul 29
c20.57 Jul 29
c20.69 Oct 1
590 | | | | .82 2001
4.6 Aug 30 2000
a.23 Mar 4 2000
.23 Mar 4 2000
5.0 Aug 30 2000
20.98 Aug 30 2000
20.98 Aug 30 2000
668 | | | | | ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC | RUNOFF (C
RUNOFF (I
ENT EXCEE
ENT EXCEE
ENT EXCEE | CFSM)
CNCHES)
CDS
CDS | | .76
10.37
2.7
1.2
.23 | | | .50
6.75
1.6
.62 | 2 | | .56
7.63
1.9
.54 | | | From Mar. 4 to Apr. 9 From Mar. 24 to Apr. 14 Maximum discharge 2.3 ${\rm ft}^3/{\rm s}$, Oct.1, gage height 20.69 ft, occurred on falling stage following peak of Aug. 30, 2000; maximum independent peak discharge, 1.8 ${\rm ft}^3/{\rm s}$, gage height 20.57 ft, Jul. 29 Estimated ### 15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA LOCATION.--Lat $64^{\circ}23'22''$, long $144^{\circ}46'40''$, in $SW^{1}/_{4}$ sec.16, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on
right bank, 2.5 miles upstream from mouth, 6.3 miles southeast of Pogo Mine Camp site, and 35 miles northeast of Big Delta. DRAINAGE AREA. -- 6.05 mi². PERIOD OF RECORD. -- May, 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1650 ft above sea level, from topographic map. EXTREMES FOR CURRENT YEAR. -- Water year 2000--Maximum discharge for period May through September, 34 ${ m ft}^3/{ m s}$, May 22, 2000 gage height 21.17 ft; minimum not determined, occurs during winter; minumum observed outside period of record, 0.58 ${ m ft}^3/{ m s}$ March 21, 2000 result of discharge measurement. REMARKS.--Records good except for estimated daily discharges, which are poor. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | DAIL | TI MEDIA AL | CHORP | | | | | | |-------|-----|-----|-----|------|------|-------------|-------|--------------|------------|------|--------------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | e3.2 | 9.7 | 2.0 | e2.4 | 10 | | 2 | | | | | | | | e3.2 | 8.2 | 2.0 | e2.4 | 11 | | 3 | | | | | | | | e5.2 | 8.2
9.3 | 2.0 | e2.3 | 11 | | | | | | | | | | e5.2
e6.8 | | 2.4 | e2.3
e2.2 | 10 | | 4 | | | | | | | | | 8.6 | | | | | 5 | | | | | | | | e5.0 | 6.7 | 2.4 | e2.2 | 9.6 | | 6 | | | | | | | | e3.4 | 5.5 | 2.4 | e2.2 | 9.5 | | 7 | | | | | | | | e6.0 | 4.8 | 2.2 | e2.3 | 9.3 | | 8 | | | | | | | | e9.0 | 4.0 | 2.1 | e2.3 | 9.5 | | 9 | | | | | | | | e7.0 | 3.7 | 2.1 | e2.4 | 9.2 | | 10 | | | | | | | | e5.0 | 3.8 | 2.4 | e2.6 | 9.2 | | 11 | | | | | | | | e3.7 | 3.6 | 3.8 | e3.8 | 9.6 | | 12 | | | | | | | | e2.8 | 3.1 | 3.4 | e9.0 | 9.6 | | 13 | | | | | | | | 3.8 | 2.8 | 2.8 | e22 | 9.5 | | 14 | | | | | | | | 3.7 | 2.5 | 2.5 | e16 | 9.5 | | 15 | | | | | | | | 3.4 | 2.4 | 2.5 | e10 | 9.8 | | 13 | | | | | | | | 3.4 | 2.4 | 2.4 | EIZ | 9.0 | | 16 | | | | | | | | 4.1 | 2.5 | 2.3 | 9.6 | 9.6 | | 17 | | | | | | | | 5.5 | 2.4 | 2.4 | 8.1 | 9.5 | | 18 | | | | | | | | 8.3 | 2.5 | 2.4 | 8.8 | 9.3 | | 19 | | | | | | | | 9.1 | 3.0 | 2.8 | 11 | 9.1 | | 20 | | | | | | | | 16 | 2.6 | 3.3 | 9.7 | 8.9 | | 21 | | | | | | 10.6 | | 17 | 2.4 | e2.9 | 8.8 | 8.8 | | 22 | | | | | | | | 21 | 3.6 | e2.6 | 9.8 | 8.9 | | 23 | | | | | | | | 17 | 3.9 | e2.8 | 9.9 | 8.9 | | 24 | | | | | | | | 27 | 2.9 | e3.0 | 9.1 | 8.7 | | 25 | | | | | | | | 21 | 2.5 | e2.8 | 9.9 | 9.1 | | 0.5 | | | | ±0 = | | | | - 4 | 0.4 | 0.5 | 1.0 | 1.0 | | 26 | | | | ‡0.7 | | | | 14 | 2.4 | e2.7 | 12 | 10 | | 27 | | | | | | | | 10 | 2.4 | e2.6 | 10 | 9.5 | | 28 | | | | | | | | 7.6 | 2.4 | e2.7 | 9.2 | 9.0 | | 29 | | | | | | | | 8.1 | 2.3 | e2.5 | 8.8 | 8.6 | | 30 | | | | | | | | 9.1 | 2.1 | e2.5 | 11 | 8.4 | | 31 | | | | | | | | 10 | | e2.4 | 11 | | | TOTAL | | | | | | | | 276.8 | 118.6 | 80.1 | 242.7 | 282.6 | | MEAN | | | | | | | | 8.93 | 3.95 | 2.58 | 7.83 | 9.42 | | MAX | | | | | | | | 27 | 9.7 | 3.8 | 22 | 11 | | MIN | | | | | | | | 2.8 | 2.1 | 2.0 | 2.2 | 8.4 | | MED | | | | | | | | 7.0 | 3.0 | 2.5 | 9.0 | 9.5 | | AC-FT | | | | | | | | 549 | 235 | 159 | 481 | 561 | | CFSM | | | | | | | | 1.48 | .65 | .43 | 1.29 | 1.56 | | IN. | | | | | | | | 1.70 | .73 | .49 | 1.49 | 1.74 | | | | | | | | | | 1 | | | | | [‡] Result of discharge measurement e Estimated ## 15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|---|--|--
--|---|--|--
---|--|--|--| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 7.9
7.1
e6.6
e6.4
e6.4 | e5.2
4.6
4.6
4.6
4.4 | 3.2
3.2
3.0
2.9
2.9 | 2.3
2.3
2.3
2.2
2.2 | 1.7
1.7
1.7
1.8
1.7 | 1.6
1.6
1.6
1.6 | 1.4
1.4
1.3
1.3 | 3.5
2.8
2.5
2.4
2.3 | 2.6
2.5
2.4
2.8
5.0 | e4.2
e4.0
e3.4
e3.0
e3.0 | 7.7
6.3
5.8
5.4
5.1 | 4.3
4.6
4.7
4.6
e4.4 | | | e6.2
e6.2
e6.0
e6.0
e5.8 | 4.2
4.1
4.1
4.1
4.1 | 3.0
3.1
3.1
3.2
3.1 | 2.2
2.1
2.1
2.1
2.1 | 1.7
1.7
1.7
1.7 | 1.5
1.5
1.5
1.5 | 1.4
1.4
1.4
1.4 | 2.8
2.5
2.5
3.1
3.1 | 3.6
3.5
5.1
3.8
3.2 | e3.6
e6.6
e8.2
e5.8
e4.6 | 4.9
4.7
4.5
4.4 | e4.1
e4.1
e4.0
e3.9
e3.8 | | | e5.6
e5.4
e5.4
e5.6
e5.8 | 4.1
4.0
4.0
3.9
3.9 | 2.9
2.8
2.7
2.7
2.7 | 2.1
2.0
2.0
2.0
1.9 | 1.6
1.6
1.7
1.7 | 1.5
1.5
1.5
1.5 | 1.4
1.4
1.4
1.4 | 3.1
3.4
4.0
4.3
5.0 | 2.8
2.6
2.6
2.8
3.3 | e4.2
e4.0
e3.8
e3.4
e3.2 | 4.5
4.8
4.7
4.7 | e3.8
e3.7
e3.6
e3.6
e3.6 | | | e6.0
e6.2
e6.4
e6.4
e6.2 | 3.9
3.8
3.7
3.7 | 2.5
2.4
2.4
2.4
2.4 | 2.0
2.0
2.0
2.0
2.1 | 1.7
1.7
1.7
1.7 | 1.5
1.5
1.6
1.5 | 1.4
1.4
1.4
1.4 | 5.1
4.8
5.0
5.6
6.8 | 2.8
2.5
2.4
2.3
2.2 | e3.0
e2.9
e2.8
e2.7
e2.8 | 4.7
4.6
4.5
4.5 | e3.6
e3.5
e3.5
e3.5
e3.5 | | | e6.2
e6.2
e6.0
e6.0
e5.8 | 3.6
3.6
3.5
3.5 | 2.5
2.5
2.4
2.3
2.2 | 2.0
2.0
2.0
2.0
1.9 | 1.6
1.6
1.6
1.7 | 1.5
1.5
1.5
1.4 | 1.7
2.7
3.3
3.1
3.2 | 7.5
7.3
12
8.0
5.0 | 2.2
2.1
2.1
2.0
e1.9 | e2.8
e2.8
e3.4
e6.2
5.6 | 4.4
4.3
4.5
4.8
4.7 | e3.4
e3.4
e3.3
e3.3
e3.2 | | | e5.8
e5.6
e5.6
e5.4
e5.4
e5.2 | 3.4
3.3
3.2
3.2
3.2 | 2.1
2.2
2.2
2.2
2.1
2.2 | 1.9
1.9
1.8
1.8
1.8 | 1.6
1.6
1.6
 | 1.4
1.4
1.3
1.4
1.4 | 3.7
3.9
3.7
4.0
3.9 | 3.9
3.6
3.2
2.8
2.7
2.7 | e1.9
e2.4
e2.8
e3.0
e4.0 | 5.1
5.8
6.2
7.8
8.9
8.2 | 4.6
4.5
4.5
4.4
4.4 | 3.1
3.1
3.0
3.0
3.1 | | | 7.9
5.2 | 5.2
3.2 | 81.5
2.63
3.2
2.1
2.5
162
.43 | 62.9
2.03
2.3
1.8
2.0
125
.34 | 46.9
1.68
1.8
1.6
1.7
93
.28 | 46.1
1.49
1.6
1.3
1.5
91
.25 | 60.9
2.03
4.0
1.3
1.4
121
.34 | 133.3
4.30
12
2.3
3.5
264
.71 | 85.2
2.84
5.1
1.9
2.6
169
.47 | 142.0
4.58
8.9
2.7
4.0
282
.76
.87 | 148.6
4.79
7.7
4.3
4.6
295
.79 | 110.3
3.68
4.7
3.0
3.6
219
.61
.68 | | | | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | WATER YE | ARS 2000 | - 2001, B | Y WATER | YEAR (WY)# | : | | | | 6.03
6.03
2001
6.03
2001 | 3.89
3.89
2001
3.89
2001 | 2.63
2.63
2001
2.63
2001 | 2.03
2.03
2001
2.03
2001 | 1.68
1.68
2001
1.68
2001 | 1.49
1.49
2001
1.49
2001 | 2.03
2.03
2001
2.03
2001 | 6.61
8.93
2000
4.30
2001 | 3.40
3.95
2000
2.84
2001 | 3.58
4.58
2001
2.58
2000 | 6.31
7.83
2000
4.79
2001 | 6.55
9.42
2000
3.68
2001 | | | STATIST | ICS | | | FOR 20 | 01 WATER | YEAR | | | WATER YE | ARS 2000 | - 2001# | | | MEAN ANNUAL M ANNUAL M DAILY ME DAILY ME SEVEN-DAY PEAK FLL ANEOUS L RUNOFF (RUNOFF (RUNOFF (ENT EXCEL ENT EXCEL | EAN EAN AN Y MINIMUM DW AGE DW FLOW AC-FT) CFSM) INCHES) EDS | | | 1
2
242 | 3.35
.2 M.
11.3 M.
1.3 M.
4 M.
10.47 M.
10.47 M.
10.55
10.55 | | 3.35
3.35
27
a1.3
1.3
34
21.17
c0.58
2420 | May 2
Mar 2
Mar 3
May 2
May 2 | 2001
2001
24 2000
28 2001
30 2001
22 2000
22 2000
21 2000 | | | | | | 7.9 7.1 e6.6 e6.4 e6.4 e6.4 e6.4 e6.2 e6.2 e6.0 e6.0 e5.8 e5.6 e5.4 e5.6 e5.4 e6.2 e6.2 e6.0 e6.0 e5.8 e5.66 e5.4 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1 | 7.9 e5.2 7.1 4.6 e6.6 4.6 e6.6 4.6 e6.4 4.4 e6.2 4.2 e6.2 4.1 e6.0 4.1 e5.8 4.1 e5.8 4.1 e5.4 4.0 e5.4 4.0 e5.4 4.0 e5.6 3.9 e5.8 3.9 e6.0 3.9 e6.2 3.8 e6.4 3.7 e6.2 3.6 e6.2 3.6 e6.2 3.6 e6.3 3.7 e6.2 3.6 e6.4 3.7 e6.2 3.7 e7.9 6.2 3.6 e8.9 3.9 | 7.9 e5.2 3.2 7.1 4.6 3.2 e6.6 4.6 3.0 e6.4 4.6 2.9 e6.4 4.4 2.9 e6.2 4.1 3.1 e6.0 4.1 3.1 e6.0 4.1 3.1 e6.0 4.1 3.1 e5.6 4.1 2.9 e5.4 4.0 2.8 e5.4 4.0 2.7 e5.6 3.9 2.7 e5.8 3.9 2.7 e5.8 3.9 2.7 e6.0 3.9 2.7 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.6 2.5 e6.0 3.6 2.5 e6.0 3.6 2.5 e6.0 3.6 2.5 e5.8 3.9 2.7 e6.1 3.7 2.4 e6.2 3.6 2.5 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.6 2.5 e6.3 3.9 2.7 e6.3 3.9 2.7 e7.9 5.2 3.2 e8.8 3.4 2.1 e8.8 1.6 8 8 8.5 e8.9 2.7 e8.8 3.9 2.7 e9.9 3.9 2.9 e9.9 3.9 2.9 e1.0 3.8 2.1 e5.6 3.3 2.2 e5.8 3.9 2.7 e5.8 3.9 2.7 e6.0 3.8 2.4 e6.0 3.5 2.3 e5.8 3.5 2.2 e5.8 3.4 2.1 e5.6 3.3 2.2 e5.6 3.2 2.2 e5.4 3.2 2.2 e5.4 3.2 2.2 e5.5 3.2 2.2 e5.5 3.2 2.2 e5.4 3.2 2.2 e5.5 4 3.2 2.2 e5.5 5.2 3.2 2.1 e6.0 3.9 2.5 synthylogolubration of the complex th | 7.9 e5.2 3.2 2.3 7.1 4.6 3.2 2.3 e6.6 4.6 3.0 2.3 e6.6 4.6 2.9 2.2 e6.4 4.6 2.9 2.2 e6.4 4.4 2.9 2.2 e6.2 4.1 3.1 2.1 e6.0 4.1 3.1 2.1 e5.8 4.1 3.1 2.1 e5.8 4.1 3.1 2.1 e5.6 4.1 2.9 2.1 e5.4 4.0 2.8 2.0 e5.4 4.0 2.8 2.0 e5.4 4.0 2.7 2.0 e5.8 3.9 2.7 1.9 e6.0 3.9 2.7 2.0 e6.2 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.9 2.7 1.9 e6.0 3.6 2.5 2.0 e6.1 3.7 2.4 2.0 e6.2 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.9 2.7 3.9 e7.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2 | OCT NOV DEC JAN FEB 7.9 e5.2 3.2 2.3 1.7 7.1 4.6 3.2 2.3 1.7 e6.6 4.6 3.0 2.3 1.7 e6.4 4.6 2.9 2.2 1.8 e6.4 4.4 2.9 2.2 1.7 e6.2 4.2 3.0 2.2 1.7 e6.2 4.1 3.1 2.1 1.7 e6.0 4.1 3.1
2.1 1.7 e6.0 4.1 3.2 2.1 1.7 e5.8 4.1 3.1 2.1 1.7 e5.6 4.1 2.9 2.1 1.7 e5.6 3.9 2.7 2.0 1.7 e5.8 3.9 2.7 2.0 1.7 e6.0 3.9 2.5 2.0 1.7 e6.2 3.8 2.4 2.0 1.7 e6.4 3.7 2.4 2.0 1.7 e6.2 3.8 2.4 2.0 1.7 e6.4 3.7 2.4 2.0 1.7 e6.2 3.6 2.5 2.0 1.7 e6.2 3.6 2.5 2.0 1.6 e6.2 3.7 2.4 2.1 1.7 e6.2 3.6 2.5 2.0 1.6 e6.2 3.6 2.5 2.0 1.6 e6.2 3.6 2.5 2.0 1.6 e6.2 3.7 2.4 2.1 1.7 e6.8 3.9 2.7 2.9 1.9 e7.9 2.1 1.7 e8.8 3.4 2.1 1.9 1.6 e8.9 3.6 2.5 2.0 1.6 e8.1 3.5 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e7.9 5.2 3.2 2.1 1.8 1.6 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.8 3.8 2.4 2.0 1.7 e6.0 3.8 9 2.63 2.03 1.68 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.4 3.2 2.1 1.8 1.6 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.4 3.2 2.1 1.8 3.3 1.68 e5.4 3.3 1.68 e5.4 3.3 1.68 e5.5 2.0 1.7 2.0 e5.8 3.8 2.0 3.0 3.0 3.0 3.0 3.0 3 | OCT NOV DEC JAN FEB MAR 7.9 e5.2 3.2 2.3 1.7 1.6 e6.6 4.6 3.0 2.3 1.7 1.6 e6.6 4.6 3.0 2.3 1.7 1.6 e6.4 4.6 2.9 2.2 1.8 1.6 e6.4 4.4 2.9 2.2 1.7 1.6 e6.2 4.2 3.0 2.2 1.7 1.5 e6.0 4.1 3.1 2.1 1.7 1.5 e6.0 4.1 3.1 2.1 1.7 1.5 e5.8 4.1 3.1 2.1 1.7 1.5 e5.8 4.1 3.1 2.1 1.7 1.5 e5.6 4.1 2.9 2.1 1.7 1.5 e5.6 3.9 2.7 2.0 1.7 1.5 e5.6 3.9 2.7 2.0 1.7 1.5 e6.0 3.9 2.7 2.0 1.7 1.5 e6.2 3.8 2.4 2.0 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.3 3.9 2.7 2.0 1.7 1.5 e6.6 3.9 2.7 1.9 1.7 1.5 e6.3 3.9 2.7 1.9 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.5 3.8 2.4 2.0 1.7 1.5 e6.6 3.3 2.2 2.1 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.6 2.5 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.2 2.2 1.9 1.7 1.5 e6.0 3.9 2.7 2.4 2.0 1.7 1.5 e6.0 3.9 2.7 2.4 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.2 2.2 1.9 1.7 1.5 e7.0 2.0 1.7 1.5 e7.0 2.0 1.7 1.5 e8.8 3.4 2.1 1.9 1.6 1.4 e8.4 3.2 2.2 1.8 1.6 e8.3 3.4 2.1 1.9 1.6 1.4 e8.5 3.2 2.2 1.8 1.6 e8.4 3.2 2.2 1.8 1.6 e8.3 3.8 2.6 2.0 3 1.68 1.49 e8.4 3.2 2.2 1.8 1.6 1.3 e8.4 3.2 2.1 1.8 1.6 1.3 e8.5 4 3.2 2.1 1.8 1.6 1.3 e8.4 1.4 Many 1.3 1.8 1.6 e8.8 116.8 81.5 62.9 46.9 46.1 e8.8 116.8 81.5 62.9 46.9 46.1 e8.9 3.8 2.6 3 2.0 3 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.0 3 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.0 3 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN BATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY | OCT NOV DEC JAN FEB MAR APR 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 7.1 4.6 3.2 2.3 1.7 1.6 1.4 e6.6 4.6 4.6 3.0 2.3 1.7 1.6 1.4 e6.6 4.4 6.6 2.9 2.2 1.8 1.6 1.3 e6.4 4.4 2.9 2.2 1.7 1.6 1.3 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 e6.0 4.1 3.2 2.1 1.7 1.5 1.4 e6.0 3.9 2.7 2.0 1.7 1.5 1.4 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 e5.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.6 1.5 1.4 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 e6.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 e6.3 3.9 2.7 1.9 1.7 1.5 1.4 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 e6.5 3.9 2.7 1.9 1.7 1.5 1.4 e6.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 e6.3 3.7 2.4 2.0 1.7 1.5 1.4 e6.6 3.9 2.7 2.9 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 1.7 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.2 3.6 2.5 2.0 1.6 1.5 3.3 e6.3 3.8 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.9 2.7 2.4 2.1 1.7 1.5 1.4 e6.0 3.9 2.5 2.3 2.0 1.7 1.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.2 3.7 2.4 2.1 1.7 1.5 1.4 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.6 2.5 2.0 1.6 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.0 3.8 2.2 2.1 1.8 1.6 1.4 3.7 e5.6 3.3 3.8 2.2 1.9 1.6 1.4 4.0 2.0 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.8 3.8 2.6 3 2.0 3 1.68 1.49 2.0 3 e6.0 3.8 8 2.6 3 2.0 3 1.68 1.49 2.0 3 e6.0 3 3.8 9 2.6 3 2.0 3 1.68 1.49 2.0 3 e7.9 5.2 3.2 2.1 1.8 1.6 1.9 3.8 3.8 ENDALLY MEAN 2 | OCT NOV DEC JAN FEB MAR APR MAY 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 3.5 6.6 4.6 3.2 2.3 1.7 1.6 1.4 2.8 6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.4 6.6.4 4.6 2.9 2.2 1.8 1.6 1.3 2.4 6.6.4 4.6 2.9 2.2 1.7 1.6 1.3 2.4 6.6.2 4.2 3.0 2.2 1.7 1.6 1.3 2.4 6.6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.7 1.5 1.4 2.5 6.0 4.0 2.8 2.0 1.6 1.5 1.4 3.1 6.6 4 0.0 2.7 2.0 1.7 1.5 1.4 3.1 6.6 4 0.0 2.7 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.7 1.9 1.7 1.5 1.4 4.0 6.6 3.9 2.7 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.7 2.0 1.7 1.5 1.4 5.0 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.5 2.0 1.7 1.5 1.4 5.0 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 3.5 2.2 1.7 1.5 1.4 4.8 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.3 2.2 2.1 1.9 1.7 1.5 1.4 4.0 6.8 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.9 3.8 3.9 2.7 1.9 1.9 1.7 1.5 1.4 2.5 6.0 3.6 2.4 2.0 1.7 1.5 1.4 4.8 6.6 3.2 2.2 1.8 1.6 1.3 3.7 3.9 6.0 3.6 2.4 2.0 1.7 1.5 1.4 4.0 6.8 6.0 3.6 2.4 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.8 9 2.6 2.2 1.8 1.6 1.3 3.7 3.9 6.0 3.8 9 2.6 2.2 1.8 1.6 1.3 3.7 3.9 6.6 3.2 2.2 1.8 1.6 1.3 3.7 3.9 6.6 3.3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 | OCT NOV DEC JAN FEB MAR APR MAY JUN 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 3.5 2.6 7.1 4.6 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e6.4 4.6 3.0 2.2 1.7 1.6 1.3 2.5 2.4 e6.4 4.6 2.9 2.2 1.8 1.6 1.3 2.5 2.4 e6.4 4.1 2.9 2.1 1.7 1.5 1.4 2.8 3.6 e6.2 4.2 3.0 2.2 1.7 1.5 1.4 2.5 3.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e5.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 2.5 3.5 e5.6 3.9 2.7 2.0 1.6 1.5 1.4 3.1 2.8 e5.6 4.0 2.8 2.0 1.6 1.5 1.4 2.5 3.5 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.1 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 3.4 2.6 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.0 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.1 3.8 2.4 2.0 1.6 1.5 1.4 4.3 2.8 e6.8 4 2.0 3.0 2.1 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 1.9 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 1.9 1.7 1.5 1.4 4.3 2.8 e6.9 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.1 3.8 2.4 2.0 1.7 1.5 1.4 4.3 2.8 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.3 2.8 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.5 3.8 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.6 3.8 2.1 1.7 1.5 1.4 4.8 2.2 e6.6 3.8 2.1 1.7 1.5 1.4 4.8 2.2 e6.7 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.8 3.9 2.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 2.1 e6.0 3.6 2.4 2.0 1.7 1.5 1.5 1.4 4.8 2.2 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 2.1 e6.0 3.6 2.4 2.0 1.7 1.5 1.4 3.9 3.6 62.4 e6.0 3.8 2.2 2.2 1.8 1.7 1.9 1.6 1.4 3.9 3.9 2.9 e8.8 3.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1 | OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL 17.9 e5.2 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e4.2 7.1 4.6 3.0 2.3 1.7 1.6 1.4 2.8 2.5 e4.2 6.6 6.4 4.6 2.9 2.3 1.7 1.6 1.3 2.5 2.4 e3.4 e6.6 4.4 6.2 2.9 2.2 1.8 1.6 1.3 2.5 2.4 e3.4 e6.6 4.4 6.2 2.9 2.2 1.7 1.5 1.5 1.3 2.5 2.4 e3.4 e6.4 4.4 2.9 2.2 1.7 1.5 1.5 1.4 2.8 3.0 6 e3.0 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.0 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.6 6.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.6 e6.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 5.6 e6.6 e6.0 4.1 3.2 2.1 1.7 1.5 1.4 3.1 3.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5 | OCT NOV DEC JAN FEB MAR AFR NAY JUN JUL AUG 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e4.0 6.3 e6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.5 2.6 e4.2 7.7 e6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.6 2.9 2.2 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.4 2.9 2.2 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.1 3.1 2.1 1.7 1.5 1.4 2.8 8.3 6.6 2.6 e4.9 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 8.3 6.6 2.6 4.9 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.5 e5.8 4.1 3.1 2.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.5 e5.6 4.1 2.9 2.7 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.7 1.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.8 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.1
3.2 2.8 e4.0 4.8 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.0 3.3 e3.2 e4.6 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 3.0 3.3 e3.2 e4.6 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.8 e3.0 4.7 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.8 e3.4 4.7 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.9 e3.4 e3.4 e3.4 e3.4 e6.6 e5.8 e3.9 2.7 2.9 e3.6 e3.8 e3.4 e3.4 e3.4 e6.6 e5.8 e3.9 2.7 1.9 e3.7 e3.8 e3.8 e3.4 e3.4 e3.8 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4 | | [#] See Period of Record; partial years used in monthly statistics a Mar. 28, 31, and Apr. 3-5 b Mar. 25 to Apr. 11 c Minimum observed outside period of record, result of discharge measurement e Estimated ## 15477770 SONORA CREEK NEAR BIG DELTA LOCATION.--Lat $64^{\circ}22'40''$, long $144^{\circ}48'41''$, in $SE^{1}/_{4}$ sec.20, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 1.2 mi upstream from mouth, 6.5 mi southeast of Pogo Mine Camp site, and 34 mi northeast of Big Delta. DRAINAGE AREA. -- 10.5 mi². PERIOD OF RECORD. -- August 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1450 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. REVISED RECORDS.--WDR AK-00-1: 1998 (M). REVISIONS.-- The estimated maximum discharge for the water year 2000 has been revised to 61 ft^3/s , May 22, 2000, gage height undetermined. Revised daily discharges, in cubic feet per second, for the period May 20 to 26, 2000 are given below. These figures supersede those published in reports for 2000. May 21...e31 May 22...e38 May 23...e31 May 24...e49 May 25...e38 May 26...e25 | Dai | 137 | Discharges | , | |-----|-----|------------|---| | | | | | May 20...e29 | May | 20629 | May 21 | | May 22. | 630 | May 23 | .esi me | ау 24с | a) May | 23630 | may . | 20623 | |------------------------------------|--|--|---|--|---|--|--|---|--|--|---|---| | May | NTH
2000
ar 2000 | TOTAL
507.9
1043.8 | | MEAN
16.4
5.91 | | AX
49
49 | MIN
4.9
.60 | 1 | C-FT
010
290 | CFSI
1.5 | б | IN
1.80
7.66 | | | | DISCHAF | RGE, CUBI | C FEET PE | | , WATER Y
LY MEAN V | EAR OCTOBI
ALUES | ER 2000 T | O SEPTEME | BER 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e13
e11
e11
e10
e10 | e6.2
e6.0
e5.8
e5.6
e5.4 | e2.9
e2.9
e2.8
e2.8 | e1.9
e1.9
e1.9
e1.9 | e1.5
e1.5
e1.5
e1.5 | e1.4
e1.4
e1.4
e1.4 | e1.2
e1.2
e1.2
e1.2 | e5.2
e4.4
e3.8
e3.6
e3.4 | 3.6
3.2
3.1
3.6
8.1 | 5.4
4.9
4.2
3.9
3.9 | 13
10
9.1
8.4
8.1 | 6.6
7.3
7.5
7.2
7.0 | | 6
7
8
9
10 | e9.8
e9.6
e9.6
e9.4
e9.2 | e5.4
e5.2
e5.0
e4.9
e4.7 | e2.7
e2.7
e2.6
e2.6
e2.5 | e1.8
e1.8
e1.8
e1.8 | e1.5
e1.5
e1.5
e1.5 | e1.3
e1.3
e1.3
e1.3 | e1.2
e1.2
e1.2
e1.2
e1.2 | e3.6
e3.8
e4.0
e4.3
e4.8 | 5.6
5.5
9.4
6.4
4.8 | 4.7
7.8
13
9.2
7.1 | 7.6
7.2
6.9
6.8
6.7 | 6.9
7.0
7.0
6.9
6.7 | | 11
12
13
14
15 | e9.0
e8.8
e8.6
e8.6
e8.8 | e4.6
e4.5
e4.4
e4.2
e4.1 | e2.5
e2.5
e2.4
e2.4 | e1.8
e1.7
e1.7
e1.7 | e1.5
e1.5
e1.4
e1.4 | e1.3
e1.3
e1.3
e1.3 | e1.2
e1.2
e1.2
e1.3
e1.3 | e5.4
e6.0
e6.8
8.3
9.3 | 4.0
3.6
3.5
3.8
4.8 | 6.0
5.4
5.3
5.2
4.9 | 6.9
7.6
7.2
7.2
7.0 | 6.7
6.6
6.3
6.1
6.0 | | 16
17
18
19
20 | e9.0
e9.2
e9.4
e9.2
e9.0 | e4.0
e3.9
e3.8
e3.7
e3.7 | e2.3
e2.3
e2.3
e2.2 | e1.7
e1.7
e1.7
e1.6
e1.6 | e1.4
e1.4
e1.4
e1.4 | e1.3
e1.3
e1.3
e1.3 | e1.3
e1.4
e1.5
e1.6
e1.9 | 9.2
8.9
8.9
10 | 3.8
3.3
3.0
2.9
2.8 | 4.7
4.4
4.3
4.2
4.5 | 7.2
7.0
6.9
6.8
6.6 | 6.0
5.9
5.7
5.7 | | 21
22
23
24
25 | e8.8
e8.6
e8.2
e8.0
e7.8 | e3.6
e3.5
e3.4
e3.4
e3.3 | e2.2
e2.2
e2.1
e2.1
e2.1 | e1.6
e1.6
e1.6
e1.6 | e1.4
e1.4
e1.4
e1.4 | e1.3
e1.3
e1.3
e1.3
e1.2 | e2.4
e3.0
e3.6
e4.6
e5.8 | 14
14
22
15
9.0 | 2.7
2.6
2.5
2.5
2.4 | 4.5
4.4
4.9
8.1
8.5 | 6.5
6.6
7.2
8.1
7.8 | 5.6
5.5
5.4
5.3 | | 26
27
28
29
30
31 | e7.6
e7.2
e7.0
e6.8
e6.6
e6.4 | e3.2
e3.1
e3.1
e3.0
e3.0 | e2.1
e2.0
e2.0
e2.0
e2.0
e2.0 | e1.6
e1.6
e1.6
e1.5
e1.5 | e1.4
e1.4
e1.4
 | e1.2
e1.2
e1.2
e1.2
e1.2
e1.2 | e6.2
e6.4
e6.6
e6.6
e6.4 | 6.4
5.5
4.9
4.1
4.0
3.9 | 2.4
3.3
3.7
3.8
5.1 | 7.6
8.9
9.8
13
15 | 7.6
7.3
7.1
6.8
6.7 | 5.1
5.0
4.9
5.0
5.0 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 275.2
8.88
13
6.4
546
.85 | 127.7
4.26
6.2
3.0
253
.41
.45 | 73.5
2.37
2.9
2.0
146
.23
.26 | 52.8
1.70
1.9
1.5
105
.16 | 40.4
1.44
1.5
1.4
80
.14 | 40.1
1.29
1.4
1.2
80
.12 | 77.5
2.58
6.6
1.2
154
.25 | 229.5
7.40
22
3.4
455
.71
.81 | 119.8
3.99
9.4
2.4
238
.38
.42 | 211.7
6.83
15
3.9
420
.65 | 232.6
7.50
13
6.5
461
.71
.82 | 183.2
6.11
7.5
4.9
363
.58 | | | | STATISTIC | S OF MONT | CHLY MEAN | DATA FOR | R WATER YE | EARS 1997 | - 2001, H | BY WATER | YEAR (WY)# | <u> </u> | | | MEAN
MAX
(WY)
MIN
(WY) | 3.81
8.88
2001
1.63
2000 | 2.15
4.26
2001
1.31
2000 | 1.36
2.37
2001
.98
1998 | 1.00
1.70
2001
.71
1998 | .82
1.44
2001
.56
1998 | .73
1.29
2001
.45
1998 | 1.61
2.58
2001
.91
1998 | 9.19
16.4
2000
4.27
1998 | 4.90
7.65
2000
1.74
1998 | 4.76
6.83
2001
3.11
1998 | 7.94
16.0
2000
4.29
1998 | 7.37
18.5
2000
2.69
1999 | [#] See Period of Record; partial years used in monthly statistics e Estimated ## 15477770 SONORA CREEK NEAR BIG DELTA--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR | YEAR | FOR 2001 WAT | ER YEAR | WATER YEARS | S 1997 - 2001# | |--------------------------|-------------------|-------|--------------|---------|-------------|----------------| | ANNUAL TOTAL | 2516.80 | | 1664.0 | | | | | ANNUAL MEAN | 6.88 | | 4.56 | | 3.88 | | | HIGHEST ANNUAL MEAN | | | | | 5.91 | 2000 | | LOWEST ANNUAL MEAN | | | | | 2.07 | 1998 | | HIGHEST DAILY MEAN | 49 Ma | ay 24 | 22 | May 23 | e49 | May 24 2000 | | LOWEST DAILY MEAN | a.60 Fe | eb 15 | b1.2 | Mar 25 | .40 | Mar 7 1998 | | ANNUAL SEVEN-DAY MINIMUM | .60 Fe | eb 15 | 1.2 | Mar 25 | .40 | Mar 7 1998 | | INSTANTANEOUS PEAK FLOW | | | 26 | May 23 | e61 | May 22 2000 | | INSTANTANEOUS PEAK STAGE | | | 29.05 | May 23 | С | - | | INSTANTANEOUS PEAK STAGE | | | d30.04 | Apr 21 | de33.4 | May 12 2000 | | ANNUAL RUNOFF (AC-FT) | 4990 | | 3300 | _ | 2810 | = | | ANNUAL RUNOFF (CFSM) | .65 | | .43 | | .37 | | | ANNUAL RUNOFF (INCHES) | 8.92 | | 5.90 | | 5.01 | | | 10 PERCENT EXCEEDS | 19 | | 8.9 | | 8.4 | | | 50 PERCENT EXCEEDS | 4.3 | | 3.8 | | 2.2 | | | 90 PERCENT EXCEEDS | .60 | | 1.3 | | .60 | | [#] See Period of Record; partial years used in monthly statistics a From Feb. 15 to Apr. 14 b From Mar. 25 to Apr. 13 c Not determined d Backwater from snow and ice e Estimated ### 15477790 CENTRAL CREEK NEAR BIG DELTA LOCATION.--Lat $64^{\circ}22'37''$, long $144^{\circ}56'35''$, in $SE^{1}/_{4}$ sec. 22, T. 6 S., R. 14 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 0.5 mi upstream from mouth, 5 mi south of Pogo Mine Camp site, and 31 mi northeast of Big Delta. DRAINAGE AREA.--115 mi². PERIOD OF RECORD. -- August 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1250 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. | | | DISCHAR | GE, CUBI | C FEET PEF | | WATER YE
MEAN VA | AR OCTOBER
LUES | 2000 TO | SEPTEMBI | ER 2001 | | | |---|---|---|--|--|---|---|---|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e90
e68
e66
e64
e62 | e36
e36
e35
e34
e33 | e23
e22
e22
e21
e21 | e12
e12
e12
e12
e12 | e9.6
e9.6
e9.6
e9.4
e9.4 | e7.8
e7.8
e7.8
e7.6
e7.6 | e6.4
e6.2
e6.2
e6.2
e6.2 | 36
32
29
25
23 |
e82
e84
85
81
172 | 174
143
143
85
68 | 282
187
145
126
117 | 66
66
82
82
77 | | 6
7
8
9
10 | e62
e60
e58
e52
e48 | e32
e31
e31
e31
e31 | e20
e20
e19
e19
e18 | e12
e12
e12
e12
e12 | e9.4
e9.2
e9.2
e9.2
e9.0 | e7.6
e7.6
e7.4
e7.4
e7.4 | e6.2
e6.2
e6.2
e6.2
e6.2 | 27
27
28
33
36 | 148
139
262
163
104 | 106
204
298
216
134 | 105
93
84
77
73 | 76
77
82
85
80 | | 11
12
13
14
15 | e44
e40
e38
e38
e40 | e32
e32
e32
e33
e33 | e18
e18
e17
e17
e17 | e12
e12
e12
e12
e12 | e9.0
e8.8
e8.8
e8.8
e8.6 | e7.4
e7.4
e7.2
e7.2
e7.2 | e6.4
e6.4
e6.6
e6.6
e6.8 | 33
34
47
61
85 | 75
62
56
78
116 | 95
73
61
59
82 | 70
80
85
82
77 | 75
71
67
63
61 | | 16
17
18
19
20 | e42
e42
e40
e39
e38 | e33
e32
e32
e32
e31 | e16
e16
e15
e15 | e11
e11
e11
e11 | e8.6
e8.6
e8.4
e8.4
e8.4 | e7.2
e7.0
e7.0
e7.0
e7.0 | e6.8
e7.0
e7.0
e7.2
e7.4 | 99
104
114
124
155 | 79
56
44
38
34 | 68
54
48
43
39 | 76
74
72
68
63 | 59
57
55
54
52 | | 21
22
23
24
25 | e38
e37
e37
e36
e36 | e31
e30
e30
e29
e28 | e15
e14
e14
e14
e13 | e11
e11
e11
e11 | e8.2
e8.2
e8.2
e8.2
e8.0 | e6.8
e6.8
e6.6
e6.6 | e7.8
e8.6
e11
e19
e26 | 190
228
348
311
193 | 30
27
25
23
21 | 40
44
47
92
141 | 60
59
59
102
103 | 52
50
49
47
46 | | 26
27
28
29
30
31 | e37
e38
e38
e36
e36 | e27
e26
e25
e24
e24 | e13
e13
e13
e13
e13 | e10
e10
e10
e10
e9.8
e9.8 | e8.0
e8.0
e8.0 | e6.6
e6.4
e6.4
e6.4
e6.4 | 30
32
34
37
37 | 142
131
152
106
80
81 | 21
145
184
111
184 | 127
120
151
307
382
310 | 105
98
91
79
73
70 | 45
43
41
40
41 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1437
46.4
90
36
2850
.40 | 926
30.9
36
24
1840
.27 | 518
16.7
23
13
1030
.15 | 349.6
11.3
12
9.8
693
.10 | 244.8
8.74
9.6
8.0
486
.08 | 220.0
7.10
7.8
6.4
436
.06 | 372.8
12.4
37
6.2
739
.11
.12 | 3114
100
348
23
6180
.87 | 2729
91.0
262
21
5410
.79
.88 | 3954
128
382
39
7840
1.11
1.28 | 2935
94.7
282
59
5820
.82
.95 | 1841
61.4
85
40
3650
.53
.60 | | | : | STATISTICS | OF MONT | HLY MEAN | DATA FOR I | WATER YE | ARS 1997 - | 2001, BY | WATER Y | EAR (WY)# | | | | MEAN
MAX
(WY)
MIN
(WY) | 24.0
46.4
2001
13.8
2000 | 11.6
30.9
2001
4.71
1999 | 5.42
16.7
2001
.75
1999 | 3.30
11.3
2001
.026
1999 | 2.41
8.74
2001
.000
1999 | 1.98
7.10
2001
.000
1999 | 10.1
12.4
2001
4.82
2000 | 138
241
2000
81.6
1998 | 88.6
170
2000
26.3
1998 | 73.0
128
2001
47.8
1999 | 114
237
2000
70.1
1998 | 73.2
170
2000
37.2
1999 | | SUMMARY | STATISTI | CS | FOR 2 | 2000 CALEN | DAR YEAR | FC | OR 2001 WAT | ER YEAR | | WATER YEAR | RS 1997 | - 2001# | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLC PEAK STA RUNOFF (A | AN AN AN AN MINIMUM W AGE AC-FT) FFSM) NCHES) EDS | | 29838.20
81.5
918
a.00
59180
.71
9.65
254
32 | Aug 13
Feb 18
Feb 18 | | b6.2
6.2
535 | Jul 29 | | 46.5
75.5
26.8
918
c.00
d1340
45.43
33690
.40
5.49
118
21 | Aug
Jan
Jan
Aug | 8 1999
8 1999
13 2000 | See Period of Record; partial years used in monthly statistics From Feb. 18 to Apr. 19 From Apr. 02 to Apr. 10 No flow during winter months most years From rating extended above 395 ft³/s Estimated Estimated #### 15478040 PHELAN CREEK NEAR PAXSON LOCATION.--Lat $63^{\circ}14'27''$, Long $145^{\circ}28'03''$, in SW $^{1}/_{4}$ sec. 28, T. 19 S., R. 12 E. (Mt.Hayes A-3 quad), Hydrologic Unit 19020102, on left bank about 1 mi downstream from terminus of Gulkana Glacier and 14.5 mi north of Paxson, Alaska. DRAINAGE AREA.--12.2 mi² PERIOD OF RECORD.--October 1966 to September 1978, annual maximums, water years 1984-85, October 1989 to current year. Water year 1994 not published, daily mean values of discharge are available from the computer files of the Alaska Science Center. Prior to October 1968, published as Gulkana Creek near Paxson. GAGE.--Water-stage recorder. Datum of gage is 3,690.67 ft above sea level. REMARKS.--Records fair except for the period July 20 to 31 and estimated daily discharges, which are poor. Large fluctuations from ice melt and alternate damming and storage release during melt season. Streamflow augmented by Gulkana Glacier and other glaciers that cover 7.5 mi² and 1.1 mi², respectively, of the drainage basin. A recording air temperature and precipitation gage at 4,860 ft above sea level, plus 3 snow and ice balance measurement sites, are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCH | ARGE, CUB. | IC FEET P | DAII | , WAIER I
LY MEAN V | | 5ER 2000 | IO SEPIEM | BER ZUUI | | | |-----------------------------------|--|--|---|--|---|--|--|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 23
22
21
20
20 | 10
10
9.8
9.8
9.6 | 5.9
5.8
5.9
5.9
6.0 | 4.5
4.5
4.4
4.3
4.3 | 3.3
3.1
3.0
3.0
3.1 | 2.6
2.5
2.4
2.4
2.5 | 2.2
2.2
2.2
2.2
2.1 | 2.7
2.6
2.5
2.4
2.5 | 72
66
56
65
78 | 264
276
244
226
253 | 338
277
250
238
210 | 101
100
87
67
53 | | 6
7
8
9
10 | 20
19
17
17 | 9.5
9.4
9.3
8.7
8.6 | 5.9
5.8
5.8
5.7
5.8 | 4.3
4.3
4.2
4.1
3.9 | 3.1
3.0
2.8
2.8
2.8 | 2.5
2.5
2.5
2.5
2.5 | 2.2
2.2
2.2
2.2
2.2 | 2.5
2.4
2.6
2.6
2.6 | 100
104
88
90
101 | 206
181
166
150
162 | 210
203
196
191
198 | 35
31
27
27
30 | | 11
12
13
14
15 | 16
15
15
14 | 8.5
8.1
8.1
8.0
7.7 | 5.7
5.5
5.3
5.4
5.4 | 4.0
4.1
3.9
3.9
4.0 | 2.8
2.8
2.9
e2.9 | 2.5
2.5
2.5
2.4
2.4 | 2.2
2.2
2.2
2.1
2.0 | 2.6
2.9
3.3
3.7
4.2 | 119
152
120
122
135 | 152
143
154
187
211 | 190
191
213
230
218 | 30
28
27
25
25 | | 16
17
18
19
20 | 14
14
13
13
e13 | 7.9
7.6
7.6
7.4
7.4 | 5.3
5.3
5.2
5.2
5.1 | 3.7
3.5
3.5
3.6
3.5 | 2.9
2.9
2.8
2.7
2.7 | 2.4
2.2
2.3
2.3
2.3 | 2.0
2.0
2.1
2.1
2.2 | 5.3
6.9
8.7
13
e21 | 128
135
140
139
193 | 221
223
267
259
368 | 249
224
224
208
215 | 26
36
42
39
42 | | 21
22
23
24
25 | e13
12
12
12
12 | 7.3
6.9
6.9
6.7
6.6 | 5.1
4.7
4.9
4.9 | 3.5
3.5
3.5
3.4
3.3 | 2.7
2.6
2.6
2.5
2.6 | 2.3
2.2
2.2
2.2
2.2 | 2.2
2.3
2.4
2.3
2.4 | e28
e23
e17
e14
13 | 244
222
253
252
225 | 477
616
598
573
505 | 282
269
202
198
185 | 38
27
25
23
21 | | 26
27
28
29
30
31 | 12
e11
e11
e11
11 | 6.3
6.6
6.5
6.3
6.0 | 4.8
4.7
4.7
4.7
4.4
4.5 | 3.4
3.3
3.3
3.3
3.3
3.4 | 2.8
2.8
2.6
 | 2.2
2.2
2.2
2.2
2.2
2.1 | 2.5
2.5
2.5
2.5
2.7 | 14
16
23
24
28
47 | 319
293
302
250
259 | 477
425
371
422
602
541 | 159
148
155
152
142
130 | 20
19
19
19
17 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 464
15.0
23
11
920
1.23
1.41 | 239.1
7.97
10
6.0
474
.65 | 164.0
5.29
6.0
4.4
325
.43 | 117.7
3.80
4.5
3.3
233
.31
.36 | 79.5
2.84
3.3
2.5
158
.23
.24 | 72.9
2.35
2.6
2.1
145
.19 | 67.3
2.24
2.7
2.0
133
.18 | 344.0
11.1
47
2.4
682
.91
1.05 | 4822
161
319
56
9560
13.2
14.70 | 9920
320
616
143
19680
26.2
30.25 | 6495
210
338
130
12880
17.2
19.80 | 1106
36.9
101
17
2190
3.02
3.37 | e Estimated #### 15478040 PHELAN CREEK NEAR PAXSON--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# 10.8 17.4 1996 2.70 4.50 1972 61.1 129 1995 2.25 16.1 48.2 251 411 MEAN 5.67 4.06 3.21 2.36 305 5.32 1996
9.57 6.87 4.00 247 460 MAX (WY) 1996 1996 1971 1971 1995 1969 1976 1972 MIN 5.55 2 50 2.00 1978 1.48 1.00 1967 1.00 1967 1.00 2.39 72.9 1975 181 73.6 14.3 1999 1978 1967 1967 1991 1992 1992 (WY) FOR 2000 CALENDAR YEAR SUMMARY STATISTICS FOR 2001 WATER YEAR WATER YEARS 1967 - 2001# ANNUAL TOTAL 20922.7 23891.5 ANNUAL MEAN HIGHEST ANNUAL MEAN 57.2 65.5 67.9 91.6 1976 LOWEST ANNUAL MEAN 43.0 1973 570 Aug 13 1997 Jan 16 1967 HIGHEST DAILY MEAN LOWEST DAILY MEAN Jul 17 616 Jul 22 1330 c1.0 a2.8 b2.0 Apr 15 Apr 12 ANNUAL SEVEN-DAY MINIMUM Apr 12 2.1 Apr 13 1.0 Jan 16 1967 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 897 97 Jul 22 9.32 Jul 22 Aug 13 1967 Aug 13 1967 2320 11.51 d10.78 May 21 df14.70 MAXIMUM PEAK STAGE Jun 1 1967 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 41500 47390 49180 5.37 72.85 5.56 75.60 4.69 63.80 ANNUAL RUNOFF (INCHES) 224 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 223 7.6 250 6.0 2.3 2.0 90 PERCENT EXCEEDS 3.0 See Period of Record From Apr. 12 to Apr. 28 From Apr. 15 to Apr. 17 For many days in the winter and spring during water years 1967, 1969, 1978, and 1991 Backwater from snow and Ice Estimated Occurred in early Jun. as a result of flow over ice #### 15484000 SALCHA RIVER NEAR SALCHAKET LOCATION.--Lat $64^{\circ}28'22''$, long $146^{\circ}55'26''$, in $NE^{1}/_{4}$ sec. 22, T. 5 S., R. 4 E. (Big Delta B-6 quad), Fairbanks North Star Borough, Hydrologic Unit 19040505, on right bank 0.2 mi upstream from bridge on Richardson Highway, 0.5 mi east of Sno-Shu Inn, 2 mi upstream from mouth, and 6 mi southeast of Salchaket. DRAINAGE AREA.--2,170 mi², approximately. PERIOD OF RECORD.--July 1909 to August 1910, published as "at mouth" (no winter records), October 1948 to current GAGE.--Water-stage recorder. Datum of gage is 631.85 ft above sea level. Prior to August 10, 1910, nonrecording gage at site 1.5 mi downstream at different datum. October 1, 1948, to April 24, 1953, nonrecording gage, and April 25, 1953 to October 16, 1967, water-stage recorder at site 800 ft downstream at same datum. REMARKS. -- Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e440 e320 e27∩ e1100 1 3630 e920 e680 e370 2540 1470 8730 2130 2 3140 e880 e660 e440 e370e320 e270 e1100 2820 2130 6600 2100 e320 e1050 e840 e430 e270 3240 2350 5320 2120 2880 e660 e360 e820 e430 e320 e1000 4 2560 e660 e360 e270 3650 2290 4800 2190 5 2440 e780 e640 e420 e360 e320 e270e1000 3310 1990 4630 2160 2700 e760 e640 e360 e310 e270 e1000 4100 1870 4150 2110 6 e420 e740 e270 3670 2890 e640 e410 e360 e310 e1050 3960 4550 2070 e1100 3270 2750 e720 e640 e410 e350 e310 e270 5300 5490 2030 8 9 2570 e720 e640 e410 e350 e310 e280 e1150 6850 4300 2960 1990 e2400 e740 e350 e280 4440 2730 10 e620 e400 e310 e1200 3500 1960 11 2230 e760 e620 e400 e350 e310 e290 e1250 3320 2920 2580 1910 12 2060 e800 e620 e400 e350 e310 e300 e1300 2870 2460 2560 1840 e620 e400 13 1920 e840 e340 e310 e320 1360 2650 2130 3020 1780 14 2090 e880 e600 e390 e340 e310 e320 1500 2390 1950 3420 1740 15 e900 e580 e340 e310 e340 1690 2220 1680 e2000 e920 e580 e390 e340 e310 e340 2240 2370 2180 3600 1620 16 e1900 e390 e310 e360 2110 e920 e560 e340 2630 2160 3660 1570 17 18 e1800 e900 e560 e390 e330 e310 e380 2790 1860 1890 3650 1530 e1650 2980 1750 e900 e400 1490 e300 20 e1500 e880 e540 e330 3190 1600 1660 1450 e380 e440 3260 e1400 21 e860 e540 e380 e330 e290 e480 3670 1470 1540 3090 1420 2.2 e1300 e840 e520 e380 e330e290 e5504550 1350 1480 2890 1390 23 e1200 e820 e520 e380 e330 e290 e600 5140 1270 1620 2720 1360 e380 e500 24 e1160 e780 e330 e700 5790 1190 1950 2620 1340 e280 4970 25 e1120 e760 e490 e380 e330 e280e800 1130 2600 2570 1310 e740 e480 e850 3800 1070 3600 2560 26 e1100 e380 e330 e280 1280 e720 e470 e270 1000 3580 1260 27 e1080 e380 e330 e900 3300 2610 e700 e460 e320 e270 e1000 3490 1050 e700 29 e1040 e450 e370 e270 e1050 4150 1200 4350 2410 1190 --e1000 e370 --e270 3120 30 e680 e450 1400 9630 2280 e1100 1160 31 e960 e440 e370 e270 2480 10700 2200 TOTAL 59590 17620 12260 9610 9300 76140 95600 107760 24220 14240 75460 50410 343 370 2456 5790 3476 8730 MEAN 1922 807 568 395 300 475 2515 3084 1680 10700 920 1100 3630 680 440 320 6850 2190 MAX MIN 960 680 440 320 1000 1000 1470 1160 AC-FT 118200 48040 34950 24320 19060 18450 28250 151000 149700 189600 213700 99990 CFSM .37 .16 1.13 .26 .14 .22 1.16 1.42 1.60 .89 .18 IN. 1.02 .42 .21 .16 .16 .24 1.31 1.29 1.64 1.85 .86 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2001, BY WATER YEAR (WY)# MEAN 1085 505 355 259 210 403 4235 3823 2642 3029 2436 190 449 1994 8666 1962 MAX 1969 1028 730 471 377 1373 8640 7330 13350 6186 1994 1992 1992 1993 1949 1952 (WY) 1994 1994 1964 1967 484 230 160 130 62.0 60.0 104 1564 963 568 717 636 MIN (WY) 1959 1954 1954 1954 1953 1953 1974 1964 1969 1958 1966 1966 SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1949 - 2001# ANNUAL TOTAL 778940 552210 ANNUAL MEAN 1606 2128 1513 HIGHEST ANNUAL MEAN 2957 1967 LOWEST ANNUAL MEAN 1999 HIGHEST DAILY MEAN 25400 Aug 15 10700 Tul 31 94100 Aug 14 1967 1 1953 LOWEST DATLY MEAN a150 Mar 14 b270 Mar 27 c60 Mar ANNUAL SEVEN-DAY MINIMUM 150 Mar 14 Mar Mar Aug 14 1967 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE Jul 31 11200 97000 11.79 21.78 Aug 14 1967 Mar 1 1953 สน1 31 INSTANTANEOUS LOW FLOW 60 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 1545000 1095000 1163000 .70 . 98 9.47 13.35 10.06 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 6300 3400 3930 1000 310 646 170 90 PERCENT EXCEEDS 980 170 See Period of Record From Mar. 14 to Mar. 22 From Mar. 27 to Apr. 8 Monthly mean published for Mar. 1953 Estimated #### 15485500 TANANA RIVER AT FAIRBANKS LOCATION.--Lat $64^{\circ}47'34''$, long $147^{\circ}50'20''$, in $NE^{1}{}_{4}$ $SW^{1}{}_{4}$ $SW^{1}{}_{4}$ sec. 25, T. 1 S., R. 2 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040507, on right bank at the end of Groin No. 1 on Corps of Engineers flood-protection levee, 1.0 mi south of Fairbanks International Airport, and 1.0 mi upstream from Chena River. DRAINAGE AREA.--Undefined. Part of river flows through Salchaket Slough and is ungaged. PERIOD OF RECORD. -- June 1973 to current year. GAGE.--Water-stage recorder. Datum of gage is 400 ft above sea level. Prior to September 14, 1973, nonrecording gage, and September 14, 1973 to June 14, 1985, water-stage recorder, at site 2.8 mi upstream at same datum. REMARKS. -- Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 16, 1967 reached a stage of 34.4 ft, from floodmarks at site then in use; discharge, about 125,000 ${\rm ft}^3/{\rm s}$, contained in reports of the Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DAI | LI MEAN | VALUES | | | | | | |---|---|--|--|---|---|---|---|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAI | R APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33900
32600
30400
28800
27200 | e10000
e9200
e8800
e8600
e8400 | e6800
e6600
e6600
e6600 | e6000
e6000
e6000
e6000 | e6000
e6000
e6000
e6000 | e5800
e5800
e5800
e5800
e5800 | e5600
e5600
e5600
e5600
e5600 | e11500
e11500
e11500
e11500
e12000 | 21600
22200
23800
25800
27000 | 44400
43900
43400
43900
44900 | 78000
77700
74800
72700
71000 | 37200
35800
36300
42900
42100 | | 6
7
8
9
10 | 26500
26600
26400
25900
25000 | e8200
e8000
e7800
e7800
e8000 | e6600
e6600
e6600
e6400
e6400 | e6000
e6000
e6000
e6000 | e6000
e5800
e5800
e5800
e5800 | e5800
e5800
e5800
e5800 | e5600
e5600
e5600
e5800
e5800 | e12500
e13000
e14000
e14500
e15500 | 28900
30900
33700
36800
36600 | 45300
46400
48200
45100
43000 | 68600
65500
63700
63900
63700 | 39400
37600
34500
32700
31500 | | 11
12
13
14
15 | e24000
e23500
22600
22900
22700 | e8400
e8600
e9000
e9200 | e6400
e6200
e6200
e6200
e6200 | e6000
e6000
e6000
e6000 | e5800
e5800
e5800
e5800
e5800 | e5800
e5800
e5800
e5800
e5800 | e5800
e5800
e6000
e6000
e6200 | e16000
17300
17900
17500
17200 | 35000
35100
36100
37500
38000 | 42000
40200
39600
39800
40800 | 62200
59600
57400
56300
57900 | 30500
29500
28500
27600
27600 | | 16
17
18
19
20 | 21800
20500
19700
18700
16500 | e9200
e9200
e9000
e8800
e8600 | e6200
e6200
e6200
e6200
e6200 | e6000
e6000
e6000
e6000 | e5800
e5800
e5800
e5800
e5800 | e5800
e5800
e5800
e5800
e5800 | e6200
e6400
e6600
e6800
e7000 | 17800
18500
18900
19600
20400 | 37500
37300
37600
38500
40000 | 42300
43200
43700
44900
46900
| 61300
64200
65500
63800
61000 | 26800
26100
25400
24900
24400 | | 21
22
23
24
25 | e15000
e14500
e14500
e14500
e14000 | e8400
e8200
e7800
e7400
e7200 | e6200
e6200
e6200
e6200
e6200 | e6000
e6000
e6000
e6000 | e5800
e5800
e5800
e5800
e5800 | e5800
e5800
e5800
e5800
e5600 | e7200
e7400
e7800
e8200
e8600 | 22100
23500
24800
25700
26500 | 41100
42400
43700
44700
45200 | 50600
57700
60900
61500
63000 | 59500
59600
62900
56500
51500 | 24000
23700
23300
22900
22700 | | 26
27
28
29
30
31 | e13000
e13000
e13000
e12500
e11500
e10500 | e7000
e6800
e6800
e6800
e6800 | e6200
e6200
e6200
e6200
e6000
e6000 | e6000
e6000
e6000
e6000
e6000 | e5800
e5800
e5800
 | e5600
e5600
e5600
e5600
e5600 | e9200
e9600
e10000
e10500
e11000 | 25700
24300
23200
23200
23000
22000 | 45200
45400
45800
43000
42900 | 64500
66000
67900
69500
70400
74800 | 48500
46300
43800
41600
40300
39100 | 22400
21900
21300
20800
20300 | | MEAN
MAX
MIN | 642200
20720
33900
10500
1274000 | 247200
8240
10000
6800
490300 | 195800
6316
6800
6000
388400 | 186000
6000
6000
6000
368900 | 163600
5843
6000
5800
324500 | 178400
5755
5800
5600
353900 | 208700
6957
11000
5600
414000 | 572600
18470
26500
11500
1136000 | 1099300
36640
45800
21600
2180000 | 1578700
50930
74800
39600
3131000 | 1858400
59950
78000
39100
3686000 | 864600
28820
42900
20300
1715000 | | | | STATISTI | CS OF MON | THLY MEAN | N DATA FOR | WATER | YEARS 1973 | - 2001, | BY WATER | YEAR (WY |)# | | | MEAN
MAX
(WY)
MIN
(WY) | 13470
20720
2001
8669
1997 | 7627
10370
1986
5000
1977 | 6131
8090
1986
4500
1977 | 5586
7135
1986
4016
1974 | 5385
6700
1991
3207
1974 | 5331
6761
1993
3100
1974 | 7422
12700
1995
4230
1974 | 22230
36290
1991
14810
1998 | 36250
51350
1992
25120
1978 | 52600
66090
1992
39550
1996 | 48920
70080
1997
34680
1996 | 27270
44880
1990
16950
1976 | | SUMMAI | RY STATIS | TICS | FOR | 2000 CAI | ENDAR YEA | R | FOR 2001 | WATER YE | AR | WATER | YEARS 19 | 73 - 2001# | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERO 50 PERO | MEAN F ANNUAL ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS P | EAN
EAN
AN
Y MINIMUM | | | Aug 16
Mar 7
Mar 7 | | 7795500
21360
78000
55600
5600
79000
25.1
15460000
49300
11500
5800 | Aug
Mar 2
Mar 2
Aug | 1
5
5
2
2 | 20030
22690
16080
92400
33100
3100
96400
26.
14510000
50000
50000 | Feb
Feb
Jul | 1990
1996
22 1986
14 1974
14 1974
22 1986
14 1997 | See Period of Record, partial years used in monthly statistics From Mar. 7 to Apr. 10 From Mar. 25 to Apr. 8 From Feb. 14 to Mar. 31,1974 Estimated #### 15493000 CHENA RIVER NEAR TWO RIVERS LOCATION.--Lat $64^{\circ}54'10''$, long $146^{\circ}21'25''$, in $NE^1/_4$ sec. 20, T. 1 N., R. 7 E. (Big Delta D-5 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on left bank about 200 ft upstream from bridge at mi 39.5 on the Chena Hot Springs Highway, 15 mi upstream from South Fork Chena River, 22 mi east of Two Rivers, and 41 mi east of Fairbanks. DRAINAGE AREA. -- 937 mi². PERIOD OF RECORD. -- October 1967 to current year. GAGE.--Water-stage recorder. Datum of gage is 719.7 ft above sea level from datum used by Alaska Department of Transportation and Public Facilities. Prior to April 25, 1994, water stage recorder at site 2.5 mi downstream at datum of 700 ft. REMARKS.--Records fair except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 13, 1967 reached a stage of 26.6 ft at site and datum of gage in use prior to April 25, 1994, from floodmarks, discharge not determined. | | | DISCHA | RGE, CUBI | C FEET PEF | | WATER Y | YEAR OCTOBE | ER 2000 TO | O SEPTEME | BER 2001 | | | |--|--|--|--|--|---|---|--------------------------------------|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1780
1670
1460
1410
1510 | e390
e380 | e280
e280
e280 | e190
e190
e190
e190
e190 | e160
e160
e160
e160
e160 | e150
e150
e150
e150
e140 | e120
e120
e120 | e335
e325
e320
e315
e350 | | 721
1020
1200
946
844 | 2020
1600
1400
1640
1680 | 1180
1130
1110
1070
1030 | | 6
7
8
9
10 | 1560
1460
1390
1300
1080 | e380
e370
e360
e350
e380 | e270
e270
e270
e270
e270 | e180
e180
e180
e180
e180 | e160
e160
e160
e150
e150 | e140
e140
e140
e140
e140 | e120
e120
e120
e120
e125 | | 1010
1110
2260
2240
1360 | 1760
2690
1940
1410
1110 | 1480
1290
1150
1050
985 | 1010
979
962
961
947 | | 11
12
13
14
15 | e900
e880
e970
1140
1100 | e400
e460
e500
e550 | e260
e250 | e180 | e150
e150
e150
e150
e150 | e140
e140
e140
e140
e140 | e125
e130
e135
e140
e145 | 675
687
699
802
1060 | 1040
906
843
792
739 | 909
795
715
758
1050 | 976
1140
1370
1360
1830 | 918
891
865
834
804 | | 16
17
18
19
20 | 1030
923
e760
e720
e680 | e520
e500
e490 | e230
e230
e220 | e170
e170
e170
e170 | e150
e150
e150
e150
e150 | e140
e140
e135
e135
e135 | e150
e160
e175
e190
e200 | 1260
1280
1330
1410
1600 | 705
625
565
527
515 | 1020
824
718
645
591 | 2290
3090
2700
2660
2380 | 778
764
745
727
712 | | 21
22
23
24
25 | e650
e620
e600
e580
e600 | e480
e440
e420
e380
e340 | e220
e220
e210
e210
e210 | e170
e170
e170
e170
e170 | e150
e150
e150
e150
e150 | e130
e130
e125
e125
e120 | e210
e230
e240
e255
e270 | 1780
2070
2390
2160
1830 | 491
454
426
407
385 | 555
545
608
664
662 | 2070
1820
1660
1690
1730 | 696
682
669
660
641 | | 28 | e680
e640
e580
e520
e460
e450 | e320
e320
e310
e300
e290 | e200
e200
e200 | e170
e160
e160
e160
e160
e160 | e150
e150
e150
 | e120
e120
e120
e120
e120
e120 | e285
e295
e310
e325
e340 | 1520
1380
1570
1260
946
842 | 364
352
364
360
372 | 741
788
843
2460
3640
2680 | 1640
1530
1430
1330
1250
1210 | 626
613
597
580
566 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. |
30103
971
1780
450
59710
1.04
1.20 | 12510
417
550
290
24810
.45
.50 | 7470
241
290
190
14820
.26
.30 | 5410
175
190
160
10730
.19
.21 | 4280
153
160
150
8490
.16
.17 | 4175
135
150
120
8280
.14
.17 | 184
340
120
10940 | 32634
1053
2390
315
64730
1.12
1.30 | 23591
786
2260
352
46790
.84
.94 | 35852
1157
3640
545
71110
1.23
1.42 | 51451
1660
3090
976
102100
1.77
2.04 | 24747
825
1180
566
49090
.88
.98 | | | | | CS OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1968 | - 2001, 1 | BY WATER | YEAR (WY |) | | | MEAN
MAX
(WY)
MIN
(WY) | 570
1656
1987
260
1969 | 274
617
1987
120
1969 | 187
369
1994
85.5
1977 | 132
242
1994
38.1
1970 | 107
246
1994
20.2
1970 | 93.8
171
1991
21.9
1970 | 226
578
1989
68.3
1982 | 1845
4210
1971
625
1998 | 1364
4038
1992
323
1969 | 1027
2505
1984
380
1976 | 1271
3207
1969
437
1976 | 1134
2702
1990
455
1976 | | SUMMAR | Y STATIST | ICS | FOR 2 | 2000 CALENI | DAR YEAR | 1 | FOR 2001 WA | TER YEAR | | WATER Y | EARS 1968 | - 2001 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL ANNUAL ANNUAL 10 PER | MEAN I ANNUAL M ANNUAL M I DAILY ME SEVEN-DA; M PEAK FLO M PEAK ST RUNOFF (2 RUNOFF (2 RUNOFF (2 RUNOFF (3 | EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS | | 330930
904
9530
a92
92
656400
.96
13.14
2310 | Aug 14
Mar 17
Mar 17 | | 9.44
1510 | Jul 30
Mar 25
Mar 25
Jul 30
Jul 30 | | 10.0
1620 | | 1971
1997
3 1992
6 1970
6 1970
3 1992
3 1992 | | | CENT EXCEI
CENT EXCEI | | | 486
96 | | | 426
140 | | | 325
82 | | | From Mar. 17 to Mar. 26 From Mar. 25 to Apr. 9 From Feb. 6 to Mar. 12, 1970 At site and datum then in use c d Estimated ### 15511000 LITTLE CHENA RIVER NEAR FAIRBANKS LOCATION.--Lat $64^{\circ}53'10''$, long $147^{\circ}14'50''$, in $SW^1/_4$ NE $^1/_4$ sec. 25, T. 1 N., R. 2 E. (Fairbanks D-1 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on downstream side of left bridge abutment at mi 11.9 Chena Hot Springs Highway, 22.5 mi upstream from mouth, and 14 mi northeast of Fairbanks. DRAINAGE AREA.--372 mi². PERIOD OF RECORD. -- August 1966 to current year. GAGE.--Water-stage recorder. Datum of gage is 458.79 ft above sea level. REMARKS.--Records good except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and NOAA telephone telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DAIL | II MEMIN AV | LIUED | | | | | | |-------|-------|------|------|------|------|-------------|-------|-------|-------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 486 | e170 | e120 | e90 | e80 | e70 | e50 | e130 | 190 | 150 | 344 | 399 | | 2 | e440 | e160 | e120 | e90 | e80 | e70 | e50 | e120 | 183 | 181 | 298 | 381 | | 3 | e410 | e150 | e120 | e90 | e80 | e70 | e50 | e120 | 177 | 210 | 270 | 370 | | 4 | e380 | e150 | e120 | e90 | e80 | e70 | e50 | e120 | 172 | 198 | 271 | 361 | | 5 | e360 | e140 | e120 | e90 | e80 | e70 | e50 | e120 | 168 | 194 | 276 | 344 | | 6 | e370 | e140 | e120 | e90 | e80 | e70 | e50 | e130 | 171 | 218 | 265 | 333 | | 7 | e380 | e140 | e120 | e90 | e75 | e70 | e50 | e140 | 236 | 310 | 248 | 321 | | 8 | e380 | e130 | e120 | e90 | e75 | e70 | e50 | e150 | 674 | 300 | 233 | 310 | | 9 | e370 | e130 | e110 | e90 | e75 | e65 | e50 | e160 | 894 | 254 | 221 | 307 | | 10 | e340 | e130 | e110 | e85 | e75 | e65 | e50 | e180 | 528 | 224 | 212 | 297 | | 11 | e310 | e140 | e110 | e85 | e75 | e65 | e50 | e200 | 400 | 202 | 218 | 288 | | 12 | e300 | e150 | e110 | e85 | e75 | e65 | e55 | e220 | 326 | 190 | 258 | 281 | | 13 | e310 | e160 | e110 | e85 | e75 | e65 | e55 | 232 | 314 | 175 | 349 | 272 | | 14 | e320 | e160 | e110 | e85 | e75 | e65 | e55 | 263 | 317 | 190 | 366 | 263 | | 15 | e320 | e170 | e110 | e85 | e75 | e65 | e55 | 290 | 274 | 241 | 539 | 255 | | 16 | e300 | e170 | e110 | e85 | e75 | e65 | e60 | 296 | 240 | 234 | 707 | 248 | | 17 | e290 | e160 | e110 | e85 | e75 | e65 | e60 | 289 | 215 | 203 | 851 | 243 | | 18 | e270 | e160 | e110 | e85 | e75 | e65 | e60 | 277 | 195 | 187 | 763 | 238 | | 19 | e260 | e160 | e110 | e85 | e75 | e60 | e65 | 277 | 181 | 175 | 752 | 232 | | 20 | e240 | e150 | e110 | e85 | e75 | e60 | e70 | 301 | 180 | 165 | 687 | 228 | | 21 | e230 | e150 | e100 | e85 | e75 | e60 | e75 | 309 | 178 | 159 | 606 | 225 | | 22 | e220 | e150 | e100 | e85 | e70 | e60 | e80 | 323 | 164 | 156 | 544 | 220 | | 23 | e210 | e150 | e100 | e85 | e70 | e55 | e85 | 350 | 154 | 155 | 503 | 217 | | 24 | e200 | e140 | e100 | e85 | e70 | e55 | e95 | 369 | 147 | 154 | 495 | 213 | | 25 | e200 | e140 | e95 | e85 | e70 | e55 | e110 | 384 | 140 | 150 | 507 | 207 | | 26 | e210 | e140 | e95 | e85 | e70 | e55 | e110 | 390 | 135 | 148 | 518 | 204 | | 27 | e220 | e130 | e95 | e80 | e70 | e50 | e120 | 328 | 131 | 150 | 482 | 199 | | 28 | e210 | e130 | e95 | e80 | e70 | e50 | e120 | 306 | 130 | 158 | 450 | 195 | | 29 | e200 | e130 | e95 | e80 | | e50 | e130 | 273 | 128 | 284 | 424 | 191 | | 30 | e190 | e130 | e90 | e80 | | e50 | e130 | 231 | 127 | 524 | 401 | 188 | | 31 | e180 | | e90 | e80 | | e50 | | 203 | | 411 | 389 | | | TOTAL | 9106 | 4410 | 3335 | 2655 | 2095 | 1920 | 2140 | 7481 | 7469 | 6650 | 13447 | 8030 | | MEAN | 294 | 147 | 108 | 85.6 | 74.8 | 61.9 | 71.3 | 241 | 249 | 215 | 434 | 268 | | MAX | 486 | 170 | 120 | 90 | 80 | 70 | 130 | 390 | 894 | 524 | 851 | 399 | | MIN | 180 | 130 | 90 | 80 | 70 | 50 | 50 | 120 | 127 | 148 | 212 | 188 | | AC-FT | 18060 | 8750 | 6610 | 5270 | 4160 | 3810 | 4240 | 14840 | 14810 | 13190 | 26670 | 15930 | | CFSM | .79 | .40 | .29 | .23 | .20 | .17 | .19 | .65 | .67 | .58 | 1.17 | .72 | | IN. | .91 | .44 | .33 | .27 | .21 | .19 | .21 | .75 | .75 | .67 | 1.34 | .80 | | | | | | | | | | | | | | | e Estimated ## 15511000 LITTLE CHENA RIVER NEAR FAIRBANKS--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2001, BY WATER YEAR (WY)# 70.7 176 47.4 112 551 1217 MEAN 194 104 35.4 31.0 90.7 289 382 318 270 264 2147 490 74.8 72.0 932 665 686 MAX (WY) 1987 1994 1986 1987 2001 1993 1993 1991 1992 1981 1967 1985 MIN 69.8 1967 32.0 1967 22.5 1978 7 90 6.00 1970 3.23 1967 19.1 1970 147 1998 99.2 85.0 124 107 1970 1998 1997 1966 1997 (WY) FOR 2000 CALENDAR YEAR SUMMARY STATISTICS FOR 2001 WATER YEAR WATER YEARS 1966 - 2001# ANNUAL TOTAL 94881 68738 ANNUAL MEAN HIGHEST ANNUAL MEAN 259 188 207 414 1967 LOWEST ANNUAL MEAN 103 1997 HIGHEST DAILY MEAN LOWEST DAILY MEAN 1430 May 25 Mar 16 894 Jun 9 12000 Aug 13 1967 Mar 11 1967 c.00 Mar 27 b50 a24 .00 .00 d17000 ANNUAL SEVEN-DAY MINIMUM 24 50 Mar 27 Mar 11 1967 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 9 9 Aug 13 1967 Aug 13 1967 1110 Jun 18.23 f19.66 Jun MAXIMUM PEAK STAGE Oct ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 188200 149600 136300 .70 9.49 .51 6.87 .56 7.54 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 639 369 466 150 120 65 25 90 PERCENT EXCEEDS 25 See Period of Record; partial years used in monthly statistics From Mar. 16-29 From Mar. 27 to Apr. 11 From Mar. 11 to Apr. 15, 1967 From rating curve extended above 3,000 ft 3/s on basis of contracted-opening determination of peak flow Estimated Backwater from ice #### 15514000 CHENA RIVER AT FAIRBANKS LOCATION.--Lat 64°50'45", long 147°42'04", in NW¹/₄ sec. 11, T. 1 S., R. 1 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on right bank 100 ft downstream from Steese Highway Bridge, 800 ft upstream from Wendell Street bridge, 0.3 mi upstream from Noyes Slough, 11 mi upstream from mouth, and 11 mi downstream from Chena Slough. DRAINAGE AREA. -- 1,995 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1947 to September 1948 (no winter records), October 1948 to current year. GAGE.--Water-stage recorder and supplementary gage. Datum of gage is 422.92 ft above sea level. Supplementary gage, Chena River at Lathrop Street (15514003), 1.6 mi downstream on left bank, used during winter period. See WSP 1936 and 2136 for history of changes prior to April 27, 1968. REMARKS.--Records are good except for estimated daily discharges, which are fair. Regulation during high-flow periods began July 9, 1981 at Moose Creek Dam 31.8 mi upstream. Flows were not regulated this year. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD--Outstanding floods occurred in early May 1905 and 1911, late August 1930, and May 11-14, 1937. See WDR AK-90-1 for more information. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | | DAI | LY MEAN V | /ALUES | | | | | | |---------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3640 | e920 | e715 | e490 | e440 | e390 | e330 | e960 | 1570 | 847 | 4080 | 2380 | | 2 | 3300 | e840 | e710 | e490 | e440 | e390 | e330 | 975 | 1470 | 910 | 3560 | 2320 | | 2 | 3070 | e810 | e705 | e480 | e440 | e390 | e330 | 920 | 1430 | 1200 | 3060 | 2250 | | 4 | 2850 | e780 | e700 | e480 | e430 | e390 | e330 | 895 | 1420 | 1450 | 2740 | 2190 | | 5 | 2760 | e760 | e700 | e470 | e430 | e390 | e330 | 900 | 1410 | 1470 | 2690 | 2150 | | 6 | 2840 | e730 | e700 | e470 | e430 | e390 | e330 | 904 | 1400 | 1430 | 2770 | 2080 | | 7 | 2870 | e700 | e700 | e470 | e430 | e390 | e330 | 934 | 1470 | 1600 | 2630 | 2020 | | 8 | 2800 | e680 | e700 | e470 | e430 | e390 | e330 | 972 | 1670 | 2680 | 2410 | 1960 | | 9 | 2650 | e700 | e700 | e470 | e430 |
e390 | e340 | 988 | 2800 | 2650 | 2220 | 1910 | | 10 | 2410 | e780 | e695 | e460 | e420 | e390 | e340 | 1050 | 3310 | 2280 | 2070 | 1890 | | 11
12 | 2130
1910 | e880 | e695
e695 | e460
e460 | e420
e420 | e390
e390 | e350
e350 | 1150
1230 | 2620
2180 | 1970
1740 | 1960
1910 | 1860
1820 | | 13 | 1910 | e940
e1000 | e695 | e460 | e420
e410 | e390 | e360 | 1230 | 1930 | 1570 | 1910 | 1770 | | 14 | 2030 | e1040 | e695 | e450 | e400 | e390 | e360 | 1350 | 1810 | 1450 | 2280 | 1720 | | 15 | 2180 | e1100 | e680 | e450 | e400 | e390 | e370 | 1430 | 1700 | 1500 | 2430 | 1670 | | | | | | | | | | | | | | | | 16 | 2160 | e1100 | e660 | e450 | e400 | e390 | e380 | 1540 | 1600 | 1610 | 2960 | 1620 | | 17 | 1990 | e1060 | e640 | e450 | e400 | e390 | e390 | 1690 | 1500 | 1670 | 3580 | 1570 | | 18 | 1780 | e1040 | e615 | e450 | e400 | e390 | e410 | 1750 | 1400 | 1530 | 4340 | 1530 | | 19 | 1580 | e1020 | e600 | e450 | e390 | e380 | e420 | 1780 | 1320 | 1410 | 4280 | 1500 | | 20 | e1400 | e1000 | e590 | e460 | e390 | e380 | e430 | 1830 | 1240 | 1330 | 4220 | 1460 | | 21 | e1300 | e980 | e580 | e460 | e390 | e370 | e460 | 1960 | 1190 | 1250 | 3950 | 1430 | | 22 | e1250 | e970 | e580 | e460 | e390 | e360 | e500 | 2120 | 1150 | 1180 | 3610 | 1410 | | 23 | e1200 | e940 | e580 | e460 | e390 | e360 | e560 | 2350 | 1090 | 1150 | 3350 | 1380 | | 24 | e1150 | e860 | e570 | e460 | e390 | e350 | e620 | 2650 | 1040 | 1150 | 3130 | 1350 | | 25 | e1100 | e840 | e560 | e460 | e390 | e350 | e700 | 2760 | 992 | 1190 | 3040 | 1330 | | 26 | e1200 | e820 | e550 | e460 | e390 | e350 | e760 | 2620 | 953 | 1230 | 3040 | 1300 | | 27 | e1300 | e760 | e545 | e450 | e390 | e340 | e800 | 2380 | 928 | 1290 | 2970 | 1280 | | 28 | e1200 | e740 | e530 | e450 | e390 | e340 | e840 | 2150 | 894 | 1370 | 2850 | 1250 | | 29 | e1100 | e720 | e515 | e450 | | e340 | e900 | 2150 | 866 | 1460 | 2730 | 1230 | | 30 | e1000 | e700 | e510 | e450 | | e330 | e930 | 2020 | 851 | 2380 | 2590 | 1200 | | 31 | e960 | | e500 | e450 | | e330 | | 1750 | | 4180 | 2460 | | | TOTAL | 61060 | 26210 | 19610 | 14300 | 11470 | 11600 | 14210 | 49448 | 45204 | 50127 | 91900 | 50830 | | MEAN | 1970 | 874 | 633 | 461 | 410 | 374 | 474 | 1595 | 1507 | 1617 | 2965 | 1694 | | MAX | 3640 | 1100
680 | 715
500 | 490
450 | 440
390 | 390
330 | 930
330 | 2760
895 | 3310
851 | 4180 | 4340 | 2380
1200 | | MIN | 960
1950 | 850 | 660 | 460 | 400 | 330 | 330
375 | 1540 | 1420 | 847
1450 | 1910
2850 | 1640 | | MED | 121100 | 51990 | 38900 | 28360 | 22750 | 23010 | 28190 | 98080 | 89660 | 99430 | 182300 | 100800 | | AC-FT
CFSM | .99 | .44 | .32 | .23 | .21 | .19 | .24 | .80 | .76 | .81 | 1.49 | .85 | | IN. | 1.14 | .49 | .32 | .23 | .21 | .22 | .24 | .92 | .76 | .93 | 1.71 | .95 | | IIV. | 1.14 | | | | | | | | | | | .95 | | | | STATISTIC | CS OF MON | THLY MEAN | DATA FOR | WATER YE | EARS 1948 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 1202 | 593 | 448 | 343 | 283 | 261 | 469 | 3635 | 2565 | 2029 | 2458 | 2158 | | MAX | 2413 | 1231 | 922 | 595 | 509 | 445 | 1406 | 10250 | 6721 | 6133 | 13120 | 5735 | | (WY) | 1962 | 1994 | 1994 | 1987 | 1968 | 1968 | 1993 | 1948 | 1949 | 1949 | 1967 | 1962 | | MIN | 461 | 297 | 194 | 163 | 120 | 120 | 209 | 1050 | 816 | 665 | 682 | 615 | | (WY) | 1967 | 1959 | 1977 | 1977 | 1953 | 1958 | 1977 | 1998 | 1969 | 1958 | 1957 | 1957 | ## 15514000 CHENA RIVER AT FAIRBANKS--Continued | SUMMARY STATISTICS | FOR 2000 CALENI | DAR YEAR | FOR 2001 WAT | TER YEAR | WATER YEAR | S 1948 - 2001# | |--------------------------|-----------------|----------|--------------|----------|------------|----------------| | ANNUAL TOTAL | 629589 | | 445969 | | | | | ANNUAL MEAN | 1720 | | 1222 | | 1387 | | | HIGHEST ANNUAL MEAN | | | | | 5119 | 1948 | | LOWEST ANNUAL MEAN | | | | | 713 | 1958 | | HIGHEST DAILY MEAN | 8620 | Aug 16 | 4340 | Aug 18 | 64600 | Aug 15 1967 | | LOWEST DAILY MEAN | a230 | Mar 11 | b330 | Mar 30 | c120 | Feb 1 1953 | | ANNUAL SEVEN-DAY MINIMUM | 230 | Mar 11 | 330 | Mar 30 | 120 | Feb 1 1953 | | INSTANTANEOUS PEAK FLOW | | | 4460 | Aug 18 | 74400 | Aug 15 1967 | | INSTANTANEOUSPEAK STAGE | | | 4.80 | Aug 18 | d18.82 | Aug 15 1967 | | ANNUAL RUNOFF (AC-FT) | 1249000 | | 884600 | | 1005000 | | | ANNUAL RUNOFF (CFSM) | .86 | | .61 | | .70 | | | ANNUAL RUNOFF (INCHES) | 11.74 | | 8.32 | | 9.45 | | | 10 PERCENT EXCEEDS | 4060 | | 2640 | | 3140 | | | 50 PERCENT EXCEEDS | 1100 | | 953 | | 725 | | | 90 PERCENT EXCEEDS | 250 | | 390 | | 240 | | See Period of Record Mar. 11 to Mar.17 Mar. 30 to Apr. 8 Monthly means published for Feb. 1953 and Mar. 1958 Site then in use Estimated ## 15514000 CHENA RIVER AT FAIRBANKS--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1948-58, 1962-72, 1974-76, 1983-84, and 2001. PERIOD OF RECORD.--SUSPENDED SEDIMENT DISCHARGE. 1962-71. | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------------|--------------|------------------------------------|-------------------------------------|---|--|--------------------------------------|---|---|--|---|--| | MAY
11
25 | 1630
1220 | 205 |
6.46 | 1160
2780 | 10 | 3007
3007 | 1.5 | 1.5 | 18
174 | 56
1310 | 81
75 | ## 15515500 TANANA RIVER AT NENANA LOCATION.--Lat $64^{\circ}33'55''$, long $149^{\circ}05'30''$, in $SE^{1}/_{4}$ sec. 14, T. 4 S., R. 8 W. (Fairbanks C-5 quad), Hydrologic Unit 19040507, on left bank on east end of Alaska Railroad dock in Nenana, and 0.3 mi upstream from Nenana River. DRAINAGE AREA. -- 25,600 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1962 to current year. REVISED RECORDS.--WSP 2136: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 338.50 ft above sea level. Prior to March 10, 1965, on right bank 280 ft downstream from railroad bridge 0.5 mi upstream at present datum. March 10, 1965 to March 23, 1968, nonrecording gage on railroad bridge 0.5 mi upstream at present datum. REMARKS.--Records fair. GOES satellite telemetry at station. EXTREMES OUTSIDE PEROD OF RECORD.--Flood of May 1948 reached a stage of 15.9 ft, discharge, about 135,000 $\rm ft^3/s$, contained in reports of Corps of Engineers. | | | DISCH | ARGE, CUI | BIC FEET | PER SECON | D, WATER
ILY MEAN | | DBER 2000 | TO SEPTEM | MBER 2001 | | | |----------------------------------|--|---|--|---|---|--|--|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 42700 | e15000 | e8800 | e7800 | e7700 | e7600 | e7400 | e13500 | 27300 | 54800 | 93300 | 48100 | | 2 | 40700 | e14000 | e8800 | e7800 | e7700 | e7600 | e7400 | e13500 | 28000 | 55200 | 92900 | 46000 | | 3 | 37900 | e13000 | e8800 | e7800 | e7700 | e7600 | e7400 | e13500 | 29700 | 54800 | 90300 | 45000 | | 4 | 35800 | e12000 | e8600 | e7800 | e7700 | e7600 | e7400 | e13500 | 30100 | 54700 | 88100 | 48400 | | 5 | 35000 | e11000 | e8600 | e7800 | e7700 | e7600 | e7400 | e14000 | 31600 | 55000 | 86200 | 51800 | | 6 | 34300 | e11000 | e8600 | e7800 | e7700 | e7600 | e7400 | e15000 | 34500 | 55000 | 81600 | 49900 | | 7 | 33900 | e10500 | e8600 | e7800 | e7700 | e7600 | e7400 | e16000 | 38100 | 55600 | 77200 | 47700 | | 8 | 33500 | e10500 | e8600 | e7800 | e7700 | e7600 | e7500 | e16500 | 41100 | 56600 | 74000 | 44500 | | 9 | 32800 | e11000 | e8400 | e7800 | e7700 | e7600 | e7500 | e17500 | 43800 | 54900 | 72800 | 41600 | | 10 | 31900 | e11000 | e8400 | e7800 | e7700 | e7600 | e7500 | e18000 | 47400 | 52000 | 71300 | 39500 | | 11 | 31200 | e11500 | e8400 | e7800 | e7700 | e7600 | e7500 | e18500 | 47300 | 50800 | 69600 | 38000 | | 12 | 29900 | e11500 | e8200 | e7800 | e7700 | e7600 | e7600 | e19000 | 48400 | 49900 | 67700 | 36800 | | 13 | 28500 | e11500 | e8200 | e7800 | e7700 | e7600 | e7800 | e19500 | 47400 | 49200 | 65600 | 35600 | | 14 | e27000 | e12000 | e8200 | e7800 | e7600 | e7600 | e7900 | 20000 | 46900 | 48500 | 65100 | 34200 | | 15 | e26500 | e12000 | e8200 | e7800 | e7600 | e7600 | e8000 | 19600 | 46500 | 48400 | 66700 | 33000 | | 16 | e26500 | e12500 | e8200 | e7800 | e7600 | e7600 | e8200 | 20500 | 47700 | 49900 | 70100 | 32100 | | 17 | e26000 | e12500 | e8000 | e7800 | e7600 | e7600 | e8300 | 22000 | 49000 | 51000 | 73400 | 31000 | | 18 | e25000 | e12000 | e8000 | e7700 | e7600 | e7600 | e8400 | 23000 | 49400 | 52000 | 74600 | 30000 | | 19 | e24000 | e12000 | e8000 | e7700 | e7600 | e7600 | e8600 | 23800 | 50300 | 52800 | 73300 | 29100 | | 20 | e23000 | e11500 | e8000 | e7700 | e7600 | e7500 | e8800 | 25200 | 52100 | 55200 |
71100 | 28500 | | 21
22
23
24
25 | e22000
e21000
e20000
e19000
e19000 | e11000
e10500
e10500
e10000
e9600 | e8000
e8000
e8000
e8000 | e7700
e7700
e7700
e7700
e7700 | e7600
e7600
e7600
e7600
e7600 | e7500
e7500
e7500
e7500
e7500 | e9000
e9400
e9800
e10000
e10500 | 26900
28300
29300
30300
30900 | 53400
53600
54600
55700
55400 | 59700
64300
68200
68800
68400 | 69000
67700
69400
68100
62800 | 27800
27300
26900
26400
26000 | | 26
27
28
29
30
31 | e18500
e18500
e18000
e18000
e17000
e16000 | e9400
e9200
e9000
e9000
e8800 | e8000
e8000
e7800
e7800
e7800
e7800 | e7700
e7700
e7700
e7700
e7700 | e7600
e7600
e7600
 | e7400
e7400
e7400
e7400
e7400
e7400 | e11000
e11500
e12000
e12500
e13000 | 30200
29000
28300
28500
28900
27800 | 56100
56800
57200
55200
53200 | 70500
72600
76700
78100
81500
88500 | 59600
56900
54100
51700
50600
49400 | 25700
25300
24900
24300
23700 | | TOTAL | 833100 | 335000 | 254800 | 240400 | 214100 | 233800 | 264100 | 680500 | 1387800 | 1853600 | 2184200 | 1049100 | | MEAN | 26870 | 11170 | 8219 | 7755 | 7646 | 7542 | 8803 | 21950 | 46260 | 59790 | 70460 | 34970 | | MAX | 42700 | 15000 | 8800 | 7800 | 7700 | 7600 | 13000 | 30900 | 57200 | 88500 | 93300 | 51800 | | MIN | 16000 | 8800 | 7800 | 7700 | 7600 | 7400 | 7400 | 13500 | 27300 | 48400 | 49400 | 23700 | | MED | 26500 | 11000 | 8200 | 7800 | 7600 | 7600 | 8100 | 20500 | 48000 | 55000 | 69600 | 32600 | | AC-FT | 1652000 | 664500 | 505400 | 476800 | 424700 | 463700 | 523800 | 1350000 | 2753000 | 3677000 | 4332000 | 2081000 | | CFSM | 1.05 | .44 | .32 | .30 | .30 | .29 | .34 | .86 | 1.81 | 2.34 | 2.75 | 1.37 | | IN. | 1.21 | .49 | .37 | .35 | .31 | .34 | .38 | .99 | 2.02 | 2.69 | 3.17 | 1.52 | | | | STATIST | ICS OF MO | NTHLY ME | AN DATA FO | OR WATER | YEARS 196 | 2 - 2001, | BY WATER | YEAR (WY | ()# | | | MEAN | 16930 | 9261 | 7369 | 6744 | 6530 | 6463 | 8741 | 30790 | 47630 | 59950 | 56830 | 33500 | | MAX | 26870 | 14070 | 10770 | 9065 | 8171 | 8161 | 15090 | 62210 | 87390 | 76770 | 98210 | 57690 | | (WY) | 2001 | 1986 | 1986 | 1986 | 1986 | 1993 | 1995 | 1963 | 1962 | 1988 | 1967 | 1990 | | MIN | 11420 | 5517 | 4532 | 4694 | 4421 | 4071 | 5870 | 16030 | 29750 | 44920 | 41510 | 21710 | | (WY) | 1977 | 1977 | 1977 | 1977 | 1974 | 1974 | 1974 | 1964 | 1970 | 1996 | 1996 | 1976 | e Estimated ## 15515500 TANANA RIVER AT NENANA--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR | YEAR | FOR 2001 WATER | YEAR | WATER YEARS 19 | 962 - 2001# | |--------------------------|-------------------|--------|----------------|--------|----------------|-------------| | ANNUAL TOTAL | 9725800 | | 9530500 | | | | | ANNUAL MEAN | 26570 | | 26110 | | 24120 | | | HIGHEST ANNUAL MEAN | | | | | 29310 | 1967 | | LOWEST ANNUAL MEAN | | | | | 19530 | 1970 | | HIGHEST DAILY MEAN | 87800 | Aug 16 | 93300 | Aug 1 | 183000 | Aug 18 1967 | | LOWEST DAILY MEAN | a6000 | Mar 6 | b7400 | Mar 26 | c4000 | Mar 6 1974 | | ANNUAL SEVEN-DAY MINIMUM | 6000 | Mar 6 | 7400 | Mar 26 | 4000 | Mar 6 1974 | | INSTANTANEOUS PEAK FLOW | | | 94200 | Aug 1 | 186000 | Aug 18 1967 | | INSTANTANEOUS PEAK STAGE | | | 12.47 | Aug 1 | d18.90 | Aug 18 1967 | | ANNUAL RUNOFF (AC-FT) | 19290000 | | 18900000 | | 17480000 | | | ANNUAL RUNOFF (CFSM) | 1.04 | | 1.02 | | .94 | | | ANNUAL RUNOFF (INCHES) | 14.13 | | 13.85 | | 12.80 | | | 10 PERCENT EXCEEDS | 58400 | | 59600 | | 59000 | | | 50 PERCENT EXCEEDS | 17000 | | 13500 | | 12000 | | | 90 PERCENT EXCEEDS | 6000 | | 7600 | | 6200 | | [#] See Period of Record, partial years used in monthly statistics a From Mar. 6 to Apr. 11 b From Mar. 26 to Apr. 7 c From Mar. 6 to Mar. 20, 1974 d At site then in use e Estimated ## 15515500 TANANA RIVER AT NENANA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1954-57, 1963-64, 1966-75, 1978-1995, and 2001. PERIOD OF RECORD.--WATER TEMPERATURE: 1954 to 1956 (seasonal). | DATE | TIME | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |-----------|--------------|--|---|--|---|---|--|---| | MAY | | | | | | | | | | 31 | 1845 | 624.0 | 217 | 7.8 | 10.0 | 758 | 10.2 | 91 | | 31 | 1846 | 520.0 | 216 | 7.8 | 10.0 | 758 | 10.4 | 93 | | 31 | 1847 | 450.0 | 216 | 7.8 | 10.0 | 758 | 10.3 | 92 | | 31 | 1848 | 350.0 | 216 | 7.9 | 10.0 | 758 | 10.4 | 93 | | 31 | 1849 | 230.0 | 217 | 7.8 | 10.0 | 758 | 10.3 | 92 | | 22 | 1529 | 131.0 | 240 | 7.8 | 17.0 | 764 | 8.8 | 91 | | 22 | 1532 | 258.0 | 239 | 7.8 | 17.0 | 764 | 8.8 | 91 | | 22 | 1534 | 356.0 | 239 | 7.8 | 17.0 | 764 | 8.8 | 91 | | 22 | 1543 | 442.0 | 239 | 7.8 | 17.0 | 764 | 8.7 | 90 | | 22 | 1545 | 541.0 | 239 | 7.8 | 17.0 | 764 | 8.7 | 90 | | JUL | | | | | | | | | | 09 | 1523 | 663.0 | 224 | 8.0 | 12.5 | 759 | 10.2 | 96 | | 09
09 | 1524
1526 | 568.0
463.0 | 223
225 | 8.0
8.0 | 12.5
12.5 | 759
759 | 10.2
10.3 | 96
97 | | 09 | 1528 | 383.0 | 225 | 8.0 | 12.5 | 759
759 | 10.3 | 96 | | 09 | 1530 | 283.0 | 225 | 8.0 | 12.5 | 759 | 10.2 | 96 | | AUG | 1000 | 203.0 | 223 | 0.0 | 12.0 | , 33 | 20.2 | , , | | 02 | 1718 | 120.0 | 207 | 7.7 | 13.5 | | 10.2 | | | 02 | 1720 | 220.0 | 207 | 7.8 | 13.5 | | 10.0 | | | 02 | 1722 | 300.0 | 207 | 7.8 | 13.5 | | 10.0 | | | 02 | 1723 | 400.0 | 208 | 7.7 | 13.5 | | 10.0 | | | 02 | 1724 | 540.0 | 208 | 7.7 | 13.5 | | 9.9 | | | SEP
13 | 1654 | 100.0 | 257 | 7.5 | 8.5 | 752 | 10.9 | 95 | | 13 | 1655 | 170.0 | 257 | 7.6 | 8.5 | 752 | 10.9 | 94 | | 13 | 1656 | 205.0 | 257 | 7.6 | 8.5 | 752 | 10.9 | 94 | | 13 | 1657 | 260.0 | 257 | 7.6 | 8.5 | 752 | 10.8 | 94 | | 13 | 1659 | 365.0 | 257 | 7.6 | 8.5 | 752 | 10.8 | 94 | | | | | | | | | | | | | | | | | | DIS- | | | QUALITY | | PH | | | | |-----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--| | | | | | | | CHARGE, | | | ASSUR- | SPE- | WATER | | | | | | | | | | | INST. | | | ANCE | CIFIC | WHOLE | | | | | | | | | | | CUBIC | SAM- | | DATA | CON- | FIELD | TEMPERA | TEMP- | | | | | | | STREAM | GAGE | FEET | PLING | SAMPLER | INDICA- | DUCT- | (STAND- | TURE | ERATURE | | | | | | | WIDTH | HEIGHT | PER | METHOD, | TYPE | TOR | ANCE | ARD | AIR | WATER | | | | | MEDIUM | SAMPLE | (FT) | (FEET) | SECOND | CODES | (CODE) | CODE | (US/CM) | UNITS) | (DEG C) | (DEG C) | | | DATE | TIME | CODE | TYPE | (00004) | (00065) | (00061) | (82398) | (84164) | (99111) | (00095) | (00400) | (00020) | (00010) | | | | | | | | | | | | | | | | | | | OCT | | | | | | | | | | | | | | | | 03 | 1600 | 9 | 9 | 874 | 6.09 | 36600 | 20 | 3055 | 1 | 242 | 7.9 | .00 | .00 | | | MAR | 7.5.40 | | • | | | 5550 | | 2011 | 100 | 000 | | 2 2 | 0.0 | | | 20
MAY | 1640 | 9 | 9 | 685 | | 7550 | 20 | 3044 | 100 | 287 | 7.2 | -9.0 | .00 | | | 31 | 1820 | 9 | 7 | E830 | 4.78 | 27500 | 20 | 3055 | 30 | 216 | 7.8 | 12.5 | 10.0 | | | JUN | 1020 | , | , | E030 | 4.70 | 27300 | 20 | 3033 | 30 | 210 | 7.0 | 12.5 | 10.0 | | | 22 | 1500 | 9 | 9 | | 8.10 | 53400 | 20 | 3055 | 30 | 239 | 7.8 | | 17.2 | | | JUL | | | | | | | | | | | | | | | | 09 | 1440 | 9 | 9 | 773 | 8.21 | 54400 | 20 | 3055 | 30 | 224 | 8.0 | 18.0 | 12.5 | | | AUG | | | | | | | | | | | | | | | | 02 | 1630 | 9 | 9 | 760 | 12.37 | 98800 | 20 | 3055 | 30 | 207 | 7.7 | | 13.5 | | | SEP | | _ | _ | | | | | | | | | | | | | 13 | 1510 | 9 | 7 | 560 | 5.84 | 35200 | 20 | 3055 | 100 | 257 | 7.6 | | 8.5 | | ## 15515500 TANANA RIVER AT NENANA--Continued | DATE | TURBID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSOR- BANCE 254 NM, WTR FLT (UNITS/ CM) (50624) | UV ABSOR- BANCE 280 NM, (UNITS/ CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM OF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXY-
GEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CAL-
CIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |---|--|--|--|---|--|--|---|---
--|---|---|--|---| | OCT
03 | 57 | 98 | | | 762 | 13.3 | 91 | 120 | 34.4 | 8.38 | 3.9 | 83 | 1.40 | | MAR
20 | 4.5 | 3.7 | .029 | .021 | 775 | 9.6 | 65 | 150 | 45.8 | 9.28 | 4.0 | 120 | 2.28 | | MAY
31 | | 89 | .243 | .182 | 758 | 10.3 | 92 | 100 | 30.2 | 6.87 | 3.3 | 77 | 1.64 | | JUN
22 | | 640 | .065 | .047 | 764 | 8.8 | 91 | 110 | 31.4 | 7.72 | 3.3 | 74 | 2.12 | | JUL
09
AUG | | 550 | .075 | .054 | 759 | 10.2 | 96 | 100 | 28.8 | 7.04 | 3.4 | 66 | 1.78 | | 02
SEP | | 730 | .415 | .104 | 758 | 10.0 | 96 | 94 | 27.4 | 6.22 | 2.9 | 67 | 1.89 | | 13 | | 67 | .110 | .080 | 752 | 10.9 | 94 | 120 | 35.6 | 8.68 | 3.8 | 91 | 1.68 | | | | | | | | | | SOL- | SOL- | | | | | | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CARBOR-
NATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOL-
IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | OCT
03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | NATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | FATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE
DIS-
SOLVED
(MG/L
AS F) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L) | GEN NITRITE DIS- SOLVED (MG/L AS N) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N) | | OCT
03
MAR
20 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | NATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | OCT
03
MAR
20
MAY
31 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | NATE WATER DIS IT FIELD MG/L AS CO3 (00452) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | OCT
03
MAR
20
MAY
31
JUN
22 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | NATE WATER DIS IT FIELD MG/L AS CO3 (00452) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | OCT
03
MAR
20
MAY
31
JUN | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 101 148 93 | NATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 .0 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 83 121 76 | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
38.1
33.2
27.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
10.1
14.4
8.7 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .002 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .171 .162 .066 | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.010
.048 | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | OCT
03
MAR
20
MAY
31
JUN
22
JUL
09 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 101 148 93 90 | NATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 .0 .0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
83
121
76
89 | FATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
38.1
33.2
27.6
38.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
1.5
1.3
1.4 | RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
10.1
14.4
8.7
6.6 | IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | IDS,
SUM OF
CON-
STITU-
ENTS,
DIS-
SOLVED (MG/L)
(70301) | GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .002 .001 | GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .171 .162 .066 .085 | GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.010
.048
<.002 | GEN,
AMMO-
NIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | ## 15515500 TANANA RIVER AT NENANA--Continued | DATE | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | NITRO-
GEN,
TOTAL,
SED-
IMNT
SUSP,
(WEIGHT
PERCNT)
(62845) | PHOS-
PHORUS
SEDI-
MENT
SUSP.
PER-
CENT
(30282) | ALUMI -
NUM
SED,
SUS
PER-
CENT
(30221) | ALUMI-
NUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY
SED,
SUSP.
(UG/G)
(29816) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
SED,
SUSP.
(UG/G)
(29818) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM
SED.
SUSP.
(UG/G)
(29820) | |-----------|--|---|---|--|--|--|---|--|---|---|---|--|--| | OCT
03 | .17 | .509 | E.005 | .005 | .03 | .06 | 6.2 | 18 | .8 | .20 | 9.9 | <2.0 | 710 | | MAR
20 | .10 | .028 | <.006 | <.007 | | | | 1 | | .16 | | .5 | | | MAY
31 | .19 | .331 | .007 | <.007 | <.10 | .06 | 6.4 | 19 | 1.2 | .19 | 12 | 1.0 | 710 | | JUN
22 | <.10 | 1.15 | E.005 | <.007 | <.10 | .08 | 8.0 | 21 | 1.6 | .35 | 19 | 1.1 | 950 | | JUL
09 | E.07 | .695 | E.003 | <.007 | <.10 | .07 | 7.2 | 17 | 1.5 | .28 | 14 | . 9 | 820 | | AUG
02 | .14 | 1.86 | E.004 | <.007 | <.10 | .08 | 7.4 | 20 | 1.7 | .36 | 18 | 1.1 | 870 | | SEP
13 | E.12 | E.512 | E.003 | <.007 | <.10 | .07 | 6.5 | 12 | 1.1 | .22 | 12 | .9 | 760 | | DATE | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM
SED,
SUSP.
(UG/G)
(29822) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) |
BORON
DIS-
SOLVED
(UG/L
AS B)
(01020) | CAD-
MIUM
SED.
SUSP.
(UG/G)
(29826) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM SED. SUSP. (UG/G) (29829) | CHRO-MIUM,
DIS-SOLVED
(UG/L
AS CR) | COBALT
SEDI-
MENT
SUSP.
(UG/G)
(35031) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
SED.
SUSP.
(UG/G)
(29832) | COP-
PER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON
SEDI-
MENT
SUSP.
PERCENT
(30269) | | OCT
03 | 27.9 | 1 | <.06 | 23 | . 3 | E.03 | 87 | <.8 | 14 | .20 | 29 | 2.9 | 3.2 | | MAR
20 | 47.3 | | <.06 | 20 | | E.02 | | <.8 | | .21 | | .8 | | | MAY
31 | 29.4 | 1 | <.06 | 19 | . 2 | E.02 | 89 | E.5 | 15 | .15 | 33 | 3.9 | 3.5 | | JUN
22 | 34.8 | 2 | <.06 | 25 | .2 | <.04 | 110 | E.5 | 22 | .08 | 55 | 1.7 | 4.6 | | JUL
09 | 30.0 | 2 | <.06 | 19 | . 3 | E.03 | 90 | <.8 | 19 | .10 | 46 | 1.8 | 4.0 | | AUG
02 | 31.4 | 2 | <.06 | 15 | . 4 | E.02 | 91 | <.8 | 18 | .12 | 42 | 2.8 | 4.1 | | SEP
13 | 32.5 | 1 | <.06 | 18 | .3 | E.02 | 88 | <.8 | 15 | .14 | 35 | 2.6 | 3.4 | | DATE | IRON DIS- SOLVED (UG/L AS FE) (01046) | LEAD
SED.
SUSP.
(UG/G)
(29836) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITH-
IUM
SEDI-
MENT
SUSP.
(UG/G)
(35050) | LITH-
IUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE
SED.
SUSP.
(UG/G)
(29839) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MER-
CURY
SED,
SUSP.
(UG/G)
(29841) | MOLYB-
DENUM
SED.
SUSP.
(UG/G)
(29843) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/LAS
MO)
(01060) | NICKEL
SED.
SUSP.
(UG/G0
(29845) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM
SED.
SUSP.
(UG/G)
(29847) | | OCT
03 | 80 | 10 | E.06 | 18 | E2.9 | 670 | 30.0 | .02 | <5 | 1.0 | 42 | 1.40 | M | | MAR
20 | 40 | | <.08 | | 2.8 | | 86.0 | .02 | <5
 | 1.1 | 42 | .76 | M
 | | MAY
31 | 130 | 14 | .09 | 19 | 2.5 | 730 | 20.5 | .03 | 3 | .8 | 44 | . 40 | М | | JUN
22 | 10 | 18 | <.08 | 31 | 4.2 | 890 | 3.3 | .09 | 2 | 1.1 | 54 | .47 | M | | JUL
09 | M | 15 | .14 | 27 | 3.6 | 750 | 10 | .06 | 2 | 1.0 | 49 | .56 | М | | AUG
02 | 20 | 15 | E.06 | 23 | 3.4 | 760 | 14.5 | .05 | 2 | 1.0 | 44 | .67 | М | | SEP
13 | 40 | 13 | .11 | 20 | 3.5 | 700 | 25.4 | .02 | 2 | 1.0 | 42 | .19 | М | ## 15515500 TANANA RIVER AT NENANA--Continued | DATE | SELE
NIUM
DIS-
SOLVE
(UG/
AS SE | M
- S:
ED :
L S | ILVER
SED.
SUSP.
UG/G) | SIL-
VER,
DIS-
SOLVE
(UG/I
AS AG | TIUM
SEDI
D MENT
L SUSP | TIUM, DIS- SOLVED, (UG/L AS SR) | THAL-
LIUM
SUS SED
(UG/G)
(49955) | TITA-
NIUM
SEDI-
MENT
SUSP.
PERCENT
(30317) | VANA-
DIUM
SED,
SUSP.
(UG/G)
(29853) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC
SED.
SUSP.
(UG/G)
(29855) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) | SUSP. | URA-
NIUM
NATU-
RAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |------------------|--|--|---|---|---|--|---|--|---|---|--|---|---|---| | OCT
03 | <2.4 | <.50 | 0000 | <1.0 | 240 | 157 | <50 | .390 | 100 | <10.0 | 68 | <1 | <50 | .72 | | MAR
20
MAY | .7 | | | <1.0 | | 192 | | | | .6 | | <1 | | .69 | | 31
JUN | . 4 | <.50 | 0000 | <1.0 | 230 | 137 | <50 | .390 | 100 | .6 | 77 | <1 | <50 | .64 | | 22
JUL | . 5 | <.50 | 0000 | <1.0 | 210 | 144 | < 50 | .460 | 140 | .5 | 110 | <1 | <50 | .89 | | 09
AUG | . 4 | <.50 | 0000 | <1.0 | 220 | 132 | <50 | .430 | 110 | . 5 | 98 | <1 | <50 | .77 | | 02
SEP | . 4 | <.50 | 0000 | <1.0 | 240 | 120 | <50 | .440 | 130 | .5 | 96 | 2 | <50 | .77 | | 13 | . 5 | <.50 | 0000 | <1.0 | 250 | 158 | <50 | .410 | 110 | .6 | 79 | 1 | <50 | .80 | | DATE | ORG
DI
SOI
(MG) | BON,
ANIC
IS-
LVED
/L AS
C)
681) | CARB
INO
GANI
PART
TOT
(MG/I
C) | R- (
IC, P
IC.
AL
L AS (| CARBON,
ORGANIC
ARTICU-
LATE
TOTAL
MG/L AS
C) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L AS
C)
(00694) | CARBON
SED,
SUSP.
PERCENT
(30244) | CARBON,
ORGANIC
SUS-
PENDED,
TOTAL
PERCENT
(50465) | PARTIC
LATE WA
FLT SU
(MG/L | MEI
U- SUSI
AT FLO
SP THRO
AS CENT
(MG, | NT
P., S
W- M
UGH S
RIF PI
/L) (! | EDI-
ENT,
SUS-
ENDED
MG/L)
0154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED
SUSP.
SIEVE
DIEM. %
FINER
THAN
.062 MM | | OCT
03 | E5.6 | б | | | | | .50 | . 4 | .03 | 3 6 | 560 | 802 | 79300 | 24 | | MAR
20 | 1 . | . 1 | <.1 | | . 2 | .3 | | | <.02 | 2 | | 16 | 326 | | | MAY
31 | 6.5 | 5 | <.1 | | 2.0 | 2.1 | .70 | .5 | .24 | 2 4 | 129 | 484 | 35900 | 36 | | JUN
22 | 1.9 | • | 1.1 | | 4.2 | 5.3 | .60 | .5 | .30 | 5 13 | 390 | 1440 | 208000 | 74 | | JUL
09 | 2.2 | 2 | .8 | | 4.7 | 5.5 | .60 | . 4 | .24 | 9 14 | 170 | 1550 | 227000 | 65 | | AUG
02 | 3.9 | 9 | 2.0 | | 9.5 | 12 | .30 | . 4 | .69 | 4 28 | 310 | 2890 | 771000 | 65 | | SEP
13 | E3.4 | 4 | E.3 | | E2.0 | E2.3 | .60 | .5 | E.05 | 9 7 | 756 | 709 | 67400 | | ### 15518020 HEALY CREEK AT SUNTRANA NEAR HEALY LOCATION.--Lat $63^\circ51'10''$, long $148^\circ50'26''$, in SW $^1/_4$ sec. 24, T. 12 S., R. 7 W. (Healy D-4 quad), Hydrologic Unit 19040508, on right bank 0.8 mi upstream from Suntrana Creek, 3.8 miles upstream of mouth, and 5.8 miles east-southeast of Healy, Alaska. DRAINAGE AREA. -- apporoximately 110 mi². PERIOD OF RECORD. -- September 1998 to current year (discontinued). GAGE.--Water-stage recorder. Elevation of gage is 1500 ft above sea level, from topographic map. EXTREMES FOR WATER YEAR 1998-- Maximum discharge for period September 1-30, 1998, 227 ${\rm ft}^3/{\rm s}$ September 21, gage height 18.81 ${\rm ft}$; minimum not determined, occurs during the winter. ${\tt REMARKS.--Records\ poor.\ GOES\ satellite\ telemetry\ at\ station.}$ DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------| | 1 | | | | | | | | | | | | e200 | | 2 | | | | | | | | | | | | e190 | | 3 | | | | | | | | | | | | e180 | | 4 | | | | | | | | | | | | 174 | | 5 | | | | | | | | | | | | 171 | | 3 | | | | | | | | | | | | 1/1 | | 6 | | | | | | | | | | | | 171 | | 7 | | | | | | | | | | | | 172 | | 8 | | | | | | | | | | | | 167 | | 9 | | | | | | | | | | | | 163 | | 10 | | | | | | | | | | | | 160 | | 10 | | | | | | | | | | | | 100 | | 11 | | | | | | | | | | | | 156 | | 12 | | | | | | | | | | | | 156 | | 13 | | | | | | | | | | | | 166 | | 14 | | | | | | | | | | | | 178 | | 15 | | | | | | | | | | | | 174 | | 13 | | | | | | | | | | | | 1/4 | | 16 | | | | | | | | | | | | 173 | | 17 | | | | | | | | | | | | 186 | | 18 | | | | | | | | | | | | 189 | | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | 180 | | 20 | | | | | | | | | | | | 186 | | 0.1 | | | | | | | | | | | | 100 | | 21 | | | | | | | | | | | | 190 | | 22 | | | | | | | | | | | | 174 | | 23 | | | | | | | | | | | | 170 | | 24 | | | | | | | | | | | | 172 | | 25 | | | | | | | | | | | | 171 | | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | 170 | | 27 | | | | | | | | | | | | 166 | | 28 | | | | | | | | | | | | 161 | | 29 | | | | | | | | | | | | 155 | | 30 | | | | | | | | | | | | 150 | | 31 | TOTAL | | | | | | | | | | | | 5171 | | MEAN | | | | | | | | | | | | 172 | | MAX | | | | | | | | | | | | 200 | | MIN | | | | | | | | | | | | 150 | | AC-FT | | | | | | | | | | | | 10260 | e Estimated DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES APR DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP e70 e110 e55 e60 e75 180 133 146 143 2 140 e110 e90 e70 e55 e50 e60 e70 167 110 131 138 3 139 e105 e85 e70 e55 e50 660 e65 166 111 114 218 e60 e105 e55 e60 116 5 139 e105 e85 e70 e55 e50 e55 e55 232 130 102 177 6 140 e105 e85 e65 e55 e50 e55 414 200 99 179 137 127 e100 e80 e65 e55 e50 e55 e60 589 152 87 169 e65 e55 e50 138 8 e100 e80 e55 e65 630 98 164 e125 e100 e80 e55 e50 e70 104 97 10 e125 e95 e80 e65 e55 e50 e55 e80 421 104 81 147 11 136 e95 e80 e65 e55 e50 e60 102 367 96 78 142 12 13 131 131 344 378 194 127 91 652 138 137 e90 e75 e65 e55 e50 e60 279 e75 e65 e55 e50 488 e90 e65 14 132 e90 e75 e55 e50 e70 531 345 97 304 134 15 132 e85 e75 e65 e55 e50 e75 645 256 84 431 131 16 131 e85 e75 e60 e55 e55 e80 611 382 93 360 127 17 128 e90e75 e60 e55 e55 e95 514 427 110 233 e126 128 18 e90 e75 e60 e55 e60 e110 440 264 193 e124 e80 e60 1 0 130 e95 e55 e60 e130 328 167 90 144 123 2.0 128 e95 e80 e60 e55 e65 e150 277 155 82 131 114 21 125 e95 e80 e60 e50 e65 e110 240 133 238 124 116 2.2 e120 e90e80 e60e50e65 e85 231 160 388 122 115 23 274 312 117 128 e126 e90 e75 e60 e50 e65 e65 140 e65 24 136 e90 e75 e60 e50 e70 285 137 563 302 122 25 e75 e75 403 118 131 e85 e60e50e65 120 849 355 407 26
118 e85 e75 e60 e50 e65 680 548 162 244 113 2.7 e110 e85 e75 e50 e65 e85 227 162 285 200 e60e110 e110 e85 e75 e50 e60 131 425 29 e105 e85 e70 e60 ___ 660 e95 105 142 253 159 91 e70 30 e105 e90 e60 --e60 e85 100 194 254 147 e105 ___ 31 e60 7602 5776 TOTAL 3955 2820 2425 1955 1500 1740 2305 8152 6490 4106 128 94.0 78.2 63.1 53.6 76.8 245 272 209 186 137 MEAN 56.1 218 MAX 144 110 90 70 55 65 150 645 630 849 652 MIN 105 85 70 55 50 50 55 55 120 82 78 91 7840 5590 4810 3880 2980 3450 4570 15080 16170 12870 11460 8140 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)# MEAN 128 94.0 78.2 53.6 56.1 76.8 245 272 209 186 155 94.0 1999 78.2 1999 63.1 1999 53.6 1999 56.1 1999 MAX 128 76.8 245 272 209 186 172 1999 1999 1999 1999 1999 (WY) 1999 MIN 128 94.0 78.2 63.1 53.6 56.1 76.8 245 272 209 186 137 1999 1999 1999 1999 1999 1999 1999 (WY) 1999 1999 1999 1999 1999 SUMMARY STATISTICS FOR 1999 WATER YEAR WATER YEARS 1998 - 1999# ANNUAL TOTAL 48826 ANNUAL MEAN HIGHEST ANNUAL MEAN 134 134 1999 134 LOWEST ANNUAL MEAN 134 1999 HIGHEST DAILY MEAN 849 Jul 25 Feb 21 849 Jul 25 1999 LOWEST DAILY MEAN a50 Feb 21 1999 50 ANNUAL SEVEN-DAY MINIMUM 50 Feb 21 50 Feb 21 1999 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Aug 13 1999 Aug 13 1999 1210 Aug 13 1210 13 21.69 21.69 Aug b22.13 MAXIMUM PEAK STAGE b22.13 Dec 16 1998 ANNUAL RUNOFF (AC-FT) 96850 96910 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 275 95 102 55 55 90 PERCENT EXCEEDS See period of record, partial years used in monthly statistics From Feb. 21 to Mar. 15 Backwater from ice Estimated DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | DAIL | Y MEAN | VALUES | | | | | | |---|---|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--|---------------------------------------|--|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 122
119
121
114
e111 | e65
e65
e65 | e65
e60
e60
e60 | e60
e60
e65
e55 | e60
e60
e60 | e65
e65
e65 | e70
e70
e70
e70
e70 | e95
102
100
88
68 | e270
e360
e500
e700
e1000 | 192
204
249
207
230 | 121
115
117
122
119 | e550
e480
e420
e380
e340 | | 6 | 108 | e65
e65 | e60 | e55 | e60
e60 | e65
e65 | e70
e70 | 79 | e1000
e850 | 230 | 143 | e400 | | 7
8
9
10 | e104
e104
e100
90 | e65
e65
e65
e65 | e60
e60
e60
e60 | e55
e55
e55
e55 | e60
e60
e60
e60 | e65
e65
e65
e65 | e70
e70
e70
e70 | 107
116
90
75 | e600
e400
e500
e600 | 200
188
183
266 | 148
183
245
215 | e420
e460
e420
e380 | | 11
12
13
14
15 | e85
e85
e80
e80
e80 | e65
e65
e65
e70
e70 | e60
e60
e60
e60
e60 | e55
e55
e55
e55
e55 | e60
e60
e60
e60
e60 | e65
e65
e65
e65 | e70
e70
e70
e70
e70 | e65
e60
e65
e80
e95 | e700
e500
e440
e400
329 | 498
402
241
196
191 | 686
e2500
e1500
e900
e700 | e360
e340
e330
e320
e300 | | 16
17
18
19 | e80
e75
e75
e75 | e70
e70
e75 | e60
e60
e60 | e55
e60
e60 | e60
e60
e60 | e65
e65
e65 | e70
e70
e70
e70 | 122
145
188
191 | 257
244
266
270 | 165
151
135
128 | e500
e440
560
530 | e270
e250
e240
e240 | | 20
21
22
23
24 | e75
e75
e70
e70
e70 | e75
e75
e75
e70
e70 | e65
e65
e65
e65 | e60
e65
e65
e65 | e60
e60
e60
e60 | e65
e65
e65
e65 | e75
e75
e75
e75
e80 | 160
116
e130
e150
e130 | 218
207
339
307
318 | 125
124
121
119
119 | 415
395
442
395
384 | e260
e300
e360
e350
e340 | | 25
26
27 | e70
e70
e70 | e70
e70
e65 | e65
e65
e65 | e65
e65
e65 | e60
e60
e65 | e65
e65
e65 | e80
e80
e80 | e110
e100
e110 | 308
259
265 | 125
120
129 | 450
435
418 | e320
e310
278 | | 28
29
30
31 | e70
e65
e65
e65 | e65
e65
e65 | e65
e65
e65
e60 | e65
e65
e65
e60 | e65
e65
 | e65
e65
e70
e70 | e85
e85
e90 | e120
e130
e150
e170 | 227
219
213 | 168
237
149
131 | 457
627
e1100
e700 | 311
286
274 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2643
85.3
122
65
5240 | 2035
67.8
75
65
4040 | 1920
61.9
65
60
3810 | 1845
59.5
65
55
3660 | 1755
60.5
65
60
3480 | 2025
65.3
70
65
4020 | 2210
73.7
90
70
4380 | 3507
113
191
60
6960 | 12066
402
1000
207
23930 | 5910
191
498
119
11720 | 16062
518
2500
115
31860 | 10289
343
550
240
20410 | | | | STATISTIC | S OF MON | THLY MEAN | DATA FOR | WATER Y | YEARS 1998 | - 2000, | BY WATER | YEAR (WY)# | ŧ | | | MEAN
MAX
(WY)
MIN
(WY) | 106
128
1999
85.3
2000 | 80.9
94.0
1999
67.8
2000 | 70.1
78.2
1999
61.9
2000 | 61.3
63.1
1999
59.5
2000 | 57.1
60.5
2000
53.6
1999 | 60.7
65.3
2000
56.1
1999 | 75.2
76.8
1999
73.7
2000 | 179
245
1999
113
2000 | 337
402
2000
272
1999 | 200
209
1999
191
2000 | 352
518
2000
186
1999 | 217
343
2000
137
1999 | | SUMMARY | STATIST | ics | FOR | 1999 CALEN | NDAR YEAR | | FOR 2000 W | ATER YEAR | | WATER YE | ARS 1998 | - 2000# | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MAILY MAILY MAILY MAILY MEA | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | 46224
127
849
a50
50
91690
275
75
55 | Jul 25
Feb 21
Feb 21 | | 62267
170
e2500
b55
55
c5500
28.48
123500
401
75
60 | Aug 12
Jan 4
Jan 4
Aug 12
3 Aug 12 | | 152
170
134
e2500
a50
50
c5500
28.48
110100
343
90
60 | Feb
Feb
Aug | 2000
1999
12 2000
21 1999
21 1999
21 1999
12 2000
12 2000 | [#] See period of record, partial years used in monthly statistics a From Feb. 21 to Mar. 15 b From Jan. 4 to Jan. 16 c From rating curve extended above 450 ft³/s on basis of slope-area measurement of peak flow e Estimated DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DIBCHA | KGE, CODI | C PEET F | DAIL' | | VALUES | 3EK 2000 | TO DEFTEME. | EK 2001 | | | |--------------|----------------------|-----------------|--------------------------------------|---------------------------------|--------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------|--------------|------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 265 | e170 | e120 | e100 | e95 | e95 | e75 | e200 | 309 | 161 | 517 | 150 | | 2 | 265 | | | e100 | | | e75 | e190 | 463 | 170 | 372 | 162 | | 3 | 247 | e170 | e120 | | e95 | e95 | e75 | e180 | 588 | 162 | 487 | 597 | | 4 | 258 | e170 | e120
e120
e110 | e100
e100 | e95
e95
e95 | e95
e95
e95 | e75 | e160 | 706 | 172 | 523 | 355 | | 5 | 261 | e160 | e110 | e100 | e95 | e95 | e75 | e150 | 698 | 176 | 325 | 306 | | 6 | 257 | | | e100 | e95 | e95 | e75 | e160 | 764 | 369 | 377 | 310 | | 7 | 253 | e160 | e110 | e100 | e95 | e95 | e75 | e170 | 417 | 466 | 308 | 273 | | 8 | 257 | e160 | e110 | e100 | e95 | e95 | e75 | e200 | 194 | 298 | 256 | 265 | | 9 | 244 | e160 | e110
e110 | e100 | e95 | e95 | e75 | e230 | 238 | 219 | 262 | 263 | | 10 | 241 | e160 | CIIO | e100 | e95 | e95 | e75 | e230 | 279 | 173 | 261 | 239 | | 11 | 236 | e160 | e110
e105 | e100
e100 | e95 | e95 | e80 | e220 | 305 | 176 | 289 | 228 | | 12 | 230 | e160 | e105 | e100 | e95 | e95 | e80 | e200 | 488 | 143 | 276 | 219 | | 13 | 248 | e150 | e105
e105 | e100
e100 | e95 | e95 | e80 | e220 | 306 | 134 | 259 | 214 | | 14
15 | 256
252 | | e105
e105 | e100
e100 | e95
e95
e95 | e95 | e80 | e260
e320 | 233
219 | 143
138 | 237
230 | 206
201 | | 13 | 252 | | | | | e90 | e80 | e320 | 219 | 138 | | 201 | | 16 | 239 | e150 | e105
e105
e105
e105
e105 | e100
e100
e100
e100 | e95
e95
e95
e95 | e90
e85
e85
e80
e80 | e80
e80
e80
e80
e85 | e250 | 267 | 142 | 259 | 198 | | 17
18 | 235 | e150 | e105 | e100 | e95 | e85 | e80 | e170 | 325
365 | 144
158 | 240
208 | 196
199 | | 19 | 225
224 | e140
e140 | 0105 | 0100 | e95 | 080 | 280 | 179
235 | 334 | 151 | 208 | 199 | | 20 | 210 | e140 | e105 | e100 | e95 | e80 | e85 | 301 | 296 | 147 | 208 | 186 | | | | | | | | | | | | | | | | 21 | 201 | | | e100 | e95 | e75 | e90 | 304 | 294 | 140 | 229 | 184 | | 22 | e200 | e140 | e105 | e100 | e95 | e75 | e100 | 276 | 278 | 135 | 281 | 182 | | 23
24 | e195
e190 | e130
e130 | e105 | e100 | e95 | e75
e75 | e110
e120 | 2// | 314
252 | 150
205 | 321
371 | 175
172 | | 25 | e200 | e130 |
e105
e105
e105 | e100
e100
e100 | e95
e95
e95
e95 | e75 | e130 | 276
277
223
182 | 230 | 345 | 264 | 170 | | | | | | | | | | | | | | | | 26 | 189 | e130 | e105
e105
e105
e100
e100 | e95
e95
e95
e95
e95 | e95
e95
e95 | e75 | e140 | 176
231
298
233
212 | 194 | 456 | 192 | 167 | | 27 | 173 | e120 | e105 | e95 | e95 | e75 | e150 | 231 | 164 | 635 | 212 | 164 | | 28 | e180 | e120
e120 | e105 | e95 | e95 | e75 | e160 | 298 | 166 | 443 | 188 | 162 | | 29
30 | e180
e180 | e120
e120 | e100 | e95 | | e75
e75 | e180
e190 | 233 | 220
232 | 620
1000 | 180
178 | 158
146 | | 31 | e170 | | e100 | 295 | | e75 | | 201 | 232 | 806 | 157 | 140 | | | | | | | | | | | | | | | | TOTAL | 6961 | 4410 | 3325
107 | 3070
99.0
100 | 2660
95.0
95
95 | 2665 | 2925
97.5
190 | 6838
221 | 10138 | 8777 | 8669 | 6637 | | MEAN | 225 | 147 | 107 | 99.0 | 95.0 | 86.0 | 97.5 | 221 | 338 | 283 | 280 | 221 | | MAX | 265 | 170 | | 100
95 | 95 | 95 | 190 | 320
150 | 764
164 | 1000 | 523
157 | 597 | | MIN
AC-FT | 170
13810 | 120
8750 | 100
6600 | 6090 | 5280 | 2665
86.0
95
75
5290 | 75
5800 | 13560 | 20110 | 134
17410 | 17190 | 146
13160 | | | | CTATTCTT(| TO OF MONT | TUIV MEN | N DATA FOR | | VENDC 1000 | | | TND (MV)# | | | | | | | | INDI MEA | N DATA FOR | WAIEK | IEARS 1990 | - 2001, | DI WAIEK I | EAR (WI)# | | | | MEAN | 146 | 103 | 82.5
107
2001
61.9 | 73.9 | 69.6 | 69.1 | | 193 | 337 | 228 | 328 | 218 | | MAX | 225 | 147 | 107 | 99.0 | 95.0 | 86.0 | 97.5 | 245 | 402 | 283 | 518 | 343 | | (WY) | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 1999 | 2000 | 2001 | 2000 | 2000 | | MIN | 85.3 | 67.8 | 61.9 | 59.5 | 53.6 | 56.1 | 73.7 | 113 | 272 | 191 | 186 | 137 | | (WY) | 2000 | 2000 | 2000 | 2000 | 1999 | 1999 | 2000 | 2000 | 1999 | 2000 | 1999 | 1999 | | SUMMARY | Y STATIST | ICS | FOR 2 | 2000 CAL | ENDAR YEAR | | FOR 2001 W | NATER YEA | R | WATER YE | ARS 1998 | - 2001# | | ANNUAL | | | | 70365 | | | 67075 | | | | | | | ANNUAL | | | | 192 | | | 184 | | | 163 | | | | | r annual | | | | | | | | | 184 | | 2001 | | | ANNUAL M | | | 0500 | . 10 | | 1000 | T 1 2 | 0 | 134 | | 1999 | | | DAILY M
DAILY ME. | | | 2500 | Aug 12
Jan 4 | | 1000 | JUL 3 | U
1 | 2500
a50 | Aug | 21 1000 | | | | AN
Y MINIMUM | | a55
55 | Jan 4
Jan 4 | | b75
75 | Mar 2 | <u>+</u>
1 | 50 | ren
Feh | 21 1999 | | | M PEAK FL | | | 55 | Juli 1 | | 1160 | Jul 3 | 0 | d5500 | Aug | 12 2000 | | | M PEAK ST. | | | | | | 21.5 | 6 Jul 3 | 0 | 28.48 | Aug | 12 2000 | | | RUNOFF (. | | | 139600 | | | 133000 | | | 117800 | | | | | CENT EXCE | | | 401 | | | 305 | | | 320 | | | | | CENT EXCE | | | 121 | | | 158 | | 0
1
1
0
0 | 106 | | | | 90 PERG | CENT EXCE | EDS | | 60 | | | 90 | | | 60 | | | See period of record, partial years used in monthly statistics From Jan. 4 to Jan. 16 From Mar. 21 to Apr. 10 From Feb. 21 to Mar. 15, 1999 From rating curve extended above 450 ft³/s on basis of slope-area measurement of peak flow Estimated ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1975 to 1978, 1998 to current year | | | | | DIS- | | | | | | SEDI- | SED. | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | CHARGE, | | | | | | MENT, | SUSP. | | | | | | INST. | | | | | SEDI- | DIS- | SIEVE | | | | | | CUBIC | SAM- | | TEMPER- | TEMPER- | MENT, | CHARGE, | DIAM. | | | | STREAM | GAGE | FEET | PLING | SAMPLER | ATURE | ATURE | SUS- | SUS- | % FINER | | DATE | TIME | WIDTH | HEIGHT | PER | METHOD, | TYPE | WATER | AIR | PENDED | PENDED | THAN | | | | (FT) | (FEET) | SECOND | CODES | (CODE) | (DEG C) | (DEG C) | (MG/L) | (T/DAY) | .062 MM | | | | (00004) | (00065) | (00061) | (82398) | (84164) | (00010) | (00020) | (80154) | (80155) | (70331) | | MAY | | | | | | | | | | | | | 17 | 1620 | 68.0 | 18.84 | 162 | 10 | 3001 | 4.5 | 12.5 | 646 | 283 | 46 | | JUN | | | | | | | | | | | | | 28 | 1354 | 41.0 | 19.03 | 146 | 10 | 3001 | 11.5 | 16.5 | 93 | 37 | 33 | | AUG | | | | | | | | | | | | | 30 | 1554 | 73.0 | 19.02 | 173 | 10 | 3001 | 9.5 | 17.5 | 34 | 16 | | ### 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY LOCATION.--Lat $63^{\circ}54'17''$, long $148^{\circ}59'01''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 6, T. 11 S., R. 7 W. (Healy D-4 quad), Hydrologic Unit 19040508, on right bank 300 ft downstream from culverts on access road to Usibelli Coal Mine office, 1,000 ft upstream from mouth, and 3.5 mi north of Healy. DRAINAGE AREA. -- 48.1 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,300 ft above sea level, from topographic map. Prior to May 22, 1987 on left bank, 400 ft upstream at same datum. From May 22, 1987 to September 30, 1997 on left bank, 300 ft upstream at same datum. REMARKS.--Records fair except for estimated daily discharges which are poor. Precipitation gage at station; daily values of precipitation are available from the computer files of the Alaska District. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------------|-------------|------------|-------------|-----------|------------|------------|-----------|--------------|-------------|-------------|--------------|------------| | 1 | 24 | e28 | e21 | e16 | e15 | e14 | e11 | e46 | 37 | 21 | 121 | 28 | | 2 | e26 | e27 | e20 | e16 | e15 | e14 | e11 | e42 | 40 | 21 | 69 | 29 | | 3 | e31 | e27 | e20 | e16 | e15 | e14 | e11 | e36 | 39 | 21 | 87 | 50 | | 4 | e36 | e27 | e20 | e16 | e15 | e14 | e11 | e40 | 40 | 21 | 118 | 36 | | 5 | e35 | e27 | e20 | e16 | e15 | e14 | e11 | 76 | 38 | 23 | 69 | 34 | | 6 | e32 | e27 | e19 | e16 | e15 | e14 | e11 | 60 | 35 | 45 | 56 | 36 | | 7 | e30 | e27 | e19 | e16 | e15 | e14 | e11 | 53 | 36 | 64 | 48 | 33 | | 8 | e29 | e27 | e19 | e16 | e15 | e14 | e11 | 62 | 34 | 50 | 44 | 38 | | 9 | e28 | e26 | e19 | e16 | e15 | e14 | e11 | 78 | 31 | 33 | 41 | 34 | | 10 | e27 | e26 | e19 | e16 | e15 | e14 | e12 | 75 | 33 | 26 | 39 | 30 | | 11 | e26 | e26 | e19 | e16 | e15 | e14 | e12 | 54 | 32 | 23 | 46 | 30 | | 12 | e26 | e26 | e18 | e16 | e15 | e14 | e12 | 56 | 49 | 21 | 56 | 29 | | 13 | e27 | e26 | e18 | e16 | e15 | e14 | e12 | 77 | 41 | 21 | 47 | 28 | | 14 | e28 | e26 | e18 | e16 | e15 | e14 | e12 | 110 | 34 | 22 | 41 | 28 | | 15 | e30 | e26 | e18 | e16 | e15 | e14 | e12 | 98 | 31 | 20 | 39 | 26 | | 16 | e34 | e26 | e18 | e16 | e15 | e14 | e12 | 82 | 29 | 19 | 42 | 26 | | 17 | e36 | e26 | e18 | e16 | e15 | e13 | e12 | 44 | 28 | 23 | 44 | 26 | | 18 | e35 | e26 | e18 | e16 | e15 | e13 | e13 | 49 | 27 | 28 | 43 | 24 | | 19 | e34 | e25 | e17 | e16 | e15 | e12 | e14 | 88 | 27 | 22 | 39 | 24 | | 20 | e32 | e25 | e17 | e16 | e15 | e12 | e15 | 89 | 26 | 20 | 40 | 24 | | 21 | e31 | e24 | e17 | e16 | e15 | e12 | e16 | 70 | 24 | 20 | 44 | 24 | | 22 | e30 | e24 | e17 | e16 | e14 | e11 | e17 | 64 | 23 | 22 | 41 | 24 | | 23 | e30 | e23 | e17 | e16 | e14 | e11 | e19 | 67 | 22 | 22 | 46 | 23 | | 24 | e29 | e23 | e17 | e16 | e14 | e11 | e20 | 53 | 21 | 50 | 47 | 23 | | 25 | e29 | e22 | e17 | e16 | e14 | e11 | e22 | 42 | 21 | 52 | 39 | 23 | | 26 | e29 | e22 | e17 | e16 | e14 | e11 | e24 | 38 | 21 | 92 | 38 | 23 | | 27 | e29 | e22 | e17 | e15 | e14 | e11 | e27 | 42 | 21 | 144 | 36 | 23 | | 28 | e29 | e21 | e17 | e15 | e14 | e11 | e32 | 43 | 21 | 93 | 33 | 23 | | 29 | e28 | e21 | e16 | e15 | | e11 | e38 | 38 | 21 | 92 | 31 | 22 | | 30 | e28 | e21 | e16 | e15 | | e11 | e48 | 35 | 23 | 161 | 31 | 23 | | 31 | e28 | | e16 | e15 | | e11 | | 34 | | 191 | 28 | | | TOTAL | 926 | 750 | 559 | 491 | 413 | 396 | 500 | 1841 | 905 | 1483 | 1543 | 844 | | MEAN | 29.9 | 25.0 | 18.0 | 15.8 | 14.8 | 12.8 | 16.7 | 59.4 | 30.2 | 47.8 | 49.8 | 28.1 | | MAX | 36 | 28 | 21 | 16 | 15 | 14 | 48 | 110 | 49 | 191 | 121 | 50 | | MIN | 24 | 21 | 16 | 15 | 14 | 11 | 11 | 34 | 21 | 19 | 28 | 22 | | MED | 29 | 26
1490 | 18 | 16
974 | 15 | 14 | 12
992 | 54 | 30 | 23 | 43 | 26
1670 | | AC-FT
CFSM | 1840
.62 | .52 | 1110
.37 | .33 | 819
.31 | 785
.27 | .35 | 3650
1.23 | 1800
.63 | 2940
.99 | 3060
1.03 | .58 | | IN. | .72 | .52 | . 43 | .33 | .31 | .31 | .35 | 1.42 | .70 | 1.15 | 1.19 | .65 | | TIN. | . / 4 | . 50 | . 43 | . 30 | . 24 | | | 1.74 | . / 0 | T. T. | エ・エン | .05 | e Estimated ## 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2001, BY WATER YEAR (WY)# | MEAN 22.8 16.0
MAX 47.4 25.4
(WY) 1994 1994
MIN 10.3 4.87
(WY) 1988 1988 | 12.2 9.99 8.43
20.0 18.7 20.6
1987 1995 1994
1.65 .95 .000
1988 1986 1986 | 19.1 45.5 166
1994 1994 1992
.000 .000 40.1 | 64.1 44.4 50.2 42.5
145 77.0 112 134
1989 1986 2000 1990
30.2 25.6 22.7 17.6
2001 1996 1999 1987 | |--|---|---|---| | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1985 - 2001# | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 14423.0 39.4 700 Aug 12 a7.0 Jan 12 7.2 Jan 9 28610 .82 11.15 96 25 8.0 | 10651 29.2 191 Jul 31 b11 Mar 22 11 Mar 22 236 Jul 31 3.48 Jul 31 95.44 Apr 20 21130 .61 8.24 49 23 14 | 31.3
43.6
21.1
1999
852
Jun 25 1989
c.00 Feb 1 1986
.00 Feb 1 1986
d2400 Aug 21 1986
f11.05 Aug 21 1986
22670
.65
8.84
68
20
5.0 | [#] See Period of Record, partial years used in monthly statistics a From Jan. 12 to 15 b From Mar. 22 to Apr. 9 c From Feb. 1 to Apr. 30, 1986 d Estimated discharge from rating curve extended above 280 ft³/s based on surface-float measurement at gage Estimated f At site then in use, same datum g Backwater from snow and ice ## 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1980 to 1981, 1986 to current year | DATE | TIME | STREAN
WIDTH
(FT)
(00004 | HEIGHT | SECOND | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | SED.
SUSP.
FALL
DIAM. %
FINER
THAN
.004 MM
(70338) | SED.
SUSP.
FALL
DIAM. %
FINER
THAN
.008 MM
(70339) | SED.
SUSP.
FALL
DIAM. %
FINER
THAN
.016 MM
(70340) | |------------------|---------|-----------------------------------|--|--|--|--|--|--|---|-----|---|---|---| | MAY | 1000 | 20 (| | | 1.0 | 2001 | 1 5 | E 420 | 1260 | 1.0 | 0.4 | 2.4 | 4.2 | | 16
JUN | 1903 | 32.0 | 3.24 | 93 | 10 | 3001 | 1.5 | 5430 | 1360 | 17 | 24 | 34 | 43 | | 28
JUL | 2050 | 22.6 | 2.30 | 20 | 10 | 3001 | 17.5 | 106 | 5.8 | | | | | | 27 | 1157 | 45.0 | 3.32 | 150 | 10 | 3001 | 9.0 | 6660 | 2700 | 12 | 18 | 26 | 34 | | AUG
30 | 1939 | 12.4 | 2.81 | 29 | 10 | 3001 | 21.0 | 53 | 4.2 | | | | | | DATE | %
.0 | THAN
31 MM | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(70332) | SED.
SUSP.
SIEVE
DIAM.
FINER
THAN
.250 MM
(70333) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.500 MM
(70334) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(70335) | SED.
SUSP
SIEVE
DIAM
% FINE
THAN
2.00 MI
(70336 | R | | | | | | MAY
16
JUN | | 50 | 54 | 67 | 87 | 98 | 99 | 100 | | | | | | | 28
JUL | | | 69 | | | | | | | | | | | | 27
AUG | | 40 | 42 | 55 | 75 | 91 | 97 | 98 | | | | | | | 30 | | | | | | | | | | | | | | #### 15564879 SLATE CREEK AT COLDFOOT $\text{LOCATION.--Lat } 67^{\circ}15'17'', \text{ long } 150^{\circ}10'24'', \text{ in } \text{NW}^{1}/_{4} \text{ sec. } 15, \text{ T. 28 N., R. 12 W. (Wiseman B-1 quad), Hydrologic Unit } 19040601, \text{ on left bank } 80 \text{ ft downstream from bridge on Dalton Highway, 1.1 mi upstream from mouth and 0.1 mi north of Coldfoot. }$ DRAINAGE AREA. -- 73.4 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Annual maximums, water years 1981-94. May 1995 to current year (no winter records in water years 1995-98). REVISED RECORDS.--WRD AK-99-1: 1984(M), 1989(M), 1993(M), 1994(M), 1998 (M). GAGE.--Water-stage recorder. Elevation of gage is 1050 ft above sea level, from topographic map. Prior to May 5, 1995, nonrecording gage at site 145 ft upstream at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHA | RGE, CUB | IC FEET PER | | | YEAR OCTO | DBER 2000 1 | O SEPTEM | IBER 2001 | | | |---------------------|--------------------------|---------------------------|--------------------------------------|--------------------------------------|--------------|--------------|------------------------------|-----------------------------|---------------------------------|---|-----------------------------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e78 | e16 | e4.0 | e.40
e.40
e.40
e.40
e.40 | e.00 | e.00 | e.00 | e.00 | 478
599
791
797
574 | 79
71
67
65
62 | 68 | 109 | | 2 | e74
e68 | e15
e15 | e3.8
e3.4 | e.40
e.40 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e.00
e.00 | 599
791 | 71
67 | 68
68 | 102
95 | | 4 | e64 | e14 | e3.2 | e.40 | e.00 | e.00 | e.00 | e.00
e.00 | 797 | 65 | 65 | 92 | | 5 | e58 | e14 | e3.0 | e.40 | e.00 | e.00 | e.00 | e.00 | 5,1 | 02 | 63 | 96 | | 6
7 | e56
e52 | e14
e13 | e2.8
e2.6 | e.40
e.20 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e.20
e.40 | 738
694 | 62
58 | 61
59 | 95
95 | | 8 | e48 | e13 | e2.4 | e.20 | e.00 | e.00 | e.00 | e.80 | 526 | 54 | 57 | 94 | | 9
10 | e46
e43 | e12
e12 | e2.8
e2.6
e2.4
e2.2
e2.0 | e.40
e.20
e.20
e.20
e.20 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e1.0
e1.5 | 487
559 | 62
58
54
51
51 | 61
59
57
61
104 | 94
93 | | 11 | e40 | e12 | e2.0 | e.20 | e.00 | e.00 | e.00 | e2.0 | 409 | 51 | 155 | 91 | | 12
13 | e38
e37 | e11
e11 | e1.8 | e.20
e.20
e.00
e.00
e.00 | e.00 | e.00 | e.00 | e3.0 | 293 | 51
60
61
68
67 | 191
347 | 90
88 | | 14 | | ell
ell | e1.6
e1.6 | e.00 | e.00 | e.00 | e.00 | e6.0 | 224 | 68 | 1500 | 88 | | 15 | e35 | | e1.4 | e.00 | e.00 | e.00 | e.00 | | 167 | 67 | 1300 | 99 | | 16
17 | e34
e34 | e10
e10
e10
e9.8 | e1.4 | e.00
e.00
e.00
e.00
e.00 | e.00 | e.00 | e.00
e.00
e.00
e.00 | e12
e16 | 152
156 | 60
63 | 780
463 | 121
117 | | 18 | e33
e32 | e10 | e1.2 | e.00 | e.00 | e.00 | e.00 | e24 | 158 | 67 | 277 | 113 | | 19
20 | e32
e31 | e9.8
e9.0 | e1.0
e1.0 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e40
e60 | 154
128 | 61
67 | 222
195 | 106
102 | | 21 | | | e1.0 | e.00 | e.00 | e.00 | e.00 | | | | 176 | 99 | | 22 | e28
e26
e25
e24 | e7.8 | e.80 | e.00
e.00
e.00
e.00
e.00 | e.00 | e.00 | e.00 | e110 | 116
108
102
96
91 | 87
81
71
65
61 | 146 | 99 | | 23
24 | e26
e25 | e7.4
e6.6 | e.80
e.80 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e.00
e.00 | e140
e160 | 102
96 | 71
65 | 128
121 | 96
93 | | 25 | e24 | e6.2 | e.80 | e.00 | e.00 | e.00 | e.00 | e190 | 91 | 61 | 115 | 89 | | 26
27 | e23 | e5.8 | e.60 | e.00 | e.00 | e.00 | e.00 | e210 | 89 | 58 | 112 | 85 | | 28 | e21 | e5.4
e5.0 | e.60
e.60 | e.00 | e.00 | e.00 | e.00
e.00 | e280 | 73 | 54
57 | 107 | 80 | | 29
30 | e19 | e4.6 | e.60 | e.00 | | e.00 | e.00 | 362 | 77 | 72 | 98 | 77 | | 31 | e17 | | e.60 | e.00 | | e.00 | | 403 | | 58
54
57
72
77
72 | 93 | | | TOTAL | 1188 | 304.6 | 51.40 | 3.60 | 0.00 | 0.00 | 0.00 | 2760.90 | 9247 | 2000
64.5
87
51
3970
.88
1.01 | 7396 | 2858 | | MEAN
MAX | 38.3 | 10.2 | 1.66 | .12 | .000 | .000 | .000 | 89.1
403 | 308
797 | 64.5
87 | 239
1500 | 95.3
121 | | MIN | 17 | 4.4 | .60 | .00 | .00 | .00 | .00 | .00 | 73 | 51 | 57 | 76 | | AC-FT
CESM | 2360
52 | 604
14 | 102
02 | 7.1 | .00 | .00 | .00 | 5480
1 21 | 18340
4 20 | 3970
88 | 14670
3 25 | 5670
1 30 | | IN. | .60 | .15 | .03 | .00 | .00 | .00 | .00 | 1.40 | 4.69 | 1.01 | 3.75 | 1.45 | | | | STATISTIC | CS OF MON | THLY MEAN I | DATA FOR | WATER | YEARS 199 | | | YEAR (WY)# | <u> </u> | | | MEAN | 45.5 | 16.1 | 9.27 | 5.42
12.1
1999
.12
2001 | 3.83 | 3.08 | 4.34 | 208
378 | 207
308 | 101
184 | 209
435
1998
121
1996 | 152 | | MAX
(WY) | 1999 | 1999 | 17.3 | 1999 | 1999 | 1999 | 9.32
1998
.000 | 1998 | 2001 | 1995 | 1998 | 1998 | | MIN | 16.2 | 2.28 | 1.66 | .12 | .000 | .000 | .000
2001 | 378
1998
71.7
2000 | 128 | 54.7 | 121 | 71.7 | | | | | | | | | | | | | | | | ANNUAL ' | | ICS | FOR | 23241.80 | DAR YEAR | | 25809. | | | WATER YE | ARS 1995 | - 2001# | | ANNUAL I | | | | 63.5 | | | 70. | | | 73.5 | | | | | ANNUAL
ANNUAL M | | | | | | | | | 84.0
65.9 | | 1999
2000 | | | DAILY M | EAN | | 802 | Jun 7 | | 1500 | Aug 14 | | 65.9
a2850
c.00
.00
d4930
19.73
53280 | May 2 | 6 1998 | | | DAILY ME | AN
Y MINIMUM | | b.60 | Dec 26 | | C. | 00 Jan 13 | | c.00 | Jan 1 | 3 2001 | | | PEAK FL | OW | | .03 | DCC 23 | | 2510 | Aug 14 | | d4930 | May 2 | 6 1998 | | MAXIMUM
ANNIIAT. | PEAK ST | AGE
AC-FT) | | 46100 | | | 18.
51190 | 01 Aug 14 | | 19.73 | May 2 | 6 1998 | | ANNUAL | RUNOFF (| CFSM) | | .87
11.78 | | | | | | | | | | ANNUAL 1 | RUNOFF (
ENT EXCE | INCHES)
EDS | | 46100
.87
11.78
138 | | | 13.
154 | | | 13.61
249 | | | | 50 PERC. | ENT EXCE | EDS | | 10 | | | 11 | | | 66 | | | | 90 PERC | ENT EXCE | EDS | | 2.0 | | | • | 00 | | 2.0 | | | See Period of Record; partial years used in monthly summary statistics Revised in 1999 from 2740 ft 3 /s From Dec. 26 to 31 From Jan. 13 to May 5 From rating curve extended above 2,190
ft 3 /s on basis of slope-area measurement at discharge 4,700 ft 3 /s, gage height 19.6 ft Fstimated Estimated #### 15564879 SLATE CREEK AT COLDFOOT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1998 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May 1998 to current year (seasonal). INSTRUMENTATION.--Water-temperature recorder since May 11, 1998. Electronic water temperature recorder set for 1hour recording interval. REMARKS.--No record October 1 to May 27 due to probe frozen in ice. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on June 21 and August 22. No variation was found within the cross section on both dates. The variation found between mean stream temperature and sensor temperature was less than 0.5°C . EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum, 14.5° C, July 5 and 21, 1998; minimum, 0.0° C, on many days during spring break up and winter periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 14.0°C, July 23; minimum, 0.0°C, several days in May and June. | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |------|------|------------------------------------|--|-------------------------------------|---|---|---| | JUN | | | | | | | | | 21 | 1437 | 54.0 | 16.0 | 14.14 | 118 | 9.5 | 22.0 | | 21 | 1439 | 54.0 | 24.0 | 14.14 | 118 | 9.5 | 22.0 | | 21 | 1441 | 54.0 | 32.0 | 14.14 | 118 | 9.5 | 22.0 | | 21 | 1443 | 54.0 | 40.0 | 14.14 | 118 | 9.5 | 22.0 | | 21 | 1445 | 54.0 | 48.0 | 14.14 | 118 | 9.5 | 22.0 | | AUG | | | | | | | | | 22 | 2012 | 60.0 | 6.00 | 14.10 | 146 | 9.0 | 14.0 | | 22 | 2013 | 60.0 | 16.0 | 14.10 | 146 | 9.0 | 14.0 | | 22 | 2014 | 60.0 | 26.0 | 14.10 | 146 | 9.0 | 14.0 | | 22 | 2015 | 60.0 | 36.0 | 14.10 | 146 | 9.0 | 14.0 | | 22 | 2016 | 60.0 | 46.0 | 14.10 | 146 | 9.0 | 14.0 | | 22 | 2017 | 60.0 | 56.0 | 14.10 | 146 | 9.0 | 14.0 | ## 15564879 SLATE CREEK AT COLDFOOT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | |---|---|--|--|---|--|--|---|--|--|---|--|--| | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14
15 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18
19 | | | | | | | | | | | | | | 20 | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23
24 | | | | | | | | | | | | | | 25 | 26 | | | | | | | | | | | | | | 27
28 | | | | | | | | | | 2.0 | .0 | .5 | | 29 | | | | | | | | | | 2.0 | .0 | 1.0 | | 30 | | | | | | | | | | 2.0 | .0 | .5 | | 31 | | | | | | | | | | 1.5 | .0 | . 5 | | MONTH | DAY | MAX | MTN | MEAN | MAX | MTN | MEAN | MAX | MTN | MEAN | MΔΥ | MIN | ME AN | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | IR. | | 1 | 2.0 | JUNE | 1.0 | 12.5 | JULY
6.5 | 9.5 | 10.0 | AUGUST | 8.0 | 9.5 | SEPTEMBE 7.0 | ER
8.0 | | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | IR. | | 1
2 | 2.0
2.0
2.5
1.5 | JUNE
.0
.0 | 1.0 | 12.5
12.5 | JULY
6.5
7.0 | 9.5
10.0 | 10.0
9.0 | AUGUST
6.0
7.0 | 8.0
8.0 | 9.5
9.5 | 7.0
5.0 | 8.0
7.5 | | 1
2
3 | 2.0
2.0
2.5 | JUNE
.0
.0 | 1.0
1.0
1.0 | 12.5
12.5
13.0 | JULY
6.5
7.0
6.5 | 9.5
10.0
10.0 | 10.0
9.0
10.0 | AUGUST
6.0
7.0
6.0 | 8.0
8.0
8.0 | 9.5
9.5
9.5 | 7.0
5.0
6.0 | 8.0
7.5
7.5 | | 1
2
3
4
5 | 2.0
2.0
2.5
1.5
3.5 | JUNE
.0
.0
.0
.5 | 1.0
1.0
1.0
1.0 | 12.5
12.5
13.0
11.0
9.0 | JULY 6.5 7.0 6.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0 | 10.0
9.0
10.0
10.5
9.5 | 6.0
7.0
6.0
5.0
7.0 | 8.0
8.0
8.0
7.5
8.0 | 9.5
9.5
9.5
8.0
8.0 | 7.0
5.0
6.0
6.5
6.5 | 8.0
7.5
7.5
7.0
7.0 | | 1
2
3
4
5 | 2.0
2.0
2.5
1.5
3.5 | JUNE .0 .0 .0 .5 .5 | 1.0
1.0
1.0
1.0
2.0 | 12.5
12.5
13.0
11.0
9.0 | JULY 6.5 7.0 6.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0 | 10.0
9.0
10.0
10.5
9.5 | 6.0
7.0
6.0
5.0
7.0 | 8.0
8.0
8.0
7.5
8.0 | 9.5
9.5
9.5
8.0
8.0 | 7.0
5.0
6.0
6.5
6.5 | 8.0
7.5
7.5
7.0
7.0 | | 1
2
3
4
5 | 2.0
2.0
2.5
1.5
3.5 | JUNE
.0
.0
.0
.5 | 1.0
1.0
1.0
1.0 | 12.5
12.5
13.0
11.0
9.0 | JULY 6.5 7.0 6.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0 | 10.0
9.0
10.0
10.5
9.5 | 6.0
7.0
6.0
5.0
7.0 | 8.0
8.0
8.0
7.5
8.0 | 9.5
9.5
9.5
8.0
8.0 | 7.0
5.0
6.0
6.5
6.5 | 8.0
7.5
7.5
7.0
7.0 | | 1
2
3
4
5
6
7
8
9 | 2.0
2.5
1.5
3.5
6.0
4.0 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.0
7.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0 | 8.0
8.0
8.0
7.5
8.0
7.5
7.5
8.0
8.5 | 9.5
9.5
9.5
8.0
7.5
8.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0 | | 1
2
3
4
5 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0 | JUNE .0 .0 .0 .5 .5 .5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 6.0 5.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.0
 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0 | 8.0
8.0
8.0
7.5
8.0
7.5
8.0 | 9.5
9.5
9.5
8.0
8.0
7.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5 | 8.0
7.5
7.5
7.0
7.0 | | 1
2
3
4
5
6
7
8
9 | 2.0
2.0
2.5
1.5
3.5
6.0
5.0
7.0 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 2.0 1.5 | 1.0
1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.0
4.0 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.5 5.5 6.0 5.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5 | 8.0
8.0
8.0
7.5
8.0
7.5
8.0
8.5 | 9.5
9.5
9.5
8.0
8.0
7.5
6.5
7.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.0
5.5
5.5
3.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
6.0 | | 1
2
3
4
5
6
7
8
9 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.0 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0 | 8.0
8.0
8.0
7.5
8.0
7.5
8.0
8.5
8.5 | 9.5
9.5
9.5
8.0
7.5
8.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0 | | 1
2
3
4
5
6
7
8
9
10 | 2.0
2.0
2.5
1.5
3.5
6.0
5.0
7.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.0
4.0 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5 | 8.0
8.0
8.0
7.5
8.0
7.5
8.0
8.5 | 9.5
9.5
9.5
8.0
8.0
7.5
8.0
7.5
6.5
7.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.0
5.5
5.5
3.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
7.0
7.5
7.0
8.0
6.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
4.5
4.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
8.5
9.0
9.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.5
6.5 | 8.0
8.0
7.5
8.0
7.5
8.0
8.5
8.5
7.0
7.0
6.5 | 9.5
9.5
9.5
8.0
8.0
7.5
8.0
7.5
6.5
7.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
5.0
5.5
5.5 | | 1
2
3
4
5
6
7
8
9
10 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.5
7.0
8.0 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 1.5 2.0 2.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.0
4.0 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5
9.5
9.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
8.5
7.5
7.0 | 9.5
9.5
9.5
9.5
8.0
8.0
7.5
6.5
7.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
3.5 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2.0
2.0
2.5
1.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.0
4.0
4.5
5.5
4.5 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5
9.5
9.5
9.5
11.0
11.5
11.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.0
6.0 | 8.0
8.0
7.5
8.0
7.5
8.0
8.5
8.5
7.0
7.0
6.5 | 9.5
9.5
9.5
9.5
8.0
8.0
7.5
6.5
7.0
7.5
6.5
6.0
6.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.0
5.5
3.0
4.0
3.5
4.0
5.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5
5.5
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.5
6.0
7.0 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.5
6.5 | 8.0
8.0
7.5
8.0
7.5
8.0
8.5
8.5
7.0
7.0
6.5 | 9.5
9.5
9.5
8.0
8.0
7.5
8.0
7.5
6.5
7.0 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
5.0
5.5
5.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2.0
2.0
2.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
4.5
5.5
6.0
7.0 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 7.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.0
6.0
5.0 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
8.5
7.0
6.5
5.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
6.5
6.0
6.5
6.0
6.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
5.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5
5.5
5.0
5.0
4.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
7.0
7.5
7.0
8.0
8.5 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 3.5 4.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
4.5
5.5
5.0 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 9.0 7.5 | 9.5
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.5
9.5
10.0
9.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.5
6.5
6.5
6.5
6.0
5.0 | 8.0
8.0
7.5
8.0
7.5
8.5
8.5
7.0
6.5
5.5
6.0
5.5
6.0 | 9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
6.5
7.0
6.5
6.0
6.0
6.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0
5.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5
5.5
5.0
5.0
4.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2.0
2.0
2.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
4.5
5.5
6.0
7.0 | 12.5
12.5
13.0
11.0
9.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 7.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.0
6.0
5.0 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
8.5
7.0
6.5
5.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
6.5
6.0
6.5
6.0
6.5 |
7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
5.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
5.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 2.0
2.0
2.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
5.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 4.0 3.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
4.5
5.5
4.5
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
10.5
11.5
12.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5 | 9.5
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5
9.5 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
8.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
7.5
6.5
6.0
6.0
5.0
4.5
4.5 | 8.0
8.0
7.5
8.0
7.5
8.5
8.5
7.0
6.5
5.0
6.0
7.0 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
6.5
7.0
7.5
6.5
6.0
6.0
6.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
5.0
4.0
2.5
2.0
2.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
6.0
5.0
5.5
5.0
5.0
5.0
4.0
3.5
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
8.5
10.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 4.0 3.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.0
4.0
4.5
5.5
5.5
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5
11.5
12.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
9.5
9.5
10.0
9.0
10.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0 | 6.0
7.0
6.0
7.0
6.5
7.0
6.5
7.5
6.5
6.0
5.0
4.5
5.5
4.5
5.5 | 8.0
8.0
7.5
8.0
7.5
8.5
7.5
8.5
7.0
7.0
6.5
5.5
6.0
7.0
7.5 | 9.5
9.5
9.5
9.5
9.0
8.0
7.5
8.0
7.5
7.0
6.5
6.0
6.0
6.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
3.0
4.0
3.5
4.0
5.0
4.0
2.5
2.0
2.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
3.5
3.5 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 2.0
2.0
2.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
10.5
11.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.5
5.5
4.5
5.5
7.5
7.5
7.5
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5
11.0
12.0
13.0
11.5
11.5
12.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.0 9.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5
10.0
9.5
10.0 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
8.0
10.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.5
6.0
6.0
6.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 8.0
8.0
7.5
8.0
7.5
8.5
7.5
8.5
7.0
6.5
5.5
6.0
7.5
6.0
7.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
6.0
7.5
6.0
6.0
6.5
5.5
5.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
5.5
2.0
2.0
2.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
6.0
5.0
5.5
5.5
5.0
5.0
4.0
4.0
3.5
3.5
3.5
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
7.0
7.5
7.0
8.5
10.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 4.5 5.5 6.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.0
7.5
7.5
7.5
9.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
11.5
12.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5 8.0 9.0 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
10.0
9.5
10.0 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
9.0 | 6.0
7.0
6.0
7.0
6.5
7.0
6.5
8.0
7.5
6.5
6.5
6.0
5.0
4.5
5.5
4.5
5.5 | 8.0
8.0
7.5
8.0
7.5
8.5
8.5
7.0
6.5
5.5
6.0
7.0
7.5
8.0
7.5
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
7.5
6.0
6.0
6.0
5.5
5.5
5.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0
5.0
4.0
2.5
2.0
2.0
2.0
3.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
4.0
4.0
3.5
3.5
3.5
3.5
3.5 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 2.0
2.0
2.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
10.5
11.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.5
5.5
4.5
5.5
7.5
7.5
7.5
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5
11.0
12.0
13.0
11.5
11.5
12.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.0 9.0 | 9.5
10.0
10.0
9.0
8.0
7.5
7.0
7.5
7.5
7.5
9.0
9.5
9.5
10.0
9.5
10.0 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
8.0
10.0 | 6.0
7.0
6.0
5.0
7.0
6.5
7.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.5
6.0
6.0
6.0
6.5
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 8.0
8.0
7.5
8.0
7.5
8.5
7.5
8.5
7.0
6.5
5.5
6.0
7.5
6.0
7.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
6.0
7.5
6.0
6.0
6.5
5.5
5.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
5.5
2.0
2.0
2.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
6.0
5.0
5.5
5.5
5.0
5.0
4.0
4.0
3.5
3.5
3.5
3.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
7.0
7.5
7.0
8.5
10.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 4.5 5.5 6.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.0
7.5
7.5
9.5
9.5
9.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
11.5
12.5
13.5
14.0
13.0
11.5 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5 8.0 9.0 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
10.0
9.5
10.0
10.5
10.5
10.5
9.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
10.0
9.0
10.0
9.0
10.0 | AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 6.5 6.5 6.5 4.5 5.6 6.5 5.5 6.5 5.5 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
7.0
6.5
5.5
6.0
7.0
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.5
9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
7.5
6.0
6.0
6.0
5.5
5.5
5.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0
5.0
4.0
2.5
2.0
2.0
2.0
2.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
6.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 2.0
2.0
2.5
1.5
3.5
6.0
5.0
7.0
7.5
7.0
8.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
13.5 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.5
7.5
7.5
9.0
9.5
9.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
12.5
13.5
14.0
13.0
11.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.0 9.0 9.0 8.5 7.5 6.5 |
9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
9.5
10.0
9.5
10.0
9.5
10.5
10.5
11.5
9.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
9.0
10.0 | AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6 | 8.0
8.0
7.5
8.0
7.5
8.5
7.0
7.5
6.5
6.5
6.5
7.0
7.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
6.5
7.0
6.5
6.0
6.0
5.5
5.5
5.5
5.5
5.5
6.0
4.5
3.5
5.5
5.5
5.5
5.5
5.5
5.5
5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
2.5
2.0
2.0
2.0
1.5
2.0
3.0 | 8.0
7.5
7.5
7.0
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
3.5
3.5
3.5
3.5
2.5
2.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.0 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.5 5.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.5
5.5
5.5
7.5
7.5
7.5
9.5
9.5
9.0
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5
12.0
13.0
11.5
12.5
13.5
14.0
13.0
11.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.5 8.7 9.0 9.0 8.5 7.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.5
7.5
9.0
9.5
9.5
9.5
10.0
9.5
10.0
9.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
10.0
9.0
10.0
9.0
10.0 | AUGUST 6.0 7.0 6.0 7.0 6.0 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6 | 8.0
8.0
7.5
8.0
7.5
8.5
7.5
8.5
7.5
6.5
6.0
7.5
6.7
7.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 9.5
9.5
9.5
9.5
9.0
8.0
7.5
6.5
7.0
7.0
6.5
6.0
6.0
5.5
5.5
5.0
4.0
3.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 7.0 5.0 6.5 6.5 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.5 2.0 3.5 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
3.5
3.5
3.5
3.5
2.5
2.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
7.0
7.5
7.0
8.0
6.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
11.0
12.5
13.5 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 2.6 6.0 6.0 6.5 5.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.0
7.5
7.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
12.5
13.5
13.5
13.0
11.0
12.0 | JULY 6.5 7.0 6.5 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 7.5 6.5 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
10.0
9.5
10.0
10.5
10.5
10.5
10.5
10.5
10.5
10 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
10.0
9.0
10.0
9.0
10.0
9.5
9.0 | AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 8.0 7.5 6.5 6.0 6.5 4.5 5.6 6.5 5.7 6.5 7.0 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
7.0
6.5
6.0
7.0
7.5
6.0
7.0
7.5
7.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
6.0
6.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
5.5
3.0
4.0
3.5
4.0
5.0
4.0
2.5
2.0
2.0
2.0
2.0
3.5
5.0
5.0
5.0
5.0
5.0
5.5
5.5
5.5
5.5
5 | 8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
3.5
3.5
3.5
3.5
2.5
2.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 2.0
2.0
2.5
1.5
3.5
3.5
6.0
5.0
4.0
7.0
7.5
7.0
8.0
6.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.0 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.5 5.5 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.5
5.5
5.5
7.5
7.5
7.5
9.5
9.5
9.0
7.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
11.5
12.0
13.0
11.5
12.5
13.5
14.0
13.0
11.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.5 8.7 9.0 9.0 8.5 7.5 | 9.5
10.0
10.0
9.0
8.0
7.5
7.5
7.5
9.0
9.5
9.5
9.5
10.0
9.5
10.0
9.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
10.0
9.0
10.0
9.0
10.0 | AUGUST 6.0 7.0 6.0 7.0 6.0 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6 | 8.0
8.0
7.5
8.0
7.5
8.5
7.5
8.5
7.5
6.5
6.0
7.5
6.7
7.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 9.5
9.5
9.5
9.5
9.0
8.0
7.5
6.5
7.0
7.0
6.5
6.0
6.0
5.5
5.5
5.0
4.0
3.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 7.0 5.0 6.5 6.5 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.5 2.0 3.5 | 8.0
7.5
7.5
7.0
7.0
7.0
6.5
6.5
6.0
5.0
5.5
5.5
5.0
4.0
4.0
3.5
3.5
3.5
3.5
2.5
2.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 2.0
2.0
2.5
1.5
3.5
6.0
7.0
7.5
7.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
11.0
11.5
13.5 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.0 6.5 5.5 7.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.0
7.5
7.5
9.5
9.5
9.5
9.5
9.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
12.5
13.5
13.5
14.0
11.0
11.0 | JULY 6.5 7.0 6.5 7.0 6.0 6.0 5.5 6.0 7.5 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
10.0
9.5
10.0
10.5
10.5
10.5
10.5
9.5
9.5 | 10.0
9.0
10.0
10.5
9.5
8.5
8.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
10.0
9.0
10.0
9.0
10.0
9.5
9.0 | AUGUST 6.0 7.0 6.5 7.0 6.5 7.0 6.5 7.5 6.5 6.0 6.0 5.0 4.5 5.5 6.5 6.5 5.5 6.7 6.7 7.0 | 8.0
8.0
7.5
8.0
7.5
8.0
7.5
8.5
7.0
6.5
6.0
7.0
7.5
6.0
7.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.5
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
6.5
7.0
6.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.0 5.0 | 8.0
7.5
7.5
7.0
7.0
6.5
6.0
6.0
5.0
5.5
5.0
5.0
4.0
4.0
4.0
3.5
3.5
3.5
3.5
2.5
2.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 2.0
2.0
2.5
1.5
3.5
6.0
5.0
7.0
7.5
7.0
8.0
8.5
10.0
10.5
11.0
10.5
11.0
10.5
11.0
11.0 | JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.5 5.5 6.0 6.0 6.5 5.5 7.0 | 1.0
1.0
1.0
2.0
2.5
3.5
3.5
3.5
4.0
4.5
5.5
5.0
6.0
7.5
7.5
9.0
7.5
9.5
9.5
9.5
9.5 | 12.5
12.5
13.0
11.0
9.0
8.5
9.5
9.5
9.5
11.0
12.0
13.0
11.5
11.5
12.5
13.5
14.0
13.0
11.0
12.0 | JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 5.5 | 9.5
10.0
9.0
8.0
7.5
7.5
7.5
7.5
9.5
9.5
9.5
10.0
9.5
10.0
9.5
10.5
11.5
9.5
9.5
10.0 | 10.0
9.0
10.5
9.5
8.5
8.0
10.5
9.0
10.0
8.5
7.5
8.0
6.5
6.0
8.0
7.5
6.0
9.0
10.0
9.0
10.0
9.5
9.0 | AUGUST 6.00 7.00 5.00 7.00 6.50 7.55 6.50 6.50 4.55 6.55 5.55 6.50
6.50 | 8.0
8.0
7.5
8.0
7.5
8.5
7.0
7.5
8.5
7.0
7.5
6.5
6.5
7.0
7.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8 | 9.5
9.5
9.5
9.5
8.0
7.5
8.0
7.5
7.0
6.5
7.0
6.0
6.0
6.0
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5 | 7.0
5.0
6.0
6.5
6.5
5.5
5.5
3.0
4.0
3.5
3.5
4.0
2.5
2.0
2.0
2.0
2.0
3.0
5.0 | 8.0
7.5
7.5
7.0
7.0
7.0
6.5
6.0
5.0
5.5
5.0
5.5
5.0
4.0
4.0
3.5
3.5
3.5
3.5
2.0
2.5
1.5 | #### 15565447 YUKON RIVER AT PILOT STATION LOCATION.--Lat $61^{\circ}56'04''$, long $162^{\circ}52'50''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 5, T.21 N., R.74 W. (Marshall D-3 quad), Hydrologic Unit 19040805, on the right bank, .2 mi downstream from village of Pilot Station, 2.4 mi downstream from Atchuelinguk River, and 19 mi upstream from Andreafsky River. DRAINAGE AREA.--321,000 \mbox{mi}^2 approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1975 to September 1996, April 1 to September 30, 2001. REVISED RECORDS.--WRD-AK-99-1: 1998. GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level from topographic map. REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | REMARKS | Record | DISCHAF | | | R SECOND, | | EAR OCTOE | | | | emetry at | scation. | |----------|--------------------------|------------|-----------|-----------|-----------|---------|------------------|--------------------|--------------------|------------------|------------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | e46000 | e55000 | e740000 | 815000 | 416000 | 466000 | | 2 | | | | | | | e46000 | e60000 | e760000 | 781000 | 416000 | 465000 | | 3 | | | | | | | e46000 | e60000 | e780000 | 746000 | 418000 | 459000 | | 4 | | | | | | | e46000 | e65000 | e800000 | 724000 | 423000 | 452000 | | 5 | | | | | | | e46000 | e65000 | e780000 | 704000 | 428000 | 445000 | | 6 | | | | | | | e46000 | e70000 | 747000 | 680000 | 435000 | 438000 | | 7 | | | | | | | e46000 | e75000 | 736000 | 656000 | 442000 | 429000 | | 8 | | | | | | | e46000 | e80000 | 731000 | 631000 | 448000 | 417000 | | 9 | | | | | | | e46000 | e85000 | 722000 | 609000 | 454000 | 406000 | | 10 | | | | | | | e46000 | e90000 | 720000 | 588000 | 458000 | 396000 | | 11 | | | | | | | e46000 | e95000 | 720000 | 567000 | 459000 | 387000 | | 12 | | | | | | | e46000 | e100000 | 722000 | 546000 | 457000 | 379000 | | 13 | | | | | | | e46000 | e110000 | 723000 | 525000 | 453000 | 373000 | | 14 | | | | | | | e46000 | e120000 | 731000 | 506000 | 448000 | 366000 | | 15 | | | | | | | e46000 | e130000 | 748000 | 488000 | 446000 | 360000 | | 16 | | | | | | | -16000 | -140000 | 771000 | 471000 | 444000 | 355000 | | 17 | | | | | | | e46000
e46000 | e140000
e150000 | 771000
799000 | 471000
461000 | 444000
440000 | 352000 | | 18 | | | | | | | e46000 | e160000 | 816000 | 458000 | 435000 | 348000 | | 19 | | | | | | | e48000 | e180000 | 834000 | 454000 | 430000 | 343000 | | 20 | | | | | | | e48000 | e200000 | 858000 | 453000 | 431000 | e341000 | | | | | | | | | | | | | | | | 21 | | | | | | | e48000 | e210000 | 865000 | 452000 | 426000 | 340000 | | 22 | | | | | | | e48000 | e230000 | 858000 | 450000 | 423000 | 339000 | | 23 | | | | | | | e48000
e48000 | e250000 | 854000
865000 | 448000
445000 | 425000
431000 | 336000 | | 24
25 | | | | | | | e50000 | e280000
e320000 | 873000 | 441000 | 431000 | 334000
328000 | | | | | | | | | 630000 | e320000 | 873000 | 441000 | 437000 | 320000 | | 26 | | | | | | | e50000 | e360000 | 875000 | 436000 | 443000 | 321000 | | 27 | | | | | | | e50000 | e400000 | e873000 | 430000 | 451000 | 314000 | | 28 | | | | | | | e50000 | e440000 | 871000 | 425000 | 456000 | 309000 | | 29 | | | | | | | e55000 | e500000 | 872000 | 422000 | 462000 | 304000 | | 30 | | | | | | | e55000 | e580000 | 848000 | 419000 | 465000 | 298000 | | 31 | | | | | | | | e680000 | | 418000 | 467000 | | | TOTAL | | | | | | | 1426000 | 6340000 | 23892000 | 16649000 | 13667000 | 1120000 | | MEAN | | | | | | | 47530 | 204500 | 796400 | 537100 | 440900 | 373300 | | MAX | | | | | | | 55000 | 680000 | 875000 | 815000 | 467000 | 466000 | | MIN | | | | | | | 46000 | 55000 | 720000 | 418000 | 416000 | 298000 | | AC-FT | | | | | | | 2828000 | 12580000 | 47390000 | 33020000 | 27110000 | 22220000 | | CFSM | | | | | | | .15 | .64 | 2.48 | 1.67 | 1.37 | 1.16 | | IN. | | | | | | | .17 | .73 | 2.77 | 1.93 | 1.58 | 1.30 | | | | STATISTIC | S OF MONT | CHLY MEAN | DATA FOR | WATER Y | EARS 1976 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN | 254400 | 128300 | 76600 | 61980 | 53460 | 48430 | 46430 | 266900 | 584600 | 455300 | 398000 | 359400 | | MAX | 335900 | 188800 | 94840 | 76000 | 65360 | 56770 | 55000 | 501700 | 844600 | 563500 | 515800 | 481300 | | (WY) | 1991 | 1987 | 1986 | 1986 | 1994 | 1980 | 1989 | 1991 | 1985 | 1992 | 1981 | 1994 | | MIN | 170600 | 72500 | 50000 | 50000 | 38380 | 35160 | 38430 | 100200 | 364400 | 314000 | 315000 | 252700 | | (WY) | 1979 | 1989 | 1988 | 1988 | 1984 | 1984 | 1976 | 1985 | 1978 | 1996 | 1990 | 1976 | | | | | | | | | | | | | | | | | RY STATIST | rics | FO: | R 2001 WA | TER YEAR | | | | | EARS 1976 | - 2001# | | | ANNUAL | | | | | | | | | 227400 | | 1004 | | | | T ANNUAL | | | | | | | | 253700 | | 1994 | | | | ' ANNUAL N
ST DAILY N | | 07 | 5000 | Jun 26 | | | h | 185300
e1100000 | Turn | 1978
5 1985 | | | | DAILY ME | | 0 / | 5000 | Juli 26 | | | Di | c35000 | | 23 1984 | | | | | AY MINIMUM | | | | | | | 35000 | | 23 1984 | | | | M PEAK FI | | a90 | 1000 | Jun 25 | | | (| 11070000 | | 9 1985 | | | | M PEAK ST | | | a27.09 | Jun 25 | | | | d27. | | 9 1985 | | | MAXIMU | M PEAK ST | ΓAGE | | | | | | | f36.2 | 25 May | 25 1989 | | | | RUNOFF | | | | | | | 10 | 54700000 | _ | | | | | RUNOFF | | | | | | | | . ' | | | | | | RUNOFF | | | | | | | | 9.0 | 53 | | | | | CENT EXC | | | | | | | | 510000 | | | | | | CENT EXC | | | | | | | | 135000 | | | | | 90 PER | CENI EACI | FENO | | | | | | | 48000 | | | | | | | | | | | | | | | | | | b See Period of Record, partial years used in monthly statistics Maximum recorded, but may have been higher during period of estimated discharge, Jun. 27 Jun. 5-8, 1985 From Feb. 23 to Mar. 27, 1984 Maximum recorded, but may have been higher during period of estimated discharge, Jun. 5-8, 1985 Estimated Backwater from ice ## 15565447 YUKON RIVER AT PILOT STATION--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1954-1956, 1975-96 AND 2001. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: 1976 and 1978, (seasonal). | DATE | TI | L
T
C
SE
(FT
B | | SPECIFIC
CONDUC-
TANCE
(US/CM)
(00095) | PH WATE WHOLE FIELD (STAN- DARD UNITS) (00400 | TEMPI
TUF
WAT
(DEG | RE RIC
ER SUF
C) OF | ROMET-
PRES-
RE (MM
F HG)
0025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN DIS- SOLVED (PERCEN SATURA TION) (00301 |)
TT
- | | | |------------------------------|------------------------------------|--------------------------------------|--|---|---|---|--|--|---|--|-----------------------------------|---|--| | APR
19
19
19
AUG | 1 | 902
904
906
908 | 1850
1680
1480
900 | 301
306
308
311 | | 7.4
7.3
7.3
7.3 | .00 | 760
760
760 | | 3.3
3.0
3.1
2.8 | 23
21
21
19 | | | | 14
14
14
14 | 2
2
2 | 1145
1148
2204
2211
2215 | 2150
1650
1100
750
250 | 214
214
214
214
214 | | 7.9
7.9
7.9
7.8
7.9 | 14.0
14.0
14.0
14.0
14.0 | 764
764
764
764 | | 9.9
9.9
9.9
9.9 | 96
96
96
96
97 | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | TYPE (CODE) | QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111) | | | TEMPERA
TURE
AIR
(DEG C)
(00020) | ATURE
WATER
(DEG C) | | APR
19 | 940 | 9 | 9 | 2000 | | 47400 | 20 | 3060 | 100 | 312 | 7.3 | 2.0 | .00 | | JUL
05
25 | 1820
1030 | 9
9 | 9
9 | 2950
2460 | 25.96
20.58 | 680000
441000 | 20
70 | 3055
8010 | 30
10 | 186
208 | 8.3
8.0 | 11.0
18.0 | 15.0
16.5 | | AUG
14
30 | 2130
1130 | 9
9 | 9
7 | 2380
2550 | 20.78
21.30 | 448000
466000 | 20
20 | 3055
3055 | 30
30 | 214
214 | 7.9
7.8 | 14.5
14.5 | 14.0
13.5 | | SEP
21 | 1400 | 9 | 9 | 2270 | 17.01 | 340000 | 20 | 3055 | 100 | 223 | 7.7 | 9.0 | 10.0 | | DATE | TURBID-
ITY
(NIU)
(00076) | HACH
2100AN
(NTU) | ANCE
254 NM,
WTR FLT
(UNITS/
CM) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS/ CM) (61726) |
BARO-
METRIC
PRES-
SURE
(MMOF
HG)
(00025) | OXYGEN
DIS-
OLVED
(MG/L)
(00300) | OXYGEN,
DIS-
OLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | APR
19 | 6.1 | 8.6 | .070 | .052 | 760 | 3.0 | 21 | 160 | 47.1 | 10.7 | 3.3 | 135 | 1.34 | | JUL
05
25 | | 150
E250 | .170 | .126 | 762
769 | 8.1
8.6 | 80
87 | 91
96 | 27.0
27.3 | 5.63
6.70 | 1.9
2.3 | 67
76 | 1.21
1.26 | | AUG
14
30 | | 430
100 | .222 | .163
.135 | 764
743 | 9.9
9.4 | 96
93 | 99
100 | 28.2
29.5 | 6.77
7.19 | 2.6
2.8 | 72
77 | 1.50
1.41 | | SEP
21 | | 68 | .179 | .132 | 744 | 10.0 | 91 | 110 | 31.0 | 8.01 | 2.8 | 80 | 1.34 | ## YUKON ALASKA ## 15565447 YUKON RIVER AT PILOT STATION--Continued | DATE | HCO3 | ATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | TOT IT
FIELD | ALKA-
LINITY
WAT DIS
FIX END
FIELD
CACO3
(MG/L)
(39036) | SUL-
FATE
DIS-
SOLVED
(MG/L
AS SO4) | | FLOU-
RIDE
DIS-
SOLVED
(MG/L
AS F)
(00950) | SIL-
ICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOL-
IDS,
RISI-
DUE AT
180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | ENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |------------------|--|--|--|--|--|--|--|---|---|--|---|--|---| | APR
19 | 165 | .0 | 135 | 140 | 27.1 | 1.3 | E.1 | 11.4 | 200 | 185 | .003 | . 206 | .054 | | JUL
05 | | | 67 | 140 | 22.2 | .7 | E.1 | | 131 | 105 | .003 | .048 | .003 | | 25
AUG | 93 | | 76 | | 27.1 | .9 | E.1 | | 129 | 118 | .002 | .068 | .004 | | 14
30 | 88
91 | | 72
75 |
77 | 29.0
29.4 | .9 | | | 132
130 | 120
123 | .001 | .065 | .006 | | SEP
21 | 95 | .0 | 78 | 80 | 29.8 | .8 | <.2 | 7.3 | 146 | 128 | .002 | .071 | .004 | | | | | | | | | | | | | | | | | DATE | TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMO-
NIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | ALUMI -
NUM
SED,
SUS
PERCENT
(30221) | | ANTI-
MONY
SED.
SUSP.
(UG/G)
(29816) | ARSENIC
SED.
SUSP.
(UG/G)
(29818) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM
SED.
SUSP.
(UG/G)
(29820) | | APR
19
JUL | .17 | .15 | .027 | <.006 | <.007 | | | | 1 | | | . 4 | | | 05
25 | .59
E.43 | .17
.13 | .338
E.312 | .007 | <.007
<.007 | <.10
E.12 | .09
E.11 | 6.6
E7.5 | 13
13 | 1.4
E2.2 | 12
E19 | 1.0 | 910
E950 | | AUG
14
30 | .57
.46 | .19
.20 | .508
.441 | E.005 | E.004 | .10 | .1
.09 | 7.7
7.5 | 15
14 | 2.1
1.7 | 19
17 | .8 | 990
1000 | | SEP
21 | .41 | .14 | .257 | E.005 | <.007 | .10 | .1 | 7.3 | 11 | 1.5 | 17 | .9 | 990 | | DATE | BAR-
IUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM
SED.
SUSP.
(UG/G)
(29822) | BERYL-
LIUM
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CAD-
MIUM
SED.
SUSP.
(UG/G)
(29826) | CAD-
MIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM
SED.
SUSP.
(UG/G)
(29829) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT
SEDI-
MENT
SUSP.
(UG/G)
(35031) | COBALT
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
SED.
SUSP.
(UG/G)
(29832) | COP-
PER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON
SEDI-
MENT
SUSP.
PERCENT
(30269) | | | 77.0 | | <.06 | 17 | | <.04 | | <.8 | | .20 | | 1.0 | | | JUL
05
25 | 45.1
43.4 | 2
E2 | <.06
<.06 | E6
9 | .4
E.5 | E.03
E.02 | 98
E110 | <.8
<.8 | 18
E20 | .10 | 35
E46 | 2.9
2.4 | 3.9
E4.9 | | | 47.4
46.9 | 2 2 | <.06
<.06 | 20
9 | .5
.6 | <.04
<.04 | 110
110 | <.8
<.8 | 21
19 | .08 | 47
42 | 3.9 | 4.9
4.6 | | SEP
21 | | 2 | <.06 | 9 | . 6 | <.04 | 93 | <.8 | 18 | .09 | 46 | 2.3 | 4.5 | ## 15565447 YUKON RIVER AT PILOT STATION--Continued | DATE | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD
SED.
SUSP.
(UG/G)
(29836) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITH-
IUM
SEDI-
MENT
SUSP.
(UG/G) | LITH-
IUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MAN-
GANESE
SED.
SUSP.
(UG/G)
(29839) | MAN-
GANESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MER-
CURY
SED.
SUSP.
(UG/G)
(29841) | MOLYB-
DENUM
SED.
SUSP.
(UG/G)
(29843) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL
SED.
SUSP.
(UG/G)
(29845) | SOLVED
(UG/L
AS NI) | SELE-
NIUM
SED.
SUSP.
(UG/G)
(29847) | |------------------------|--|--|--|---|--|--|---|---|--|--|---|---|---| | APR
19 | 80 | | <.08 | | 3.0 | | 95.8 | | | .9 | | .47 | | | JUL
05
25 | 170
110 | 12
E15 | .29
.15 | 30
E34 | 1.9
2.5 | 810
E1000 | 12.6
3.5 | .09
E.06 | 2
E3 | . 8 | 54
E63 | .82 | M
M | | AUG
14
30
SEP | 50
90 | 16
16 | .20 | 32
33 | 2.7
2.5 | 950
860 | 2.9
4.1 | .05 | 2
2 | 1.1 | 58
47 | .74
.25 | M
M | | 21 | 150 | 18 | E.06 | 34 | 2.7 | 880 | 9.9 | .06 | 2 | .9 | 44 | .33 | М | | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER
SED.
SUSP.
(US/G)
(29850) | SIL-
VER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM
SEDI-
MENT
SUSP.
(UG/G)
(35040) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM
SUS SED
(UG/G)
(49955) | TITA-
NIUM
SEDI-
MENT
SUSP.
PERCENT
(30317) | VANA-
DIUM
SED.
SUSP.
(UG/G)
(29853) | VANA-
DIUM
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC
SED.
SUSP.
(UG/G)
(29855) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URA-
NIUM
SEDI-
MENT
SUSP.
(UG/G)
(35046) | URA-
NIUM
NATU-
RAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | APR
19
JUL | . 4 | | <1.0 | | 205 | | | | 1.0 | | 2 | | 1.01 | | 05
25
AUG | .4 N | 1
:.500000 | <1.0
<1.0 | 220
E280 | 103
115 | <50
<50 | .450
E.480 | 130
E150 | .7
.6 | 110
E130 | <1
<1 | <50
<50 | .51
.68 | | 14
30
SEP | | <.500000
<.500000 | <1.0
3.0 | 280
230 | 121
121 | <50
<50 | .470
.440 | 150
140 | .6
.6 | 130
120 | <1
1 | <50
<50 | .77
.70 | | 21 | .5 < | .500000 | <1.0 | 230 | 130 | <50 | .440 | 130 | .6 | 130 | <1 | <50 | .77 | | DATE | CARBO
ORGAN
DIS-
SOLVI
(MG/L
C)
(0068 | IIC GAN
- PART
ED TOT
AS (MG/ | OR- ORO IC, PAR IC. L CAL TO L AS (MG) | GANIC I
TICU- C
ATE F
DTAL
/L AS (I | CARBON,
INORG +
DRGANIC
PARTIC.
TOTAL
MG/L AS
C) | CARBON
SED.
SUSP.
PERCENT
(30244) | CARBON ORGANIC SUS- PENDED, TOTAL PERCENT (50465) | WAT FI
SUSP
(MB/L A | SED - MEN - SUSE - THO - THRO - CENT - (MG/ | IT P., S W- M UGH S RIF PE (L) (N | SUS-
ENDED
MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
T/DAY)
80155) | SED. SUSP. SEIVE DIAM. % FINER THAN .062 MM (70331) | | APR
19 | . 2.2 | | 1 | . 4 | .5 | | | <.022 |) | | 4 | 512 | | | JUL
05 | | | | 6.1 | 6.3 | 1.3 | 1.1 | .316 | | | | 850000 | 67 | | 25
AUG | | | | 6.0 | 6.3
E6.1 | E2.0 | E1.1 | E.180 | | | 463 | | | | 14
30 | | | | 5.3 | 8.7
8.1 | 1.6
1.5 | .9
.9 | . 255 | | | | 120000
629000 | 82
85 | | SEP
21 | . 4.9 | | - | | | 2.1 | 1.5 | | 26 | 56 | 302 | 277000 | 81 | #### 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET LOCATION.--Lat
$63^{\circ}56'06''$, long $160^{\circ}18'18''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 18, T.18 S., R.8 W. (Unalakleet D-3 quad), Hydrologic Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet. DRAINAGE AREA. -- 1,048 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1997 to September 1999 (no winter record), October 1999 to current year. REVISED RECORDS. -- WRD-AK-99-1: 1998. GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map. REMARKS.--Records good, except for June 2 to June 12 which are fair, and estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHA | RGE, CUB | IC FEET PE | | | YEAR OCTOBE
VALUES | R 2000 | TO SEPTEM | MBER 2001 | | | |---|---|---|--|--|--|--|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2240
2060
e1900
e1850
e1800 | e900
e850
e800
e800
e750 | e380
e360
e340
e320
e320 | e220
e210
e200
e190
e180 | e130
e130
e130
e120
e120 | e100
e100
e100
e100
e100 | e95
e95 | e130
e140
e140
e140
e150 | 6490
7970
9630
11500
13300 | 2370
2240
2160
2390
2420 | 1810
1730
1670
1590
1520 | 1890
1910
1780
1770
1940 | | 6
7
8
9
10 | e1700
e1600
e1550
e1500
e1450 | e750
e750
e750
e750
e800 | e320
e320
e300
e300
e300 | e160
e160
e160 | e120
e120
e120
e120
e120 | e100
e100
e100
e100
e100 | e95
e95
e95
e95
e95
e95 | e150
e150
e160
e160
e160 | 15200
17900
19600
19300
17700 | 2220
2060
1950
1850
1810 | 1460
1420
1380
1410
1790 | 2900
5130
4900
4160
3600 | | 11
12
13
14
15 | e1400
e1500
e1700
e2100
e2300 | e800
e800
e800
e800
e750 | e300
e290
e290
e290
e280 | e160
e150
e150
e150
e150 | e120
e120
e120 | e100
e100
e100 | e100
e100
e100 | e190
e230
e280
e360
e500 | 15400
13100
11300
9610
8500 | 1870
1970
2140
2250
2170 | 1870
1810
1800
2100
2810 | 3190
2890
2660
2450
2290 | | 16
17
18
19
20 | e2000
e1800
e1500
e1300
e1200 | e750
e750
e750
e700
e650 | e280
e270
e270
e260
e260 | e150
e150
e140
e140
e140 | e110
e110
e110
e110
e110 | e100
e100
e100
e100
e100 | e100
e100
e100
e100
e100 | 667
1040
1430
1600
1580 | 7360
6490
6150
5940
5680 | 2220
2790
2880
2770
3770 | 3310
3410
3180
3090
3150 | 2170
2050
1960
1880
1810 | | 21
22
23
24
25 | e1100
e1000
e1000
e1000
e1000 | e650
e600
e600
e550
e500 | e250
e250
e250
e240
e240 | e140
e140
e140
e140
e130 | e110
e110
e110
e110
e110 | e95
e95
e95
e95
e95 | e110
e110
e110
e110
e120 | 1590
1730
1870
1860
1940 | 5150
4590
4180
3940
3620 | 4290
3760
3280
2960
2720 | 3570
3340
3070
2840
2620 | 1740
1670
1610
1550
1490 | | 26
27
28
29
30
31 | e1000
e1100
e1100
e1000
e950
e900 | e480
e460
e440
e420
e400 | e240
e230
e230
e230
e220
e220 | e130
e130
e130
e130
e130
e130 | e110
e110
e110
 | e95
e95
e95
e95
e95 | e120
e120
e130
e130
e130 | 1920
1900
2210
2930
4120
5210 | 3280
2980
2760
2560
2450 | 2500
2370
2240
2120
2020
1920 | 2430
2270
2140
2040
1940
1850 | 1450
1420
1400
1350
1300 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 45600
1471
2300
900
90450
1.40
1.62 | 20550
685
900
400
40760
.65
.73 | 8650
279
380
220
17160
.27
.31 | 4770
154
220
130
9460
.15
.17 | 3260
116
130
110
6470
.11 | 3045
98.2
100
95
6040
.09 | 3140
105
130
95
6230
.10 | 36637
1182
5210
130
72670
1.13
1.30 | 263630
8788
19600
2450
522900
8.39
9.36 | 76480
2467
4290
1810
151700
2.35
2.71 | 70420
2272
3570
1380
139700
2.17
2.50 | 68310
2277
5130
1300
135500
2.17
2.42 | | | | STATISTIC | S OF MOI | NTHLY MEAN | DATA FOR | WATER | YEARS 1997 - | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 1317
1471
2001
1163
2000 | 586
685
2001
487
2000 | 266
279
2001
252
2000 | 154
154
2000
154
2000 | 118
120
2000
116
2001 | 103
108
2000
98.2
2001 | 110
115
2000
105
2001 | 1573
1963
2000
1182
2001 | 4011
8788
2001
1216
1997 | 1704
2467
2001
562
1997 | 3239
5690
1998
2272
2001 | 2897
3890
1998
1385
1999 | | SUMMARY | Y STATIST | CICS | FOR 200 | 0 CALENDAR | YEAR | FOR | 2001 WATER | YEAR | W | ATER YEARS | 1997 - | 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN | MEAN F ANNUAL ANNUAL F DAILY DAILY SEVEN-DA F PEAK FI M DEAK ST | MEAN
MEAN
CAN
AY MINIMUM
COW | | 489924
1339
6880
a100
100
971800
1.28
17.39
3490
750
110 | Jun 3
Mar 25
Mar 25 | | 19600
b95
95
19700
1199000
1.58
21.46 | Jun
Mar 2
Mar 2
Jun
Jun | 8
1
1
1
8
8 | 1475
1656
1294
19600
b95
c19700
98.4
1068000
1.4
19.1
4170
1420
110 | Jun
Mar
Mar
Jun
1 Jun
1 | 2001
2000
8 2001
21 2001
21 2001
8 2001
8 2001 | | 50 PERO
90 PERO | CENT EXCE | EEDS
EEDS | | 750
110 | | | 750
100 | | | 1420
110 | | | See Period of Record, partial years used in monthly statistics From Mar. 25 to Apr. 10 From Mar. 21 to Apr. 10 From rating curve extended above 8800 ${\rm ft}^3/{\rm s}$ Estimated Estimated #### 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1982-83, 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1998 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval. REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature was compared with the stream average by cross section on September 5. No variation was found. The variation found between mean stream temperature and sensor temperature was less than 0.5°C . EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 14.5°C, July 11,12 2000; minimum, 0.0°C, many days during winter and spring breakup periods. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 11.5°C, July 9; minimum, 0.0°C, many days during winter and spring breakup periods. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |-----------------|----------------------|------------------------------------|--|-------------------------------------|---|---|---| | SEP
05
05 | 1301
1303 | 245
245 | 23.0
45.0 | 88.28
88.28 | 1940
1940 | 7.5
7.5 | 11.0
11.0 | | 05
05
05 | 1305
1307
1309 | 245
245
245 | 80.0
130.0
205.0 | 88.28
88.28
88.28 | 1940
1940
1940 | 7.5
7.5
7.5 | 11.0
11.0
11.0 | #### TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------|----------------------|---------------------------------|--------------------------|------------|----------------------|---------------------------------|------------|----------------------|--------------------------|----------------|----------------------| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 1.0
.5
.5
1.0 | .5
.0
.0
.0 | 1.0
.5
.0
.5 | .0.0.0 | .0.0.0.0 | .0
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0 | | 6
7
8
9
10 | .5
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0 | | 11
12
13
14
15 | . 0
. 0
. 0
. 0 | .0
.0
.0 |
.0
.0
.0 | .0.0.0.0 | .0.0.0 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0 | .0.0.0 | | 16
17
18
19
20 | . 0
. 0
. 0
. 0 | .0
.0
.0 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0
.0
.0 | .0.0.0.0.0 | .0
.0
.0 | .0.0.0 | | 21
22
23
24
25 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0
.0
.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0 | | 26
27
28
29
30
31 | .0.0.0.0.0 | .0.0.0.0.0 | . 0
. 0
. 0
. 0
. 0 | .0 | .0.0.0.0.0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0
. 0 | .0.0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 | .0
.0
.0
.0 | | MONTH | 1.0 | .0 | .1 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | ## 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--| | | | FEBRUARY | ? | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | .0.0.0.0 | | .0.0.0.0 | | 6
7
8
9
10 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0.0.0 | | .0.0.0.0 | .0
.0
.0
.0 | | .0.0.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0.0.0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0 | .0
.5
1.5
5.0
6.5 | | | | 16
17
18
19
20 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0.0.0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0 | 6.0
4.5
2.5
2.0
2.5 | | 5.0
3.5
2.0
1.5 | | 21
22
23
24
25 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0 | .0.0.0 | . 0
. 0
. 0
. 0 | .0.0.0.0 | 3.5
3.0
2.5
2.5
2.5 | | 2.5
2.5
2.0
2.5
2.0 | | 26
27
28
29
30
31 | .0.0.0 | .0 | .0
.0
.0 | .0.0.0.0.0 | . 0
. 0
. 0
. 0
. 0 | .0.0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0.0 | .0
.0
.0
.0 | 2.5
3.5
3.5
3.5
3.5
2.5 | 1.0
2.0
3.0
2.5
2.0 | 2.0
2.5
3.5
3.0
2.5
2.5 | | MONTH | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | .0 | 6.5 | .0 | 1.6 | YEAR OCTOB | | | | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | MEAN
CR | | 1
2
3
4
5 | 3.5
4.5
4.5
5.0
4.5 | 2.5
3.0
3.0
3.5
3.5 | 3.0
3.5
4.0
4.0 | 9.0
9.5
9.0
9.0
8.0 | 8.0
8.0
9.0
8.0
7.5 | 8.5
8.5
9.0
8.0
7.5 | 9.5
9.0
8.5
8.5
8.5 | 8.5
8.0
7.5
7.5 | 9.0
8.5
8.0
8.0 | 8.5
8.5
8.0
8.0
7.5 | | 8.0
8.0
8.0
7.5
7.5 | | 6
7
8
9
10 | 5.0
5.5
5.5
5.0
4.5 | 4.5
5.0
5.0
4.0
4.0 | 5.0
5.0
5.5
4.5 | 9.0
10.0
10.5
11.5 | 6.5
8.0
9.0
9.5
9.5 | 7.5
9.0
9.5
10.5 | 8.0
9.0
9.5
9.0
9.0 | 7.5
8.0
8.5
9.0
8.5 | 8.0
8.5
9.0
9.0 | 7.5
7.0
6.5
7.0 | 6.5 | 7.0
6.5
6.5
6.5 | | 11
12
13
14
15 | 5.5
6.0
5.5
4.5
5.0 | 4.0
5.0
4.0
3.5
4.5 | 4.5
5.5
5.0
4.0
5.0 | 9.5
8.5
9.0
9.5
9.5 | 8.5
8.0
8.0
8.5
9.0 | 9.0
8.5
8.5
9.0
9.5 | 8.5
9.0
9.0
9.0 | 8.0
8.0
8.5
8.5 | 8.5
8.5
9.0
8.5
8.5 | 6.5
6.5
6.0
6.0 | 6.0
5.5
5.0
5.5
5.5 | 6.5
6.0
5.5
6.0
5.5 | | 16
17
18
19
20 | 5.5
6.5
7.0
8.0
8.0 | 4.0
5.5
6.5
7.0
8.0 | 4.5
6.0
7.0
7.5
8.0 | 9.5
9.0
9.5
9.5 | 8.5
8.5
8.0
9.0 | 9.0
8.5
8.5
9.5
9.0 | 8.5
8.5
7.5
7.5
8.0 | 8.0
7.5
7.0
7.0 | 8.0
8.0
7.5
7.0 | 6.0
6.0
6.0
7.0 | 5.0
5.5
5.5
5.5
6.0 | 5.5
5.5
6.0
6.0 | | 21
22
23
24
25 | 8.5
9.0
10.0
9.5 | 8.0
8.5
9.0
8.5 | 8.0
8.5
9.5
9.5 | 9.5
9.5
9.0
8.5 | 9.0
9.0
8.5
8.0 | 9.5
9.5
9.0
8.0 | 8.5
8.5
8.5 | 7.5
7.5
8.0
8.0 | 8.0
8.0
8.0
8.5
8.5 | 7.0
6.5
6.0
5.5
5.5 | 6.0
5.5
5.0
5.0 | 6.5
6.0
5.5
5.5 | | | 9.0 | 8.0 | 8.5 | 8.5 | 7.5 | 8.0 | 9.0 | 0.0 | 0.5 | | 3.0 | 3.0 | 11.5 6.5 8.7 MONTH 10.5 2.5 6.2 9.5 7.0 8.3 8.5 3.0 6.1 #### 15743850 DAHL CREEK NEAR KOBUK LOCATION.--Lat $66^{\circ}56'46''$, long $156^{\circ}54'32''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 21, T. 18 N., R.9 E. (Shungnak D-2 quad), Hydrologic Unit 19050302, on right bank 25 ft downstream from culvert on road to Bornite at west end of Dahl Creek landing strip, 3.5 mi upstream from mouth and 3 mi north of Kobuk. DRAINAGE AREA. -- 11.0 mi². PERIOD OF RECORD.--Annual maximum, water years 1986-87, April 1988 to current year. (No winter record in water years 1989, 1991-92, 1994, and 1996.) REVISED RECORDS. -- WDR AK-88-1: 1986(M). GAGE.--Water-stage recorder. Elevation of gage is 225 ft above sea level, from topographic map. July 16, 1986, to April 28, 1988, the water-stage recorder was operated to obtain annual maximums. Prior to August 17, 1994 at site 50 ft upstream at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHA | ARGE, CUBI | C FEET PEF | | WATER Y
Y MEAN V | YEAR OCTOBE
VALUES | R 2000 T | O SEPTEME | BER 2001 | | | |--|---|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|-------------------------------------|--|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 57
54
54
51
e45 | e10
e9.5
e9.5
e9.0
e9.0 | e5.0
e5.0
e5.0
e5.0
e4.8 | e3.6
e3.6
e3.6
e3.6 | e3.2
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.9
e2.9
e2.9
e2.9
e2.9 | 46
57
83
120
138 | 39
38
36
40
36 | 52
55
51
49
47 | 45
43
41
42
41 | | 6
7
8
9
10 | e40
e36
e32
e30
e28 | e8.5
e8.5
e8.0
e8.0
e8.0 | e4.8
e4.6
e4.6
e4.6
e4.4 | e3.6
e3.6
e3.4
e3.4
e3.4 | e3.2
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.9
e2.9
e2.9
e2.9
e2.9 | 155
171
170
150
135 | 33
32
31
31
30 | 45
43
42
51
109 | 38
38
38
39
37 | | 11
12
13
14
15 | e26
e24
e23
e21
e20 | e7.5
e7.5
e7.5
e7.0
e7.0 | e4.4
e4.4
e4.4
e4.2
e4.2 | e3.4
e3.4
e3.4
e3.4
e3.4 | e3.2
e3.2
e3.2
e3.2
e3.0 | e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.9
e2.9
e2.9
e3.0
e3.2 | 110
108
99
141
97 | 30
41
37
34
34 | 102
141
200
449
266 | 36
36
35
34
35 | | 16
17
18
19
20 | e19
e18
e17
e16
e16 | e7.0
e6.5
e6.5
e6.5
e6.5 | e4.2
e4.2
e4.0
e4.0
e4.0 | e3.4
e3.4
e3.4
e3.4
e3.4 | e3.0
e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e2.9
e2.9 | e3.2
e3.4
e3.4
e3.4
e3.2 | 83
83
87
82
74 | 35
37
35
47
80 | 206
174
151
138
121 | 34
33
33
32
32 | | 21
22
23
24
25 | e15
e15
e14
e14
e13 | e6.0
e6.0
e6.0
e5.5 | e4.0
e3.8
e3.8
e3.8
e3.8 | e3.4
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0 | e2.9
e2.9
e2.9
e2.9
e2.9 | e3.2
e3.2
e3.2
e3.2
e3.2 | 70
64
60
58
54 | 63
60
58
55
51 | 107
96
86
77
72 | 31
31
30
30
29 | | 26
27
28
29
30
31 | e13
e12
e12
e11
e11
e10 | e5.5
e5.5
e5.5
e5.0 | e3.8
e3.8
e3.8
e3.6
e3.6 | e3.2
e3.2
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e3.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.9
e2.9
e2.9
e2.9
e2.9 | e5.0
e8.0
e15
e24
29
35 | 50
46
43
41
39 | 48
47
57
60
56
53 | 67
61
57
53
50
48 | 29
28
27
27
26 | | | | | | | | | 88.8
2.96
3.0
2.9
176
.27 | | | | | 1030
34.3
45
26
2040
3.12
3.48 | | | | | | | | | EARS 1986 - | | |
 | | | MEAN
MAX
(WY)
MIN
(WY) | 28.8
67.2
1994
9.65
1993 | 9.12
16.0
1999
3.70
1993 | 5.59
8.17
1998
2.55
1993 | 4.53
6.88
1998
2.00
1993 | 4.07
6.15
1998
2.00
1993 | 3.76
5.63
1998
1.63
1993 | 4.23
7.39
1997
1.50
1993 | 52.5
93.1
1996
6.21
2001 | 64.7
116
1992
13.1
1997 | 36.4
73.2
1989
10.6
1997 | 70.3
223
1994
17.3
1990 | 50.5
104
1993
19.8
1991 | | SUMMARY | STATIST | ICS | FOR 2 | 000 CALENI | DAR YEAR | | FOR 2001 WA | TER YEAR | | WATER YE | ARS 1986 | - 2001 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL 10 PERC 50 PERC | MEAN
ANNUAL
ANNUAL M
DAILY M
DAILY ME | MEAN EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS EDS | | 7458.6
20.4
181
a3.6
3.7
14790
1.85
25.22
63
7.0 | Jun 3
Dec 30
Dec 25 | | 10052.3
27.5
449
b2.9
2.9
765
6.16
f6.62
19940
2.50
34.00
68
5.5
3.0 | Aug 14
Apr 19
Apr 19
Aug 14
Aug 14
Nov 7 | | 25.4
36.7
18.8
1400
c1.5
1.5
d1840
6.73
18380
2.31
31.34
83 | Aug 1
Mar
Mar
Aug 1
Aug 1 | 1993
1999
7 1994
9 1993
9 1993
7 1994
7 1994 | See Period of Record; partial years used in monthly statistics From Apr. 19 to May 13 From Mar. 9 to Apr. 30, 1993 c d From rating curve extended above 170 $\mathrm{ft^3/s}$ on basis of slope-area measurement of peak flow Estimated Backwater from ice #### 15744500 KOBUK RIVER NEAR KIANA LOCATION.--Lat $66^\circ 58'25''$, long $160^\circ 07'51''$, in $NW^1/_4 SE^1/_4$ sec. 11, T. 18 N., R. 7 W.(Selawik D-3 quad), Northwest Arctic Borough, Hydrologic Unit 19050304, on left bank, 5.8 mi upstream from Portage Creek, 9.7 mi upstream from Squirrel River, and 7.8 mi east of Kiana. DRAINAGE AREA.--9,520 mi², approximately. PERIOD OF RECORD. -- September 1976 to current year. REVISED RECORDS.--WDR AK-81-1: 1977 (M), 1978, 1979-80 (M), WDR AK-93-1: 1992. GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES Satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DAI | LY MEAN | VALUES | | | | | | |--|---|---|--|--|---|---|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e22000
e22000
e21000
e21000 | e10000
e10000
e9500
e9500
e9000 | e5500
e5500
e5500
e5500
e5000 | e3800
e3800
e3800
e3800
e3800 | e3000
e3000
e3000
e3000
e2900 | e2500
e2500
e2500
e2400
e2400 | e2100
e2100
e2100
e2100
e2100 | e1900
e1900
e1900
e1900
e1900 | e17000
e24000
e34000
e50000
e75000 | 36400
34200
32600
32100
32200 | 27500
26400
25300
24000
23000 | 21800
21000
20500
20300
21200 | | 6
7
8
9
10 | e20000
e20000
e20000
e19000
e19000 | e9000
e8500
e8500
e8000
e8000 | e5000
e5000
e5000
e5000
e4800 | e3600
e3600
e3600
e3600 | e2900
e2900
e2900
e2800
e2800 | e2400
e2400
e2400
e2400
e2300 | e2100
e2100
e2000
e2000
e2000 | e1900
e1900
e1900
e1900
e1900 | e100000
e115000
e125000
e130000
e130000 | 30200
28100
26400
24800
23200 | 21900
20900
19900
19500
20100 | 22900
23100
23100
24300
25200 | | 11
12
13
14
15 | e18000
e18000
e17000
e17000
e16000 | | | e3400
e3400
e3400
e3400
e3400 | e2800
e2800
e2800
e2700
e2700 | e2300
e2300
e2300
e2300
e2300 | e2000
e2000
e2000
e2000
e2000 | e1900
e1900
e1900
e1900
e2000 | e130000
e125000
e120000
e110000
100000 | 21900
21500
21900
22300
23200 | 23800
29700
38500
52400
75500 | 25300
24600
23600
22500
21300 | | 16
17
18
19
20 | e16000
e16000
e15000
e15000
e15000 | e7000
e6500 | e4600
e4400
e4400
e4400
e4400 | e3400
e3400
e3400
e3400
e3200 | e2700
e2700
e2700
e2700
e2600 | e2200
e2200
e2200
e2200
e2200 | e2000
e2000
e2000
e2000
e2000 | e2000
e2000
e2000
e2000
e2000 | 86200
74700
71700
71000
69100 | 25200
28100
31600
31100
35700 | 80300
73800
66600
58500
51900 | 20500
20100
20000
19500
18800 | | 21
22
23
24
25 | e14000
e14000
e13000
e13000
e12000 | e6500 | e4200
e4200 | e3200 | e2600
e2600 | e2200
e2200
e2200
e2200
e2200 | e1900
e1900 | e2000
e2000
e2000
e2000
e2200 | 64900
63300
59100
58100
58800 | 45100 | 46300
41600
38000
35000
32200 | 18300
17800
17300
16800
16400 | | 26
27
28
29
30
31 | e12000
e11000
e11000
e11000
e10000 | e6000
e5500
e5500 | 04000 | | e2500
 | e2100
e2100
e2100
e2100
e2100
e2100 | e1900
e1900
e1900
e1900
e1900 | e2700
e3400
e4600
e6500
e9000
e12000 | 54500
48500
44500
41500
38800 | 34100
30400
28500
29100
29700
28900 | 29900
28000
26300
24900
23700
22800 | 15700
15300
15200
15100
14700 | | MEAN
MAX
MIN
AC-FT | 499000
16100
22000
10000
989800
1.69
1.95 | 221000
7367
10000
5500
438400
.77
.86 | 142200
4587
5500
3800
282100
.48
.56 | 105400
3400
3800
3000
209100
.36
.41 | 76900
2746
3000
2500
152500
.29
.30 | 70300
2268
2500
2100
139400
.24
.27 | 59700
1990
2100
1900
118400
.21 | 87000
2806
12000
1900
172600
.29
.34 | 2289700
76320
130000
17000
4542000
8.02
8.95 | 962200
31040
47600
21500
1909000
3.26
3.76 | 1128200
36390
80300
19500
2238000
3.82
4.41 | 602200
20070
25300
14700
1194000
2.11
2.35 | | | | STATISTI | CS OF MO | NTHLY MEA | N DATA FOR | WATER | YEARS 1976 | 5 - 2001, | BY WATER | YEAR (WY | 7)# | | | MEAN
MAX
(WY)
MIN
(WY) | 13900
29870
1994
5003
1997 | 5455
11050
1994
2750
1981 | 3453
6097
1994
1926
1982 | 2620
3965
1994
1606
1982 | 2157
2868
1994
1331
1984 | 1902
2600
1980
1116
1984 | 3703
1980
1000 | 24050
48430
1979
1635
1992 | 46820
87010
1989
19690
1997 | 9032 | 31170
78210
1994
9284
1990 | 28370
78190
1986
9542
1996 | | SUMMAR | | | | | | | FOR 2001 | WATER YEA | R | WATER | YEARS 197 | 6 - 2001# | | MAXIMU | MEAN T ANNUAL N ANNUAL N T DAILY ME SEVEN-DA M PEAK FI | MEAN
MEAN
MEAN
EAN
AY MINIMUM
LOW | | 127000
b1600
1600 | | | a130000
c1900
1900
f
gh61. | Jun
Apr 2
Apr 2 | 9
1
1 | 15360
24960
10020
155000
d1000
1000
161000
g62.
h64. | Jun
Apr
Apr
Jun
26 Jun
61
92 | 1994
1977
5 1992
1 1984
1 1984
4 1992
1 1989 | | ANNUAL
ANNUAL
10 PER
50 PER
90 PER | RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE | (CFSM)
(INCHES)
EEDS
EEDS
EEDS | | 1.4
19.5
32300
5750
1670 | 13
53 | | gh61.
12380000
1.
24.
43300
6000
2000 | 80
40 | | 1.
21.
41400
5400
1700 | 61
92 | | See Period of Record; partial years used in monthly statistics a b c d From Jun. 9-11 From Apr. 6 to May 11 From Apr. 21 to May 14 From Apr. 1 to May 14 Estimated Estimated Not determined, see Highest Daily Mean Discharge From flood marks Backwater from ice #### 15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA LOCATION.--Lat $68^{\circ}04'42''$, long $163^{\circ}11'15''$, in $NW^{1}/_{4}$ sec. 23, T. 31 N., R. 20 W. (DeLong Mts A-2 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.7 mi upstream from Ferric Creek, 9 miles west of Red Dog Mine site, and 43 miles northeast of Kivalina. DRAINAGE AREA. -- 191 mi². PERIOD OF RECORD. -- July 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 500 ft above sea level, from topographic map. EXTREMES FOR Water year 2000-- Maximum discharge for period July through September, 2000, 5440 $\rm ft^3/s$ September 2, gage height 53.05 $\rm ft$; minimum not determined, occurs during the winter. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT MOM DEC JAN FEB MAR APR MAY .TITN JUL AUG SEP e160 839 1020 2 --------------------------e250 1830 4360 e330 1420 3200 290 2420 3590 5 ---------------------------258 3470 4420 6 220 2030 2900 ---------------------------203 1630 1660 1120 181 1470 8 9 ___ ___ ___ ___ ___ ___ ___ ___ ___ 166 1290 833 ---------------10 ------------154 2230 646 ___ ___ 11 ___ ___ ___
___ ___ ___ ___ 142 1860 520 ---------------------------1680 12 131 426 13 353 14 ___ ___ ___ ___ ___ ___ ___ ___ ___ 109 1490 335 ------------------------271 15 ---114 1020 16 ___ ___ ___ ___ ___ ___ 297 788 246 ---17 ------------------------594 1080 176 ___ ---------___ ---___ ___ ---1470 206 ---___ ___ ___ ___ ___ ___ 19 669 1070 171 ------20 ------443 869 167 21 ___ ___ 341 702 186 22 ---------------------------276 573 e200 ---------------------------23 259 474 e180 221 24 401 e160 25 206 341 e140 26 ___ 240 297 -----e130 27 263 265 e120 28 ---___ ---___ ___ ___ ___ ___ ___ 240 262 e110 ---------------------29 310 242 e100 30 e90 31 ___ ___ ___ ___ ___ ___ ___ ___ ___ 578 319 TOTAL 9760 35564 28036 MEAN ___ ___ ___ ___ ___ ___ ___ ___ ___ 315 1470 1147 935 ------------------------3470 4420 MAX MIN 109 222 MED ___ ___ ___ ___ ___ ___ ___ ___ ___ 250 1070 258 ___ ___ ___ ---AC-FT 19360 70540 55610 ___ ___ ___ ___ ___ ___ ___ ___ ___ 1.90 6.93 5.46 CFSM e Estimated # 15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | DAII | Y MEAN V | VALUES | | | | | | |--|---|---|--|--|--|---|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e85
e80
e75
e70
e65 | e32
e32
e32
e32
e30 | e20
e19
e18
e17
e16 | e7.0
e7.0
e7.0
e6.5
e6.5 | e4.2
e4.2
e4.2
e4.2
e4.0 | e3.2
e3.2
e3.2
e3.2
e3.2 | e2.7
e2.7
e2.7
e2.6
e2.6 | e2.3
e2.3
e2.3
e2.3 | e320
e500
e800
e1200
e1800 | 658
677
621
646
544 | 570
947
814
653
536 | 176
169
167
184
250 | | 6
7
8
9
10 | e60
e60
e60
e55
e55 | e30
e30
e30
e30
e30 | e15
e15
e14
e14
e13 | e6.5
e6.0
e6.0
e6.0 | e4.0
e4.0
e4.0
e4.0
e3.8 | e3.2
e3.2
e3.2
e3.2
e3.0 | e2.6
e2.6
e2.6
e2.6 | e2.3
e2.3
e2.3
e2.3 | e2600
e3000
3200
3300
2450 | 412
351
339
299
263 | 446
412
613
2090
1510 | e360
e460
e500
e800
e1400 | | 11
12
13
14
15 | e55
e50
e50
e50
e48 | e32
e32
e32
e32
e32 | e13
e12
e12
e12
e11 | e6.0
e5.5
e5.5
e5.5
e5.5 | e3.8
e3.8
e3.8
e3.6 | e3.0
e3.0
e3.0
e3.0 | e2.6
e2.5
e2.5
e2.5
e2.5 | e2.2
e2.2
e2.2
e2.2
e2.2 | 2040
2960
2990
1860
1070 | 288
296
308
289
262 | 1460
3750
4840
3090
1670 | e1250
1070
776
618
532 | | 16
17
18
19
20 | e48
e46
e44
e42
e42 | e32
e32
e32
e32
e32 | e11
e11
e10
e10
e9.5 | e5.5
e5.0
e5.0
e5.0
e5.0 | e3.6
e3.6
e3.6
e3.6 | e2.9
e2.9
e2.9
e2.9
e2.9 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.2
e2.3
e2.5
e2.7
e3.1 | 939
1080
1770
1830
1200 | 403
1080
1390
801
765 | 1110
846
671
554
515 | 479
415
370
334
310 | | 21
22
23
24
25 | e40
e40
e38
e38
e36 | e30
e30
e29
e28
e27 | e9.5
e9.0
e9.0
e8.5
e8.5 | e5.0
e4.8
e4.8
e4.6
e4.6 | e3.4
e3.4
e3.4
e3.4 | e2.9
e2.8
e2.8
e2.8
e2.8 | e2.5
e2.4
e2.4
e2.4 | e3.8
e5.0
e8.0
e13
e21 | 1370
1060
1610
1420
864 | 684
570
501
431
364 | 446
398
327
285
256 | 286
259
241
222
205 | | 26
27
28
29
30
31 | e36
e36
e34
e34
e34 | e26
e25
e23
e22
e21 | e8.0
e8.0
e7.5
e7.5 | e4.6
e4.4
e4.4
e4.4
e4.2 | e3.4
e3.4
 | e2.8
e2.8
e2.7
e2.7
e2.7 | e2.4
e2.4
e2.4
e2.4 | e34
e60
e110
e200
e150
e220 | 765
715
753
906
909 | 355
535
1270
954
678
536 | 242
232
208
196
229
197 | 185
158
e155
150
e145 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 1540
49.7
85
34
48
3050
.26 | 889
29.6
32
21
30
1760
.16 | 363.5
11.7
20
7.5
11
721
.06 | 168.7
5.44
7.0
4.2
5.5
335
.03 | 104.6
3.74
4.2
3.4
3.7
207
.02 | 91.9
2.96
3.2
2.7
2.9
182
.02 | 75.5
2.52
2.7
2.4
2.5
150
.01 | 871.6
28.1
220
2.2
2.3
1730
.15 | 47281
1576
3300
320
1280
93780
8.25
9.21 | 17570
567
1390
262
535
34850
2.97
3.42 | 30113
971
4840
196
554
59730
5.09
5.86 | 12626
421
1400
145
298
25040
2.20
2.46 | | | : | STATISTIC | S OF MONT | THLY MEAN | DATA FOR | WATER Y | EARS 2000 | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 49.7
49.7
2001
49.7
2001 | 29.6
29.6
2001
29.6
2001 | 11.7
11.7
2001
11.7
2001 | 5.44
5.44
2001
5.44
2001 | 3.74
3.74
2001
3.74
2001 | 2.96
2.96
2001
2.96
2001 | 2.52
2.52
2001
2.52
2001 | 28.1
28.1
2001
28.1
2001 | 1576
1576
2001
1576
2001 | 441
567
2001
315
2000 | 1059
1147
2000
971
2001 | 678
935
2000
421
2001 | | SUMMARY | STATISTI | CS | | | FOR 20 | 001 WATER | R YEAR | | | WATER Y | EARS 2000 | - 2001# | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
INSTANT
ANNUAL
ANNUAL
10 PERC
50 PERC | | EAN EAN EAN EAN EAN EAK | | | 624
5
5
22150
2 | 10 | Aug 13
May 11
May 10
Aug 12
Aug 12
Jun 1 | | | 306
306
306
4840
a2.2
2.2
6240
53.29
b53.9
221700
1.60
21.7'
1250
55
2.7 | May
May
Aug
Aug
Jun | 2001
2001
13 2001
11 2001
10 2001
12 2001
12 2001
1 2001 | [#] See period of record, partial years used in monthly statistics a From May 11-16 b From floodmarks, backwater from snow and ice e Estimated #### 15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA LOCATION.--Lat $68^{\circ}02'51''$, long $163^{\circ}01'34''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec.33, T.31 N., R.19 W.(Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina. DRAINAGE AREA. -- 98.6 mi². PERIOD OF RECORD. -- June 1995 to current year (no winter record). GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Runoff from $3.6~\text{mi}^2$ is impounded in tailings ponds and released intermittently at a maximum rate of $25~\text{ft}^3/\text{s}$. Meteor-burst telemetry at station. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use. EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 4090 ft^3/s , August 12, gage height, 11.81 ft ; minimum not determined, occurs during the winter. Maximum gage height 16.5 ft, flow over ice May 16, 2001. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YEA
Y MEAN VAI | | ER 2000 TO |) SEPTEMBE | ER 2001 | | | |-------|------|---------|------------|----------|-------|-------------------------|------|------------|------------|---------|-------|-------| | | | | | | DAILI | I MEAN VAI | TOES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e80 | e21 | | | | | | e1.0 | e300 | 280 | 400 | 140 | | 2 | e75 | e20 | | | | | | e1.0 | e500 | 288 | 557 | 129 | | 3 | e70 | e20 | | | | | | e1.0 | e600 | 278 | 436 | 127 | | 4 | e65 | e19 | | | | | | e1.0 | e1000 | 295 | 368 | 140 | | 5 | e60 | e19 | | | | | | e1.0 | e1100 | 249 | 303 | 164 | | 6 | e55 | e18 | | | | | | e1.0 | e1200 | 209 | 263 | 241 | | 7 | e50 | e18 | | | | | | e1.0 | e1100 | 186 | 269 | 333 | | 8 | e49 | e17 | | | | | | e1.0 | 1070 | 166 | 498 | 308 | | 9 | e48 | e17 | | | | | | e1.0 | 1050 | 158 | 998 | 511 | | 10 | e46 | e17 | | | | | | e1.0 | 791 | 151 | 871 | 563 | | 11 | e44 | e16 | | | | | | e1.0 | 720 | 146 | 942 | 468 | | 12 | e42 | e16 | | | | | | e1.0 | 948 | 148 | 2560 | 386 | | 13 | e40 | e16 | | | | | | e1.0 | 940 | 148 | 2750 | 331 | | 14 | e38 | e15 | | | | | | e1.0 | 665 | 142 | 1530 | 302 | | 15 | e36 | e15 | | | | | | e1.0 | 404 | 134 | 870 | 280 | | 16 | e34 | e15 | | | | | | e2.0 | 343 | 229 | 625 | 258 | | 17 | e34 | e14 | | | | | | e3.0 | 428 | 446 | 486 | 238 | | 18 | e32 | e14 | | | | | | e5.0 | 713 | 518 | 397 | 220 | | 19 | e32 | e14 | | | | | | e5.0 | 609 | 338 | 345 | 206 | | 20 | e30 | e14 | | | | | | e6.0 | 483 | 411 | 303 | 197 | | 21 | e29 | e13 | | | | | | e6.0 | 500 | 345 | 268 | 185 | | 22 | e28 | e13 | | | | | | e7.0 | 414 | 288 | 245 | 176 | | 23 | e27 | e13 | | | | | | e8.0 | 556 | 266 | 225 | 169 | | 24 | e26 | e12 | | | | | |
e13 | 490 | 237 | 208 | 160 | | 25 | e25 | e12 | | | | | | e22 | 334 | 209 | 195 | 153 | | 26 | e25 | e11 | | | | | | e32 | 309 | 209 | 180 | 141 | | 27 | e24 | e11 | | | | | | e50 | 313 | 439 | 170 | e130 | | 28 | e23 | e10 | | | | | | e90 | 329 | 763 | 160 | e125 | | 29 | e23 | e9.0 | | | | | | e170 | 371 | 525 | 151 | e115 | | 30 | e22 | e9.0 | | | | | | e120 | 350 | 395 | 163 | e105 | | 31 | e22 | | | | | | | e180 | | 324 | 149 | | | TOTAL | 1234 | 448.0 | | | | | | 734.0 | 18930 | 8920 | 17885 | 7001 | | MEAN | 39.8 | 14.9 | | | | | | 23.7 | 631 | 288 | 577 | 233 | | MAX | 80 | 21 | | | | | | 180 | 1200 | 763 | 2750 | 563 | | MIN | 22 | 9.0 | | | | | | 1.0 | 300 | 134 | 149 | 105 | | AC-FT | 2450 | 889 | | | | | | 1460 | 37550 | 17690 | 35470 | 13890 | | CFSM | .40 | .15 | | | | | | . 24 | 6.40 | 2.92 | 5.85 | 2.37 | | IN. | .47 | .17 | | | | | | .28 | 7.14 | 3.37 | 6.75 | 2.64 | e Estimated #### 15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA LOCATION.--Lat $67^{\circ}52'34''$, long $163^{\circ}40'28''$, in $NW^1/4$ sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi northeast of Kivalina. DRAINAGE AREA. -- 705 mi². PERIOD OF RECORD. -- September 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Flow from 2.8 square miles of the drainage basin is regulated by a tailings dam at the Red Dog Mine site. Up to 25 ft³/s of the flow at the gage may be discharge from Red Dog Mine during the summer period. Data for Water Year 2000 were omitted from Water Year 2000 Water Resources Data Report and are included here. | | | DISCHAR | GE, CUBI | C FEET PE | | | YEAR OCTOBE | R 1999 | TO SEPTEMB | ER 2000 | | | |---|--|--|---|--|---|--|--|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 782
810
743
674
586 | e140
e135
e130
e125
e120 | e49
e48
e47
e46
e45 | e28 | e20
e19
e19
e19
e19 | e16
e16
e15
e15 | e14
e14
e14
e14
e13 | e13
e13
e13
e13 | e5500
e4500
e4700
e5000
e6000 | 424
676
886
737
721 | 1460
4150
3700
5790
10600 | 1600
8960
8070
8580
12700 | | 6
7
8
9
10 | 532
550
543
541
515 | e115
e110
e105
e103
e99 | e44
e43
e42
e41
e40 | e26
e26
e25
e25 | e19
e19
e18
e18
e18 | e15
e15
e15
e15
e15 | e13
e13
e13
e13 | e14
e16
e40
e50
e50 | 8810
8280
9230
7440
5400 | 636
567
510
457
416 | 7000
5510
4780
4150
6550 | 10600
6280
4060
2970
2380 | | 11
12
13
14
15 | 491
e340
e310
e360
e380 | e95
e92
e89
e87
e84 | e39
e39
e38
e37
e37 | e25
e24
e24
e24
e24 | | e15
e15
e15
e15
e14 | e13
e13
e13
e13 | e80
e80
e200
e350
e600 | 5830
5070
3830
3940
2980 | 383
350
314
286
301 | 7090
6820
7450
5890
3910 | 1980
1660
1440
1350
1200 | | 16
17
18
19
20 | e375
e370
e320
e300
e275 | e81
e79
e76
e74
e71 | e36
e36
e35
e35
e34 | e23
e23
e23
e22
e22 | | e14
e14
e14
e14 | | e800
e1100
e1400
e1200
e800 | 2170
1710
1260
1250
1070 | 918
1490
3210
2170
1410 | | 1090
914
922
851
843 | | 21
22
23
24
25 | e260
e240
e225
e210
e200 | e60 | e31 | | e16
e16
e16
e16 | e14
e14
e14
e14 | e13
e13
e13
e13 | e750
e730
e710
e800
e600 | 661 | 1040
828
731
662
600 | 1330 | 893
e1050
e900
e800
e700 | | 26
27
28
29
30
31 | e190
e180
e170
e163
e155
e147 | e59
e57
e55
e53
e51 | | | | | | e300
e280
e600
e600
e800
e1300 | | 838
1450
1140
942
1090
1330 | 1180
1060
1020
984
918
1020 | e640
e600
e560
e540
e520 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 11937
385
810
147
23680
.55
.63 | 2606
86.9
140
51
5170
.12
.14 | 1151
37.1
49
29
2280
.05 | 729
23.5
28
20
1450
.03
.04 | 505
17.4
20
16
1000
.02
.03 | 450
14.5
16
14
893
.02
.02 | 394
13.1
14
13
781
.02 | 14316
462
1400
13
28400
.66
.76 | 100645
3355
9230
446
199600
4.76
5.31 | 888
3210
286
54570 | 10600
918 | 12700
520 | | | | | | | | | YEARS 1985 | | | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 563
1542
1994
207
1997 | 141
290
1994
68.5
1988 | 62.7
111
1986
34.2
1988 | 34.2
70.0
1986
21.5
1992 | 22.9
49.3
1986
12.0
1992 | 17.6
39.5
1991
9.10
1992 | 15.3
38.8
1991
9.00
1992 | 1950
4856
1993
20.6
1989 | 3121
6669
1989
1372
1988 | 1761
6144
1989
424
1999 | 2918
8458
1994
496
1991 | 1672
2855
2000
386
1991 | | SUMMARY | Y STATIST | ICS | FOR 1 | .999 CALEN | DAR YEAR | | FOR 2000 WA | TER YEA | R | | | 5 - 2000# | | ANNUAL HIGHES' LOWEST HIGHES' ANNUAL MAXIMUN MAXIMUN ANNUAL ANNUAL ANNUAL 50 PERC | MEAN I ANNUAL I ANNUAL MI I DAILY ME SEVEN-DA: M PEAK FLO M PEAK STA | MEAN EAN EAN EAN Y MINIMUM OW AGE AGE AC-FT) CFSM) INCHES) EDS EDS | | 240792
660
8110
a15
15
477600
.94
12.71
1900
95 | Aug 1
Apr 29
Apr 29 | | 366201
1001
12700
b13
13
14200
9.15
d10.48
726400
1.42
19.32
3850
94 | Sep
Apr
Apr
Sep
Sep
May 2 | 5
5
5
5
5
5
4 | 1028
1843
530
29400
9.0
38500
12.2
d13.5
745000
1.4
19.8
2920
130 | Aug
Apr
Apr
Aug
1 Aug
May
6 | 1994
1987
17 1994
30 1985
30 1985
17 1994
17 1994
16 1999 | See period of record From Apr. 29 to May 11 From Apr. 5 to May 4 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice Estimated ## 15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHAI | KGE, CODIK | , reer re | DAIL | Y MEAN | | JDER Z000 | IO SEFIEM | BER ZUUI | | | |---|--|--|---|--|---|---|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e500
e480
e460
e440
e430 | e190
e190
e180
e180
e170 | e110
e110
e110
e110
e100 | e75
e75
e75
e75
e70 | e55
e55
e50
e50
e50 | e42
e42
e40
e40
e40 | e32
e32
e32
e30
e30 | e25
e25
e25
e24
e24 | e3500
e5000
e6000
e9000
e10000 | 1840
1750
1660
1720
1520 | 1850
3370
2970
2320
1850 | 751
700
680
683
793 | | 6
7
8
9
10 | e420
e400
e380
e370
e360 | e170
e170
e160
e160
e160 | e100
e100
e100
e100
e95 | e70
e70
e70
e70
e70 | e50
e50
e50
e50
e50 | e40
e40
e40
e38
e38 | e30
e30
e30
e29
e29 | e24
e24
e24
e23
e23 | 9880
9570
8270
7850
6560 | 1220
1020
913
831
763 | 1500
1310
1650
5320
5270 | 955
1410
1440
2180
3840 | | 11
12
13
14
15 | e350
e340
e330
e320
e300 | e150
e150
e150
e150
e140 | e95
e95
e95
e90 | e65
e65
e65
e65 | e50
e48
e48
e48
e48 | e38
e38
e38
e37
e36 | e29
e29
e29
e28
e28 | e23
e23
e23
e23
e23 | 5020
6330
7480
6600
3770 | 740
766
772
767
712 | 5400
10300
21100
14400
7810 | 3230
2720
2180
1740
1500 | | 16
17
18
19
20 | e290
e280
e280
e270
e260 | e140
e140
e140
e130
e130 | e90
e90
e90
e85
e85 | e65
e65
e60
e60
| e48
e46
e46
e46
e46 | e36
e36
e36
e36 | e28
e28
e28
e27 | e24
e25
e27
e29
e32 | 2930
3030
4130
4950
3440 | 778
2790
3590
2420
2050 | 4750
3370
2550
2100
1790 | 1440
1290
1170
1070
989 | | 21
22
23
24
25 | e250
e250
e240
e230
e230 | e130
e130
e130
e120
e120 | e85
e85
e85
e80
e80 | e60
e60
e60
e60 | e44
e44
e44
e44 | e36
e34
e34
e34
e34 | e27
e27
e27
e26
e26 | e36
e42
e50
e60
e80 | 3560
2780
3860
3760
2640 | 1860
1570
1340
1210
1040 | 1520
1340
1210
1090
984 | 931
864
807
756
711 | | 26
27
28
29
30
31 | e220
e220
e210
e210
e200
e200 | e120
e120
e120
e110
e110 | e80
e80
e80
e80
e75
e75 | e55
e55
e55
e55
e55 | e42
e42
e42
 | e34
e34
e34
e32
e32
e32 | e26
e26
e26
e25
e25 | e120
e250
e460
e650
e750
e1000 | 2120
2120
1960
2290
2430 | 989
1250
3690
3460
2470
1860 | 900
828
777
742
829
830 | 662
615
596
547
521 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 9720
314
500
200
19280
.44
.51 | 4360
145
190
110
8650
.21 | 2825
91.1
110
75
5600
.13
.15 | 1985
64.0
75
55
3940
.09 | 1330
47.5
55
42
2640
.07 | 1137
36.7
42
32
2260
.05 | 846
28.2
32
25
1680
.04 | 3991
129
1000
23
7920
.18
.21 | 150830
5028
10000
1960
299200
7.13
7.96 | 49361
1592
3690
712
97910
2.26
2.60 | 112030
3614
21100
742
222200
5.13
5.91 | 37771
1259
3840
521
74920
1.79
1.99 | | | | STATISTIC | S OF MONT | HLY MEAN | DATA FOR | WATER Y | YEARS 198 | 5 - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | 548
1542
1994
207
1997 | 141
290
1994
68.5
1988 | 64.4
111
1986
34.2
1988 | 36.0
70.0
1986
21.5
1992 | 24.3
49.3
1986
12.0
1992 | 18.7
39.5
1991
9.10
1992 | 16.0
38.8
1991
9.00
1992 | 1843
4856
1993
20.6
1989 | 3234
6669
1989
1372
1988 | 1751
6144
1989
424
1999 | 2959
8458
1994
496
1991 | 1648
2855
2000
386
1991 | | SUMMARY | STATIST | ics | FOR 2 | 000 CALEN | IDAR YEAR | | FOR 2001 | WATER YEA | R | WATER Y | EARS 1985 | - 2001# | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN 'ANNUAL MAILY MI 'DAILY MEA DAILY MEA | EAN EAN AN Y MINIMUM DW AGE AC-FT) CFSM) INCHES) EDS EDS | | 367412
1004
12700
a13
13
728800
1.42
19.39
3850
150 | | | 376186
1031
21100
b23
23
23100
10.
746200
1
1
19
3110
120
29 | May
May
Aug 1
.52 Aug 1 | 9
9
3
3 | 1029
1843
530
29400
9.0
38500
12.2
d13.5
745100
1.4
19.8
2930
130 | Apr
Apr
Aug
1 Aug
May | 1994
1987
17 1994
30 1985
30 1985
17 1994
17 1994
16 1999 | See period of record From Apr. 5 to May 4 From May 9-15 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice Estimated # a b c d ### ARCTIC SLOPE ALASKA #### 15798700 NUNAVAK CREEK NEAR BARROW LOCATION.--Lat $71^{\circ}15'35''$, long $156^{\circ}46'57''$, in $SE^{1}/_{4}$ sec. 18, T. 22 N., R. 18 W.(Barrow B-4 quad), North Slope Borough, Hydrologic Unit 19060202, 0.7 mi downstream from Emaiksoun Lake, 1.2 mi upstream from Nunavak Bay, and 2.3 mi south of Barrow Post Office. DRAINAGE AREA.--2.79 mi², approximately. PERIOD OF RECORD. -- October 1971 to current year. REVISED RECORDS. -- WDR AK-76-1: 1972. GAGE.--Water-stage recorder. Elevation of gage is 19 ft above sea level, from topographic map. Prior to May 29, 1982, at site 10 ft downstream at datum about 29.6 ft higher. REMARKS.--Records poor. | | | DISCHAR | GE, CUBI | C FEET P | | , WATER
LY MEAN | YEAR OCTOBE
VALUES | R 2000 | TO SEPTEM | BER 2001 | | | |------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e.00
e.00
e.00
e.00 4.3
3.9
3.7
3.5
3.3 | 1.5
1.4
.78
1.7 | e.28
e.27
e.32
e.35
e.34 | | 6
7
8
9
10 | e.00
e.00
e.00
e.00 e.00
e.00
e.00
e.00
e.50 | 3.0
2.5
2.1
1.9 | .54
.47
.57
1.7
2.4 | e.32
e.30
e.34
e.50
e.90 | | 11
12
13
14
15 | e.00
e.00
e.00
e.00 e1.0
e4.0
e45
e70
e51 | 1.5
1.2
1.1
.78
.72 | 3.0
3.9
6.1
3.1
2.0 | e.85
e.80
e.74
e.65
e.69 | | 16
17
18
19
20 | e.00
e.00
e.00
e.00 24
17
12
9.7
8.8 | .66
.78
.72
1.0 | 1.4
1.2
.61
.50 | e.62
e.53
e.49
e.46
e.39 | | 21
22
23
24
25 | e.00
e.00
e.00
e.00 8.2
7.6
7.3
6.8
6.6 | 1.2
.92
1.5
1.4 | .44
.38
e.37
e.35
e.34 | e.36
e.32
e.23
e.20
e.19 | | 26
27
28
29
30
31 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | 6.1
6.1
5.6
5.2
4.7 | .72
.54
.66
1.4
1.2 | e.32
e.31
e.30
e.30
e.31
e.29 | e.18
e.17
e.16
e.15
e.14 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 307.20
10.2
70
.00
609
3.67
4.10 | 51.58
1.66
4.3
.54
102
.60 | 38.28
1.23
6.1
.29
76
.44 | 12.24
.41
.90
.14
.24
.15 | | | | STATISTIC | S OF MON | THLY MEAN | DATA FOR | WATER | YEARS 1972 - | - 2001, | BY WATER | YEAR (WY) | # | | | MEAN
MAX
(WY)
MIN
(WY) | .031
.22
1980
.000
1972 | .000
.000
1972
.000
1972 | .000
.000
1972
.000
1972 | .000
.000
1972
.000
1972 | .000
.000
1972
.000
1972 | .000
.000
1972
.000
1972 | .000
.000
1972
.000
1972 | .20
3.55
1990
.000
1972 | 8.52
17.3
1999
2.73
1992 | 2.04
9.93
1981
.091
1983 | .90
6.79
1994
.001
1983 | 1.02
8.34
1986
.000
1975 | e Estimated ## 15798700 NUNAVAK CREEK NEAR BARROW--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1972 - 2001 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 506.37 | 409.30 | | | ANNUAL MEAN | 1.38 | 1.12 | 1.05 | | HIGHEST ANNUAL MEAN | | | 2.26 1989 | | LOWEST ANNUAL MEAN | | | .26 1992 | | HIGHEST DAILY MEAN | 52 Jun 16 | 70 Jun 14 | 110 Jun 14 1994 | | LOWEST DAILY MEAN | a.00 Jan 1 | b.00 Oct 1 | c.00 Oct 1 1971 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan 1 | .00 Oct 1 | .00 Oct 1 1971 | | MAXIMUM PEAK FLOW | | 84 Jun 14 | d131 Jun 10 1980 | | MAXIMUM PEAK STAGE | | fg34.26 Jun 13 | g34.36 Jun 11 1994 | | ANNUAL RUNOFF (AC-FT) | 1000 | 812 | 763 | | ANNUAL RUNOFF (CFSM) | .50 | .40 | .38 | | ANNUAL RUNOFF (INCHES) | 6.75 | 5.46 | 5.13 | | 10 PERCENT EXCEEDS | 5.5 | 1.7 | 2.0 | | 50 PERCENT EXCEEDS | .00 | .00 | .00 | | 90 PERCENT EXCEEDS | .00 | .00 | .00 | From Jan. 1 to Jun. 9 and Sep. 30 to Dec. 31 From Oct. 1 to Jun. 9 No flow during winter months and at times during summer months At site and datum then in use, flow over snow. Maximum observed but may have been higher prior to gage startup, Jun. 10-13 Backwater from snow and ice #### 15896000 KUPARUK RIVER NEAR DEADHORSE LOCATION.--Lat $70^{\circ}16'54''$, long $148^{\circ}57'35''$, in $NE^{1}/_{4}$ sec. 25, T. 11 N., R. 12 E. (Beechey Point B-4 quad), North Slope Borough, Hydrologic Unit 19060401, on right bank, 1.8 mi northeast of SE Eileen State No. 1, 2.1 mi south of Frontier Service City Camp, 10 mi upstream from mouth on Gwyder Bay, and 13 mi northwest of Deadhorse. DRAINAGE AREA.--3,130 mi². PERIOD OF RECORD.--June 1971 to current year. GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by private engineering firm). REMARKS.--Records fair except for estimated daily discharges, which are poor. Winter low flow may be discontinuous as the flow probably varies significantly along the main stem of the river due to the formation of aufeis in the vicinity of springs. Flow may cease at other points. GOES satellite telemetry at station. > DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|---
--|--------------------------------------|--------------------------------------|---|--------------------------------------|---|---|---|--| | 1
2
3
4
5 | e300
e280
e270
e260
e250 | e46
e44
e40
e37
e34 | C2.0 | e.0
e.0
e.0
e.0 | e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.u | 2370
2160
1770
1510
1320 | 1120
2640
2480
2100
2060 | 1410
1340
1270
1200
1190 | | 8 | e240
e230
e220
e210
e200 | | e2.0
e2.0
e2.0
e2.0
e2.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e1000
e4000
e12000
e38000
e55000 | 1010
963
1100
1330 | 2070
1960
1800
1660
1490 | 1150
1120
1110
1090
1100 | | 12
13
14 | e190
e180
e170
e160
e150 | e20
e19
e18
e16
e15 | e1.0
e1.0
e1.0
e1.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e43000
e30000
22200
16500
12100 | 1250
1100
962
847
753 | 1330
1300
1870
4150
10700 | 1160
1230
1260
1240
1190 | | 17
18
19 | e140
e130
e120
e120
e110 | e14
e13
e11
e10
e9.0 | e1.0
e1.0
e1.0
e1.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | 9820
8270
6480
5070
3970 | 698
662
630
594
577 | 21600
19300
13400
9650
7400 | 1170
1160
1470
1890
1960 | | 22
23
24
25 | e80 | e9.0
e8.0
e7.0
e7.0
e6.0 | e1.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | 3260
2760
2460
2550
2770 | 563
521
503
556
650 | 5770
4620
3800
3230
2820 | 1750
1570
1420
1340
1260 | | 26
27
28
29
30
31 | e75
e70
e65
e60
e55
e50 | e6.0
e5.0
e5.0
e4.0
e4.0 | e.0
e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0
e.0 | e.0
e.0
e.0 | e.0
e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0 | e.0
e.0
e.0
e.0
e.0 | 2590
2230
1870
1650
1910 | 618
600
712 | | 1160
e1100
e1000
e940
e860 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 4755
153
300
50
140
9430
.05
.06 | 537.0
17.9
46
4.0
14
1070
.01 | 36.0
1.16
4.0
.0
1.0
71
.00 | 0.0
.000
.0
.0
.0
.0
.00 | 0.0
.000
.0
.0
.0
.00 | 0.0
.000
.0
.0
.0
.00 | 0.0
.000
.0
.0
.0
.00 | 0.0
.000
.0
.0
.0
.00 | 291460.0
9715
55000
.0
3020
578100
3.10
3.46 | 29668
957
2370
503
783
58850
.31
.35 | 142030
4582
21600
1120
2240
281700
1.46
1.69 | 38110
1270
1960
860
1200
75590
.41
.45 | | | | | | | | | YEARS 1971 - | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 233
692
1978
10.0
1975 | 20.4
174
1973
.000
1977 | 2.65
24.3
1973
.000
1977 | 1.03
10.0
1972
.000
1976 | 1.01
10.0
1972
.000
1976 | 1.00
10.0
1972
.000
1975 | 1.00
10.0
1972
.000
1975 | 1530
8877
1996
.000
1975 | 10730
26360
1982
726
1990 | 1095
3169
1999
300
1971 | 1634
5095
1989
127
1990 | 1513
4863
1997
192
1974 | | SUMMARY | STATIST | ICS | FOR | 2000 CALENI | DAR YEAR | | FOR 2001 WAT | TER YEA | R | WATER Y | EARS 1971 | - 2001 # | | ANNUAL MIGHEST LOWEST LOWEST LOWEST ANNUAL MAXIMUM MAXIMUM | MEAN | | | 78000
a.0
.00 | | | 506596.0
1388
55000
b.0
.00
d
f36.74
1005000 | Jun 1
Dec 2
Dec 2 | 0
2
2 | 1415
4657
658
100000
c.0
.00
118000
37.6 | Jun
Mar
O Mar
Jun
O Jun | 1971
1974
7 1978
1 1975
1 1975
7 1978
7 1978 | | 10 PERC | RUNOFF (
RUNOFF (
RUNOFF (
ENT EXCE
ENT EXCE | EDS
EDS | | 1195000
.53
7.16
2800
2.0
.00 | | | 1005000
.44
6.02
2290
2.0
.00 | | | 1025000
.4
6.1
2700
10 | - | | b See Period of Record, partial years used in monthly statistics From Jan. 1 to Jun. 7 From Dec. 22 to Jun. 5 No flow during winter months Not determined, occurred during period of backwater from ice and snow, see highest daily mean Estimated Backwater from snow and ice #### 15906000 SAGAVANIRKTOK RIVER TRIBUTARY NEAR PUMP STATION 3 LOCATION.--Lat $68^{\circ}41'13''$, long $149^{\circ}05'42''$, in SW^{1}_{4} sec. 4, T. 9 S., R. 13 E. (Phillip Smith Mountains C-4 quad), Hydrologic Unit 19060402, on right bank 30 ft downstream from culvert, at mi 297.9 Dalton Highway, 14 mi south of Pump Station 3, and 16.5 mi upstream from mouth. PERIOD OF RECORD.--Annual maximums, water years 1979-87. October 1987 to current year. (No winter record in water year 1989.) REVISED RECORDS.--WDR AK-96-1:1992(M), 1994(M), 1995(M). GAGE.--Water stage recorder. Elevation of gage is 2,475 ft above sea level, from topographic map. Crest-stage gage only, August 15, 1979 to September 12, 1987, 30 ft upstream of culvert at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | DITTE | 1 11D2111 V2 | 1000 | | | | | | |--|--|---|---|--|---|---|---|---| | | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | e.00 e.00
e.00 e.00
e.00 e.00 | e.00
e.00
e.00 | e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e50
e130 | 31
24
20
23
36 | 65
59
64
60
54 | 15
16
15
14
14 | | e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00 | 199
162
112 | 46
70
52
37
29 | 53
47
38
38
48 | 20
20
22
21
18 | | e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | 128
100
74
55
42 | 25
23
22
25
32 | 68
71
73
122
193 | 16
14
13
12
12 | | | | | | | | 22
20
36
32
29 | 183
130
92
66
50 | 15
14
12
11
10 | | e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | 19
24
25
20
18 | 26
21
18
21
31 | 40
34
30
27
24 | e7.0
e6.5 | | e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00
e.00 e.00 | e.00
e.00
e.00 |
e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | | | 36
31
27
68
122
95 | 22
19
18
17
15 | e4.6
e4.2 | | 0.00 0.00
.000 .000
.00 .00
.00 .00
.00 .00
.00 .00 | 0.00
.000
.00
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 1.00
.032
1.0
.00
2.0
.00 | 1944.0
64.8
199
3.0
3860
2.28
2.55 | 1130
36.5
122
18
2240
1.28
1.48 | 1834
59.2
193
14
3640
2.08
2.40 | 368.2
12.3
22
4.2
730
.43
.48 | | | | | | | | | | | | .000 .000
.000 .000
1988 1988
.000 .000
1988 1988 | .000
.000
1988
.000 | .000
.000
1988
.000
1988 | .000
.000
1988
.000 | 36.0
95.6
1995
.032
2001 | 55.4
150
1992
10.4
1988 | 34.4
81.6
1999
8.19
1990 | 45.2
90.8
1997
3.17
1990 | 27.9
77.4
1997
9.56
2000 | | FOR 2000 CALENI | DAR YEAR | F | OR 2001 WA | TER YEAR | | WATER YEA | RS 1988 | - 2001# | | 14.0
500
a.00
.00
10160
.49
6.71
37 | | | 14.6 199 | Jun 8
Nov 1
Nov 1
Jun 8
Jun 8
Jun 7 | | 809
c.00
.00
d940
21.20
12370
.60
8.17
49 | Jun 1
Oct
Oct
Jun 1
Jun 1 | 1997
1988
1 1992
1 1987
1 1987
1 1992
1 1992 | | | e.00 e | DEC JAN FEB e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 | DEC JAN FEB MAR e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0 | e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 | DEC JAN FEB MAR APR MAY e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 | DEC JAN FEB MAR APR MAY JUN e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0 | DEC JAN FEB MAR APR MAY JUN JUL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0 | DEC JAN FEB MAR APR MAY JUN JUL AUG e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0 | See Period of Record, partial years used in monthly statistics From Jan. 1 to May 29 and Nov. 1 to Dec. 31 From Nov. 1 to May 30 No flow during winter months From rating extended above 450 $\rm ft^3/s$ on basis of slope-area measurement of peak discharge Perionard Estimated From floodmarks at recording gage ### 15908000 SAGAVANIRKTOK RIVER NEAR PUMP STATION 3 LOCATION.--Lat $69^{\circ}00'54''$, long $148^{\circ}49'02''$, in NW $^{1}/_{4}$ sec. 16, T. 5 S., R. 14 E. (Sagavanirktok River A-4 quad), North Slope Borough, Hydrologic Unit 19060402, on left bank 600 ft east of Dalton Highway at mi 324.7, 6.0 mi upstream from Lupine River, and 15 mi north of Pump Station 3. DRAINAGE AREA.--1,860 mi², approximately. PERIOD OF RECORD. -- September 1982 to current year. GAGE.--Water-stage recorder. Elevation is 1,150 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station, daily values of precipitation and air temperature are available from the computer files of the Alaska District. GOES satellite telemetry at station. | Γ | DISCHARGE, CUBIC | | ID, WATER | | 2000 T | O SEPTEM | BER 2001 | | | |---|---|--|---|--|---|--|---|--|---| | DAY OCT | NOV DEC | JAN FEE | | | MAY | JUN | JUL | AUG | SEP | | 2 e660 e
3 e640 e
4 e640 e | 300 e180
290 e180
290 e180
280 e170
280 e170 | e130 e110
e130 e110
e130 e110
e130 e110
e130 e110 | e96
e96
e96
e96 | e86
e86
e86
e86 | e80
e80
e80
e80
e80 | e270
e460
e700
e1200
e2100 | 5770
5360
4840
5080
7000 | 4460
4290
4310
4270
4150 | 1870
1960
1850
1810
1770 | | 7 e560 e
8 e560 e
9 e540 e | 270 e170
260 e170
260 e170
250 e160
250 e160 | e130 e110
e130 e110
e130 e110
e130 e110
e130 e110 | e94
e94
e94
e94 | e86
e86
e84
e84
e84 | e78
e78
e78
e78
e78 | e3400
e5400
e7000
e9000
10600 | 6000
4990
4230
3520
3230 | 4010
3700
3560
3600
3840 | 1960
1970
1950
1890
1780 | | 12 e490 e
13 e480 e
14 e460 e | 240 e160
240 e160
240 e160
230 e160
230 e150 | e130 e110
e130 e100
e120 e100
e120 e100
e120 e100 | e94
e92
e92
e92 | e84
e84
e84
e84 | e76
e76
e76
e76
e76 | 10900
8570
7980
7160
5550 | 3200
3730
4420
4700
4880 | 4880
5550
5510
6250
9540 | 1690
1620
1550
1490
1460 | | 17 e420 e
18 e410 e
19 e400 e | 230 e150
220 e150
220 e150
220 e150
220 e150
210 e150 | e120 e100
e120 e100
e120 e100
e120 e100
e120 e100 | e92
e90
e90
e90 | e84
e84
e84
e84 | e76
e76
e76
e76
e74 | 4310
5060
6090
5020
3850 | 4880
4990
5470
4720
4430 | 9160
6880
5180
4110
3390 | 1550
1520
1420
1340
1280 | | 22 e370 e
23 e360 e
24 e360 e | 210 e150
210 e150
200 e140
200 e140
200 e140 | e120 e100
e120 e100
e120 e100
e120 e98
e120 e98 | e90
e90
e90
e88
e88 | e82
e82
e82
e82
e82 | e74
e74
e74
e74 | 4220
5850
6050
6250
6510 | 5210
4700
5060
8110
7410 | 2930
2660
2500
2340
2160 | 1230
1190
1140
1150
1110 | | 27 e330 e
28 e320 e
29 e320 e
30 e310 e | 2200 e140
190 e140
190 e140
190 e140
190 e140
e130 | e120 e98 e110 e98 e110 e96 e110 e110 | e88
e88
e88
e86
e86 | e82
e80
e80
e80
e80 | e74
e74
e74
e74
e74
e150 | 7700
7330
6280
6290
5880 | 6170
5230
4700
4700
5950
5130 | 2050
1940
1860
1790
1800
1780 | 1050
e980
e960
e920
e860 | | MEAN 457
MAX 680
MIN 300
AC-FT 28130 13 | 980 4800
233 155
300 180
180 130
840 9520
.13 .08
.14 .10 | 3790 2898
122 104
130 110
110 96
7520 5750
.07 .06
.08 .06 | 2834
91.4
96
86
5620
.05 | 2506
83.5
86
80
4970
.04 | 2438
78.6
150
74
4840
.04 | 166980
5566
10900
270
331200
2.99
3.34 | 5091
8110
3200 | 124450
4015
9540
1780
246800
2.16
2.49 | 44320
1477
1970
860
87910
.79
.89 | | STA | TISTICS OF MONTH | HLY MEAN DATA F | OR WATER Y | YEARS 1982 - | | Y WATER | YEAR (WY)# | | | | MAX 1172
(WY) 1996 1
MIN 279 7 | 208 75.9
358 233
996 1998
6.0 4.03
984 1991 | 36.1 22.4
180 150
1998 1998
.000 .000
1983 1983 | 18.3
128
1998
.000
1983 | 19.7
117
1998
.000
1984 | 1261
3588
1993
4.77
1986 | 5921
9737
1992
3875
1985 | 4799
7370
1995
2839
1991 | 3897
6252
1987
1897
1990 | 1872
3984
1997
883
1983 | | SUMMARY STATISTICS | FOR 2 | 000 CALENDAR YE | CAR | FOR 2001 WA | TER YEAF | 2 | WATER Y | EARS 198 | 2 - 2001# | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MI MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM ANNUAL RUNOFF (CFSM ANNUAL RUNOFF (INCH 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | NIMUM
T) 11 | 88961.0
1609
25000 Jun
al.0 Feb 1
1.0 Feb 1
68000
.87
11.78
4780
190
1.0 | .0 | 533986
1463
10900
b74
74
12300
18.16
d19.5
1059000
79
10.68
5190
180 | Jun 11
May 20
May 20
Jun 11
Jun 15
Jun 6 | | 1567
2071
993
35300
c.00
.00
42900
20.67
d25.68
1135000
.84
11.44
5000
190 | Dec
Dec
Aug
Aug
Jun | 1995
1983
18 1999
25 1982
25 1982
27 1992
27 1992
8 2000 | See Period of Record, partial years used in monthly statistics From Feb. 10 to May 27 From May 20 to 30 No flow during winter months water years 1983 to 1995 From floodmarks, backwater from ice and snow c d Estimated Figure 2. Locations of crest-stage partial-record stations #### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records of partial-record stations are presented in the table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites
for both low flow and high flow are given in a second table. #### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. The maximum discharge for each water year is given. The maximum discharge for the current water year and the maximum for the period of record are presented in the table below. However, at some stations the maximum discharge from spring runoff and from rainfall are shown by the symbols S/ and R/, respectively. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. | | | [1 ootnotes | at end of t | able on p. 3 | 07] | | | | |--|---|------------------|-------------|---------------------|--------------------------------|-----------------------------|---------------------|--------------------------------| | Station | | | Wate | r year 2001 m | naximum | Period | l of record m | aximum | | name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | SOL | JTHEAST A | ALASKA | | | | | | Cupola Peak
Creek at
Bear Cove
near Sitka
(15088400) | Lat 57°00′39″, long 135°09′11″, in $NE^1/_4$ $SE^1/_4$ $SE^1/_4$ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, on left bank 200 ft downstream from Green Lake road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka. Drainage area is 0.43 mi². | 2000-2001 | 12-05-00 | 10.77 | n | 9-04-00
and
12-05-00 | 10.77 | n | | North Fork
Peterson
Creek near
Auke Bay
(15109045) | Lat 58°17′02″, long 134°39′49″, in SE¹/4 NW¹/4 SW¹/4, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, on left bank, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas. Drainage area is 1.59 mi²., revised. | 1997-2001 | 9-18-01 | 22.01 | 48 | 11-01-99
and
12-28-99 | 23.38 | 160 | | G: | | | Wate | r year 2001 n | naximum | Period of record maximum | | | | |--|---|------------------------|--------------------------------|---------------------------|--------------------------------|--------------------------|---------------------|--------------------------------|--| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | | SOUTI | H-CENTRA | L ALASKA | | | | | | | Dry Creek
near
Glennallen
(15201000) | Lat 62°08′49″, long 145°28′31″, in NE¹/4 sec. 7, T. 4 N., R.1 W. (Gulkana A-3 quad), on left bank 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen. Drainage area is 11.4 mi². | 1963-2001 | 401
4-27-01
9-03-01 | f15.33
15.20
<14.52 | u
S/71
R/<39 | 572 | d25.88 | 546 | | | McCarthy
Creek at
McCarthy
(15210025) | Lat $61^{\circ}25'54''$, long $142^{\circ}55'02''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), on right bank 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth. Drainage area is is 79.0 mi ² . | 1994-2001 | 9-27-00
7-09-01
9-19 -01 | j80.27
79.61
<78.93 | geR/4,000
S/1,950
R/<850 | 9-27-00 | j80.27 | ge4,000 | | | Boulder
Creek near
Tiekel
(15212500) | Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), on left downstream wingwall of bridge at mi 51.4 of old Richardson Highway, 0.2 mi downstream from culvert on present Richardson Highway, and 0.7 mi north of Tiekel. Drainage area is 9.80 mi ² . | 1964-2001 | 6-14-01
7-06-01 | 10.38
10.55 | S/284
R/407 | 8-07-81 | 11.72 | 1,330 | | | Ptarmigan
Creek Tribu-
tary near
Valdez
(15212800) | Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), on left bank 275 ft upstream from Richardson Highway, 21 mi east of Valdez. Drainage area is 0.72 mi ² . | 1965-70
1996-2001 | 601
9-05-01 | f78.52
77.55 | u
R/42 | 965 | d10.82 | 85 | | | Mineral
Creek near
Valdez
(15227500) | Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), on right bank 120 ft upstream from bridge, 1.8 mi upstream from mouth, and 0.5 mi northwest of Valdez. Drainage area is 44.0 mi ² . | i1976-81,
1990-2001 | 5-28-01
9-05-01 | <11.40
<11.40 | S/<1,520
R/<1,520 | 676 | di 90.81 | 5,570 | | | St. t. | | | Water year 2001 maximum | | | Period | Period of record maximum | | | |--|---|---|--------------------------------|-----------------------|--------------------------------|----------|--------------------------|--------------------------------|--| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | | SOUTH-CEN | ITRAL ALA | ASKA—Conti | nued | | | | | | Shakespeare
Creek at
Whittier
(15236200) | Lat $60^{\circ}46'35''$, long $148^{\circ}43'35''$, in $NE^1/_4$ sec. 22, T. 8 N., R. 4 E. (Seward D-5 quad), on upstream right wingwall of concrete bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska railroad terminal building at Whittier. Drainage area is 1.61 mi ² . | 1970-80,
1984-2001 | 6-28-01
8-29-01 | <9.86
12.35 | S/<282
R/528 | 9-20-95 | 14.90 | 690 | | | Glacier
Creek at
Bruno Road
near Seward
(15237900) | Lat 60°10′49″, long 149°22′46″, in NW¹/4 sec.13, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, on left bank 25 ft upstream from Bruno Road bridge, and 5.6 mi northeast of Seward. Drainage area is indeterminate. | 1987-2001 | 4-29-01
6-29-01
8-30-01 | f8.96
7.76
8.61 | u
S/363
R/370 | 10-11-86 | 15.70 | 4,200 | | | Fritz Creek
near Homer
(15239500) | Lat 59°42′30″, long 151°20′35″, in SW¹/₄ SW¹/₄ sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), Kenai Peninsula Borough, on right bank 25 ft downstream from culvert under East End Road, 8 mi east of Homer. Drainage area is 10.4 mi². | 1963-85,
‡1986-92,
1993-2001 | 1-15-01
5-13-01 | 11.34
10.70 | R/259
S/92 | 10-22-80 | d 18.53 | 852 | | | Anchor
River near
Anchor
Point
(15239900) | Lat 59°44′50″, long 151°45′11″, in NE¹/₄ sec. 13, T. 5 S., R. 15 W., (Seldovia C-5 quad), Kenai Peninsula Borough, on right bank at downstream side of bridge on Sterling Highway, 4.3 mi southeast of Anchor Point. Drainage area is 137 mi². | ‡1965-73
1974
‡1978-86
1987
‡1991-92
2000-01 | 11-11-00
2-27-01
5-29-01 | 3.68
f8.67
4.63 | R/ 906
u
S/ 1,690 | 11-29-83 | d7.42 | 6,050 | | | Premier
Creek near
Sutton
(15283600) | Lat $61^{\circ}42'40''$, long $149^{\circ}05'12''$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), on left bank 10 ft downstream from culvert under Buffalo Mine Road, 3.85 mi north from mi 53 Glenn Highway , and 7 mi northeast of Palmer. Drainage area is 3.38 mi ² . | 1997-2001 | 4-29-01
5-27-01
9-06-01 | f7.17
6.94
6.88 | u
S/28
R/24 | 9-22-00 | 7.14 | 47 | | | St. t. | | Water year 2001 maximum | | | naximum | Period of record maximum | | | | |---|--|--------------------------------|--------------------------------|---------------------------|--------------------------------|--------------------------|---------------------|--------------------------------|--| | Station
name
and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | | SOUTH-CEN | ITRAL ALA | ASKA—Conti | nued | | | | | | Wasilla
Creek near
Palmer
(15285000) | Lat 61°38′37″, long 149°11′46″, in SE¹/4 SW¹/4 sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, on right bank 20 ft downstream from culverts on Wasilla Fishhook Road, and 4.1 mi northeast of Palmer. Drainage area is 16.8 mi². | 1971,
1976-2001 | 4-29-01
9-06-01 | 7.36
<7.69 | S/83
R/<119 | 8-10-71 | d17.74 | 700 | | | Nancy Lake
Tributary
near
Willow
(15290200) | Lat $61^{\circ}41'17''$, long $149^{\circ}57'58''$, in $SE^{1}/_{4}$ Sec. 34 , T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, on left bank 50 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth and 4.5 mi southeast of Willow. Drainage area is 8.00 mi ² . | 1980,
1983-87,
1989-2001 | 401
4-24-01
8-16-01 | f11.13
10.87
<10.00 | u
S/70
R/<22 | 10-11-86 | 13.21 | 465 | | | Raft
Creek near
Denali
(15291100) | Lat 63°03′04″, long 147°16′22″, in SE¹/₄ sec. 36, T. 21 S., R. 2 E.(Healy A-1 quad), Matanuska-Susitna Borough, on right bank 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali. Drainage area is 4.33 mi². | 1963-2001 | 5-23-01
6-24-01
8-03-01 | f13.48
10.61
10.62 | u
S/65
R/66 | 664 | 11.72 | 133 | | | Myrtle
Creek near
Kodiak
(15297200) | Lat 57°36′12″, long 152°24′12″, in NW¹/₄ SW¹/₄ sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, on left bank 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak. Drainage area is 4.74 mi². | ‡1963-86,
1987-2001 | 5-21-01
9-22-01 | 3.82
5.70 | S/217
R/832 | 1-03-77 | 6.93 | 1,350 | | | Stapp Creek
near Cold
Bay
(15297609) | Lat $55^{\circ}11'17''$, long $162^{\circ}42'47''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 1, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 0.9 mi upstream from mouth, and 1 mi. south of Cold Bay. Drainage area is 1.68 mi ² . | 2001 | 10-24-00
3-29-01
2-15-01 | 15.67
f16.55
15.02 | R/25
u
S/5.1 | 10-24-00 | 15.67 | 25 | | | C4-4: | | | Water year 2001 maximum | | | Period of record maximum | | | |---|--|-----------------------------------|---------------------------|-------------------------|--------------------------------|--------------------------|---------------------|--------------------------------| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | SOUTH-CEN | TRAL ALA | ASKA—Conti | nued | | | | | Frosty Creek
near Cold
Bay
(15297810) | Lat 55°09'59", long $162^{\circ}48'22"$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 8, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay. Drainage area is 5.92 mi ² | | 10-24-00
4-02-01 | 11.92
11.61 | R/497
S/392 | 10-24-00 | 11.92 | 497 | | | | SOU | THWEST A | ALASKA | | | | | | Chinkelyes
Creek
Tributary
near Pedro
Bay
(15300350) | Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in $SE^{1}_{/4}$ $NE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), on left bank 60 ft upstream from culvert, 8 mi east of Pile Bay, and 11 mi east of Pedro Bay. Drainage area is 0.40 mi ² . | 1997-2001 | 6-26-01
7-19-01 | 10.90
11.19 | S/14
R/23 | 9-18-99 | 13.14 | 144 | | Moody
Creek at
Aleknagik
(15302900) | Lat 59°16′34″, long 158°35′42″, in SE¹/4 sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), on left bank 10 ft upstream from culvert entrance, and 500 ft upstream from mouth at Wood River at the Aleknagik Mission. Drainage area is 1.28 mi². | 1969-73,
1975-85,
1988-2001 | 401
5-13-01
7-15-01 | 18.11
17.76
17.97 | u
S/10
R/ 14 | 6-07-71 | 19.60 | 55 | | Gold Creek
at Takotna
(15303660) | Lat $62^{\circ}59'20''$, long $156^{\circ}04'08''$, in $SE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, on right bank, 350 ft upstream from bridge, and 400 ft upstream from mouth. Drainage area is 6.31 mi^{2} . | 1987-2001 | 501
5-29-01
8-20-01 | f7.47
7.46
7.00 | u
S/67
R/33 | 5-16-99 | 8.30 | 131 | | | | Y | UKON AL | ASKA | | | | | | Dennison
Fork near
Tetlin
Junction
(15305900) | Lat $63^{\circ}25'24''$, long $142^{\circ}29'00''$, in SW ¹ / ₄ sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), on left bank 7 ft downstream from culverts at mi 10.7 Taylor Highway, and 8.3 mi northeast of Tetlin Junction. Drainage area is 2.93 mi ² . | 1964-2001 | n | n | n | 764 | d16.29 | 128 | | | | | Wate | r year 2001 m | naximum | Period of record maximum | | | |---|--|--|--------------------------------|--------------------------|--------------------------------|--------------------------|---------------------|--------------------------------| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | YUKON ALASKA—Continued | | | | | | | | | | King Creek
near Dome
Creek
(15344000) | Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), on left bank 1,100 ft upstream from culvert at mi 119.8 Taylor Highway, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle. Drainage area is 5.87 mi ² . | 1975-82,
‡1983-90,
1991-2001 | n | n | n | 6-13-97 | j17.65 | n | | Boulder
Creek near
Central
(15439800) | Lat 65°34′05″, long 144°53′13″, in NW¹/4 sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), on right bank 2,000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central. Drainage area is 31.3 mi². | 1964-65,
‡1966-82,
1983,
‡1984-86,
1987-2001 | 5-17-01
5-23-01
7-07-01 | f7.6
d38.59
7.56 | u
S/243
R/583 | 6-25-89 | 10.01 | 1,460 | | Quartz
Creek near
Central
(15442500) | Lat $65^{\circ}37'09''$, long $144^{\circ}28'55''$, in $SW^{1}/_{4}$ sec. 7, T. 9 N., R. 16 E. (Circle C-1 quad), on left bank 10 ft upstream from culvert at mi 138.1 on Steese Highway, 1 mi upstream from mouth, 19 mi southwest of Circle, and 10 mi east of Central. Drainage area is 17.2 mi ² . | 1967,
1969-79,
1989-2001 | n | n | n | 7-15-95 | dj23.08 | 700 | | Ray River
Tributary
near Stevens
Village
(15453610) | Lat 65°56′57″, long 149°54′55″, in SE¹/4 sec. 17, T. 13 N., R. 11 W. (Livengood D-6 quad), on right bank 10 ft upstream from culvert at mi 63.6 on the Dalton Highway, and 22 mi west of Stevens Village. Drainage area is 8.00 mi². | 1977-2001 | n | n | n | 579 | d 21.10 | 860 | | Little Jack
Creek near
Nabesna
(15470300) | Lat 62°32′39″, long 143°19′22″, in SW¹/4 NW¹/4 SE¹/4 sec. 22, T. 9 N., R. 11 E. (Nabesna C-5 quad), on left bank 8 ft upstream from the culvert at mi 25.8 Nabesna Road, and 15.6 mi northeast of Nabesna (previously 0.2 mi upstream on left bank). Drainage area is 6.73 mi² | 1975-2001 | 6-29-00
6-11 -01
7-25-01 | 18.34
<17.53
21.42 | gR/76
S/<69
R/254 | 579 | d 21.10 | 860 | | G: | | | Wate | er year 2001 m | naximum | Period of record maximum | | | |--|--|------------------------------------|-------------------------------|---------------------------|--------------------------------|--------------------------|---------------------|--------------------------------| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | YUKO | N ALASKA | —Continued | | | | | | Berry Creek
near Dot
Lake
(15476300) | Lat 63°41′23″, long 144°21′47″, in NW¹/4 sec. 13, T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), on left bank 100 ft upstream from former bridge site, at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake. Drainage area is 65.1 mi². | 1964-71,
‡1972-81,
1982-2001 | 5-16-01
9-03-01 | 12.63
12.19 | S/802
R/593 | 7-19-64 | 15.49 | 2,800 | | Suzy Q
Creek near
Pump
Station 10
(15478093) | Lat $63^{\circ}29'43''$, long $145^{\circ}51'27''$, in SW ¹ / ₄ sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), on right bank 30 ft upstream from bridge at mi 224.8 on
Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10. Drainage area is 1.29 mi ² . | 1987,
1989-2001 | n | n | n | 7-14-87 | 33.83 | 1,070 | | Ruby Creek
above
Richardson
Highway
near
Donnelly
(15478499) | Lat 63°37′54″, long 145°52′14″, in NE¹/4 sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), on left bank 0.2 mi upstream from Trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 on Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly. Drainage area is 4.89 mi². | 1987-2001 | n | n | n | 7-14-87 | 16.95 | 1,660 | | Banner
Creek at
Richardson
(15480000) | Lat 64°17′24″, long 146°20′56″, in SW¹/4 sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), on left bank 400 ft upstream from bridge at mi 295.4 Richardson Highway, 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson. Drainage area is 20.2 mi². | 1964-2001 | 4-27-01
5-24-01
7-30-01 | fj17.1
f15.34
14.10 | u
S/u
R/116 | 6-26-89 | 16.38 | 950 | | Slime
Creek near
Cantwell
(15516200) | Lat 63°30′34″, long 148°48′39″, in SE¹/₄ sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), on right bank 25 ft downstream from culverts at mi 219.9 George Parks Highway, and 9.1 mi northeast of Cantwell. Drainage area is 6.90 mi². | 1966-2001 | 401
6-24-01
8-03-01 | f18.31
17.05
17.31 | u
S/84
R/126 | 767 | d14.52 | 685 | | St. t. | Location and drainage area | | Wate | Water year 2001 maximum | | | Period of record maximum | | | |--|--|-------------------------------------|--------------------|-------------------------|--------------------------------|---------|--------------------------|--------------------------------|--| | Station
name and
number | | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | | YUKO | N ALASKA | —Continued | | | | | | | Dragonfly
Creek near
Healy
(15517980) | Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 9, T. 13 S., R. 7 W. (Healy D-4 quad), on left bank at mi 242.6 George Parks Highway 100 ft upstream from highway bridge, and 6 mi southeast of Healy. Drainage area is 0.71 mi ² . | 1990-2001 | n | n | n | 7-12-90 | d7.59 | 535 | | | Globe Creek
near Liven-
good
(15541600) | Lat $65^{\circ}17'08''$, long $148^{\circ}07'56''$, in $SE^{1}/_{4}$ sec. 3, T. 5 N., R 3 W. (Livengood B-3 Quad), 0.1 mi upstream from culvert at mi 37.6 Elliot Highway, 9 mi upstream from mouth, and 19 mi southeast of Livengood. Drainage area is 23.0 mi ² . | 1964-2001 | 5-22-01
8-16-01 | 14.12
j15.12 | S/189
R/361 | 8-12-67 | 17.05 | 1,240 | | | Snowden
Creek near
Wiseman
(15564868) | Lat $67^{\circ}44'20''$, long $149^{\circ}44'24''$, in $SW^{1}/_{4}$ sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), on right bank 0.25 mi upstream from culvert at mi 213.5 of the Dalton Highway,and 24.5 mi northeast of Wiseman. Drainage area is 16.7 mi ² . | 1968,
d1977-79,
1992-2001 | n | n | n | 1968 | u | 1,200 | | | Nugget
Creek near
Wiseman
(15564872) | Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in NW 1 / ₄ sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), on left bank 1,000 ft upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman. Drainage area is 9.47 mi 2 . | d1975-88,
d1990-92,
1993-2001 | n | n | n | 5-26-98 | 40.17 | 540 | | | Prospect
Creek near
Prospect
Camp
(15564884) | Lat 66°46′56″, long 150°41′06″, in NW¹/₄ sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), on left bank 200 ft upstream from bridge at mi 135.2 on the Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth, 2.1 mi south of Pump Station 5, and 1.5 mi southeast of Prospect Camp. Drainage area is 110 mi². | 1968,
1975-2001 | n | n | n | 1968 | d10.22 | 6,800 | | | G: | | | Wate | er year 2001 m | naximum | Perio | Period of record maximum | | | |--|---|------------------|---|--|--|---------|--------------------------|--------------------------------|--| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | | YUKO | N ALASKA | A—Continued | | | | | | | Bonanza
Creek Tribu-
tary near
Prospect
Camp
(15564887) | Lat 66°36′52″, long 150°41′24″, in SE¹/4 sec. 25, T. 21 N., R. 15 W. (Bettles C-2 quad), on right bank 0.3 mi downstream from culverts at mi 121 on the Dalton Highway, 3.4 mi upstream from mouth, 13.5 mi south of Pump Station 5, and 12.6 mi south of Prospect Camp. Drainage area is 11.7 mi². | 1975-2001 | 5-21-01
6-03-01
8-14-01 | f19.20
18.78
18.73 | u
S/141
R/137 | 5-15-93 | 19.89 | 290 | | | Indian River
at Utopia
(15564950) | Lat $65^{\circ}59'49''$, long $153^{\circ}41'V$ B31", in NW 1 / ₄ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 200 ft downstream of bridge at mi 0.2 on road to Indian Mountain. Drainage area is 38.8 mi 2 . | 1998-2001 | 5-29-01
6-07-01
8-14-01 | f18.58
17.53
18.04 | u
S/410
R/567 | 8-20-98 | 18.7 | 828 | | | Utopia
Creek at
Utopia
(15564960) | Lat.65°59′26″, long 153°41′ 44″, in SW¹/4 sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 460 ft downstream of 4 wheeler crossing west of airstrip, .5 mi above mouth, .3 mi south-southeast of Utopia, 5.4 mi south of Indian Mt, and 16 mi east-southeast of Hughes. Drainage area is 5.18 mi². | 1999-2001 | 5-13-99
7-20-99
5-17-00
5-31-00
7-21-00
5-18-01
6-7-01
8-14-01 | g 6.54
g 6.35
gfj 8.31
gf6.76
g6.72
af8.8
6.98
6.59 | g S/49
g R/33
u
gS/u
gR/69
u
S/102
R/54 | 6-7-01 | 6.98 | 102 | | | Municipal
Reserve
Creek at
Pilot Station
(15565449) | Lat 61°56′19″, long 162°52′53″, in NW¹/ ₄ SE¹/ ₄ sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), on right bank 0.3 mile upstream from mouth, and 0.1 mile northeast of Village of Pilot Station. Drainage area is 1.43 mi². | 1993-97
2001 | 5-16-01
6-03-01
8-31-01 | f7.95
6.10
7.49 | u
S/2.3
R/6.5 | 8-26-94 | 8.71 | 12 | | | C4-4: | | | Water year 2001 maximum | | | Period of record maximum | | | |---|---|--|---|--|---|--------------------------|---------------------|--------------------------------| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | NOR | THWEST A | ALASKA | | | | | | Chiroskey
River near
Unalakleet
(15565730) | Lat 63°55′06″, long 160°18′58″, in NW¹/ ₄ sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank 3/4 mile upstream from mouth, 14 miles northeast of Unalakleet. Drainage area is 296 mi². | 1998-2001 | 598
8-01-99
6-02-00
9-07-00
501
6-09-01
7-21-01 | 46.13
46.98
45.56
47.03
f48.73
46.75
45.39 | gS/1,070
gR/1,490
gS/810
gR/1,520
u
S/1,370
R/740 | 9-07-00 | 47.03 | 1,520 | | Goldengate
Creek near
Nome
(15585000) | Lat $64^{\circ}26'51''$, long $165^{\circ}03'14''$, in $SW^{1}/_{4}$ sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), on right bank 500 ft upstream from culvert on Nome-Council Road, and 11 mi southeast of Nome. Drainage area is 1.55 mi ² . | 1965,
1977-84,
1986-2001 | a5-15-01
6-06-01
8-14-01 | f 14.40
11.10
11.36 | u
S/17
R/27 | 9-08-65 | d11.70 | 63 | | Arctic Creek
above
Tributary
near Nome
(15624998) | Lat 64°38′16″, long 165°42′42″, in NE¹/₄ sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), on right bank 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome. Drainage area is 1.13 mi². | 1975,
1979-2001 | 7-06-01
7-13-01
8-14-01 | f 19.47
18.19
17.79 | u
S/43
R/10 | 8-20-98 | 19.06 | 182 | | Washington
Creek near
Nome
(15633000) | Lat $64^{\circ}42'52''$, long $165^{\circ}49'13''$, in $NW^1/_4$ sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), on left bank, 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome. Drainage area is 6.34 mi^2 . | 1964-2001 | 6-18-01
7-06-01
8-14-01 | f 24.00
20.23
19.70 |
u
S/70
R/32 | 7-10-75 | d19.35 | 620 | | Eldorado
Creek near
Teller
(15635000) | Lat 64°57′38″, long 166°11′59″, in NE¹/4 NE¹/4 sec. 20, T. 6 S., R. 37 W. (Nome D-3 quad), on right bank 30 ft downstream from bridge on Nome-Teller Road, at mi 46.3 of the Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River, and 21 mi south of Teller. Drainage area is 5.83 mi². | 1986-87,
‡1988-90,
1991,
‡1992-98,
1999-2001 | 6-18-01
7-06-01
8-14-01 | 10.09
9.00
9.00 | u
S/292
R/292 | 9-04-86 | 9.42 | 600 | # Maximum discharge at crest-stage partial-record stations--Continued [Footnotes at end of table on p. 369] | a. t | | | Wate | er year 2001 m | naximum | Perio | d of record m | aximum | |---|--|---------------------------------|------------------|---------------------|--------------------------------|---------|---------------------|--------------------------------| | Station
name and
number | Location and drainage area | Period of record | Date | Gage
height (ft) | Discharge (ft ³ /s) | Date | Gage
height (ft) | Discharge (ft ³ /s) | | | | NORTHW | EST ALA | SKA-Continue | d | | | | | North Fork
Red Dog
Creek near
Kivalina
(15746988) | Lat 68°05′03″, long 162°52′52″, in NW¹/4 SW¹/4 sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), on left bank 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 12. Drainage area is 15.9 mi². | ‡1991-94,
1995-2001 | n | n | n | 8-17-94 | 6.03 | 900 | | Tutak Creek
near
Kivalina
(15746998) | Lat 67°52′28″, long 163°40′14″, in NW¹/4 NE¹/4 sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), on left bank, 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak. Drainage area is 119 mi². | 1992-2001 | n | n | n | 6-15-92 | 15.00 | 3,100 | | | | ARC | TIC SLOPE | E ALASKA | | | | | | Atigun River
Tributary
near Pump
Station 4
(15904900) | Lat $68^{\circ}22'25''$, long $149^{\circ}18'48''$, in $NE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mt. B-4 quad), on right bank 0.2 mi upstream from bridge at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4. Drainage area is 32.6 mi ² . | 1976,
‡1977-86,
1987-2001 | 6-9-01
7-5-01 | 12.83
12.81 | S/371
R/366 | 7-17-99 | 15.51 | 1,650 | | Sagavanirk-
tok River
Tributary
near Happy
Valley
Camp
(15910300) | Lat $69^{\circ}09'38''$, long $148^{\circ}49'40''$, in $NE^{1}/_{4}$ sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), North Slope Borough, on right bank 500 ft upstream from culvert at mi 335.2 on the Dalton Highway, 0.8 mi upstream from mouth, 0.8 mi north of Happy Valley Camp, and 16 mi south of Sagwon. Drainage area is 12.7 mi ² . | 1997-2001 | n | n | n | 5-19-98 | 22.09 | 223 | | Sagavanirk-
tok River
Tributary
near
Deadhorse
(15918200) | Lat $69^{\circ}57'14''$, long $148^{\circ}43'48''$, in NW ¹ / ₄ NE ¹ / ₄ sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), on right bank 6 ft upstream from culvert at mi 386.2 on the Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse. Drainage area is 12 mi ² , approximately. | 1986,
1988-2001 | n | n | n | 5-24-96 | j11.8 | 142 | #### **FOOTNOTES** - ‡ Operated as a continuous record station - < Less than - > Greater than - R/ Rainfall - S/ Spring runoff - a Approximately - d At different site or datum - e estimated - f Ice affected - g Not previously published - i Data collected by Dept. of Transportation and Public Facilities - j From floodmarks - n To be determined - u Unknown | | | | Drainage | Measured previously | Measurements | | |---|----------------------|--|-------------------------|--------------------------|--|---| | Stream | Tributary to | Location | area (mi ²) | (water
years) | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKA | | | | | | 15049900
Gold Creek near
Juneau | Gastineau
Channel | Lat $58^{\circ}18'26''$, long $134^{\circ}23'12''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 24, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, at Old Ebner Dam site, at head of Last Chance Basin, 0.6 mi upstream from Basin Road bridge, and 1.1 mi east of Juneau. | 8.41 | (‡)1984-97,
1998-2000 | +11-1500
+1-02-01
+2-08-01
+3-08-01
+5-31-01
+7-18-01
+8-13-01
+8-15-01
+9-10-01
+9-25-01 | 61
34
39
21
184
140
112
125
91
146 | | 15052425
Jordan Creek Tribu-
tary at Thunder Mt.
Trailer Park near
Auke Bay | Jordan Creek | Lat 58°23′33″, long 134°33′15″, in NW¹/4 NE¹/4 NW¹/4, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 15 ft upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau. | | 1999-2000 | 4-10-01 | no flow | | 15052430
Jordan Creek below
Thunder Mt. Trailer
Park near Auke Bay | Gastineau
Channel | Lat 58°23′31″, long 134°33′15″, in SW¹/4 NE¹/4 NW¹/4, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 3.4 mi upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau. | 0.76 | 1998-2000 | 4-10-01 | 0.10 | | 15052450
Jordan Creek at
Amalga Street near
Auke Bay | Gastineau
Channel | Lat $58^{\circ}23'14''$, long $134^{\circ}33'40''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ NW $^{1}/_{4}$, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at Amalga Street Bridge, 3.0 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau. | 1.06 | 1997-2000 | 4-10-01
8-17-01 | 0.86
0.80 | | 15052455
Jordan Creek at Jen-
nifer Street near
Auke Bay | Gastineau
Channel | Lat $58^{\circ}23'01''$, long $134^{\circ}33'46''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 25 ft upstream from footbridge at Jennifer Creek, behind Glacier Valley Grade School, 2.7 mi upstream from mouth, 3.1mi east of Auke Bay, and 8.5 mi northwest of Juneau. | 1.64 | 1999 | 8-17-01 | 1.2 | | 15052465
Jordan Creek at
Nancy Street near
Auke Bay | Gastineau
Channel | Lat $58^{\circ}22'32''$, long $134^{\circ}34'21''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.2 mi east of intersection of Mendenhall Loop Road and Nancy Street, 2 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau. | 2.26 | 1999-2000 | 4-10-01
8-15-01 | 2.0
1.1 | | | | | Drainage | Measured prayiously | Measurements | | |--|----------------------|---|-------------------------|---|--|--| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKAContinued | l | | | | | 15052475
Jordan Creek below
Egan Drive near
Auke Bay | Gastineau
Channel | Lat $58^{\circ}21'59''$, long $134^{\circ}34'34''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3.0 mi east of Auke Bay Post Office. Currently operated as a continuous-record station. | 2.60 | h1984,88,
h1989,
h1995-96,
(‡)1997-2000 | 10-16-00
12-19-00
2-07-01
3-07-01
3-24-01
4-10-01
5-29-01
7-02-01
8-09-01
9-13-01 | 15
3.7
5.1
5.9
2.9
1.3
7.2
1.4
1.6 | | 15052480
Jordan Creek near
Auke Bay | Gastineau
Channel | Lat 58°21′47″, long 134°34′47″, in SE¹/4 NE¹/4 NW¹/4, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Old Glacier Highway bridge, 0.9 mi upstream from mouth, and 3.0 mi southeast of Auke Bay. | 2.67 | 1953-54,
1960, 1963-
65,
1967-68,
1997, 1999-
2000 | 4-10-01 | 1.4 | | 15052483
Jordan Creek above
Yandunkin Avenue
near Auke Bay | Gastineau
Channel | Lat $58^{\circ}21'31''$, long
$134^{\circ}34'23''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge about 100 ft upstream from Yandunkin Avenue, 0.5 mi upstream from mouth, and 3.4 mi southeast of Auke Bay. | | 1997-2000 | 4-10-01 | 0.93 | | 15052700
Mendenhall River
above Montana
Creek near Auke Bay | Fritz Cove | Lat $58^{\circ}22'52''$, long $134^{\circ}35'43''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 24, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, 200 ft upstream of Montana Creek, 1.95 mi east of Auke Bay, and 2.1 mi upstream from mouth. | 87.5 | 1965-66,
1968, 1984,
1989, 1997 | 4-13-01 | 61 | | 15052815
Montana Creek at
Mouth near Auke
Bay | Mendenhall
River | Lat $58^{\circ}22'54''$, long $134^{\circ}35'53''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ $SE^{1}_{/4}$, sec 24, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, at footbridge 200 ft upstream of mouth, 2 mi east of Auke Bay. | 16.2 | 1965-66, 1968 | 4-13-01 | 22 | | 15052900
+ Mendenhall River at
Brotherhood Bridge
near Auke Bay | Fritz Cove | Lat $58^{\circ}22'15''$, long $134^{\circ}36'00''$, in $NW^{1}_{/4}$ $SE^{1}_{/4}$, sec. 25, T. 40 S., R. 65 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Expressway bridge, 1.0 mi upstream from mouth, and 2.3 mi southeast of Auke Bay. | 104 | 1950, 1961-
66, 1968,
1984, 1989,
1997, 1999 | 10-21-98
2-13-01
2-28-01
4-13-01
6-06-01 | g7,990
165
211
97
1,540 | | 15053170
Duck Creek at Taku
Boulevard near Auke
Bay | Mendenhall
River | Lat 58°23′46″, long 134°33′56″, in SE¹/ ₄ SE¹/ ₄ , sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 3.1 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8 mi northwest of Juneau. | 0.49 | 1988,
1993-2000 | 4-13-01 | 0.12 | | 15053180
Duck Creek at Men-
denhall Blvd near
Auke Bay | Mendenhall
River | Lat $58^{\circ}23'34''$, long $134^{\circ}34'06''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 19, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.8 mi upstream from mouth, 2.9 mi east of Auke Bay, and 8 mi northwest of Juneau. | 0.67 | 1988-89,
1993-98 | 4-13-01
8-17-01 | 0.58
0.73 | | - | | | Drainage | Measured | Measurements | | |---|---------------------|---|-------------------------|--------------------------------|--|---| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKAContinued | d | | | | | 15053185
Duck Creek at Duran
Street near Auke Bay | Mendenhall
River | Lat $58^{\circ}23'24''$, long $134^{\circ}34'25''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.9 mi upstream from mouth, 3.0 mi east of Auke Bay, and 8 mi northwest of Juneau. | 0.78 | 2000 | 8-17-01 | 0.41 | | 15053190
Duck Creek at
Steven Richards
Blvd near Auke Bay | Mendenhall
River | Lat $58^{\circ}23'03''$, long $134^{\circ}34'31''$, in $NW^{1}_{/4}$ $SE^{1}_{/4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.1 mi upstream from mouth, 2.7 mi east of Auke Bay and 8 mi northwest of Juneau. | 0.88 | 1988,1993-
1998 | 8-17-01 | 0.49 | | 15053191
Duck Creek above
Kodzoff Trailer Park
near Auke Bay | Mendenhall
River | Lat $58^{\circ}22'45''$, long $134^{\circ}34'37''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ NE $^{1}/_{4}$, sec. 30,T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, just upstream of Kodzoff Trailer Park, 0.3 mi upstream from mouth, and 2.6 mi east of Auke Bay. | 1.20 | 1997-98 | 4-17-01 | 0.17 | | 15053200
Duck Creek below
Nancy Street near
Auke Bay | Mendenhall
River | Lat $58^{\circ}22'31''$, long $134^{\circ}34'38''$, in $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 30, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, 1.4 mi upstream from mouth, 2.7 mi southeast of Auke Bay, and 8 mi northwest of Juneau. Currently operated as a continuous-record station. | 1.30 | (‡)1994-2000 | 10-16-00
12-19-00
2-07-01
3-07-01
3-22-01
4-17-01
5-24-01
7-02-01
8-08-01
9-13-01 | 8.8
2.6
3.9
3.3
2.3
1.1
4.2
1.0
2.0
6.3
5.9 | | 15056100
Skagway River at
Skagway | Taiya Inlet | Lat $59^{\circ}28'02''$, long $135^{\circ}17'00''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 12, T. 28 S., R. 59 E. (Skagway B-1 quad), City of Skagway, at highway bridge, 1.0 mi upstream from mouth. | a145 | (‡)1963-86 | 8-30-01 | 1,160 | | 15056500
Chilkat River near
Klukwan | Lynn Canal | Lat $59^{\circ}24'55''$, long $135^{\circ}55'45''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 28 S., R. 56 E. (Skagway B-3 quad), at Haines Highway bridge, 0.25 mi upstream from mouth of Klehine River, and 1.7 mi northwest of Klukwan. | a760 | (‡)1959-61 | 8-28-01 | 6,180 | | 15056545
Big Boulder Creek at
mile 135 near Haines | Klehini River | Lat 59°26′01″, long 136°11′34″, in SE¹/ ₄ NE¹/ ₄ , sec. 22, T. 28 S., R. 54 E. (Skagway B-4 quad), at Haines Highway bridge, 0.5 mi upstream from mouth, and 30 mi northwest of Haines. | | | 10-07-00
10-10-00 | 658
158 | | 15081607
Threemile Creek
Tributary below can-
yon near Klawock | Threemile
Creek | Lat $55^{\circ}32'26''$, long $132^{\circ}57'08''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at mouth of canyon, 0.37 mi upstream from mouth, and 5.2 mi east of Klawock. | 1.41 | | 12-07-00
2-13-01
4-22-01
7-10-01
8-30-01 | 13
6.2
9.4
17
9.0 | | | | | Drainage | Measured
previously
(water
years) | Measurements | | |---|--------------------|---|-------------------------|--|--|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKAContinued | l | | | | | 15081608
Threemile Creek
Tributary near Kla-
wock | Threemile
Creek | Lat 55°32′06″, long 132°57′12″, in $NW^1/_4 SW^1/_4 SE^1/_4$, sec. 16, T. 73 S., R. 82 E. (Craig C-2 quad), on Prince of Wales Island, in Tongass National Forest, 75 ft upstream from mouth at right bank of Threemile Creek, about 150 ft upstream from Threemile Creek gage, and 5.2 mi east of the city of Klawock. | | 1999-2000 | 12-07-00
2-13-01
4-22-01 | 29
12
16 | | 15081611
Threemile Creek
below Highway near
Klawock | Klawock Lake | Lat 55°31′54″, long 132°59′05″, in NE¹/ ₄ NE¹/ ₄ NW¹/ ₄ , sec. 20, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at Hollis Highway crossing, 3,000 ft upstream from mouth, and 4.0 mi east of Klawock. | 8.05 | 2000 | 12-07-00
2-13-01
4-22-01
7-10-01
8-29-01 | 82
120
39
84
52 | | 15081616
Halfmile Creek
below Highway near
Klawock | Klawock Lake | Lat 55°32′59″, long 133°01′44″, in SW¹/ ₄ SW¹/ ₄ SE¹/ ₄ , sec12, T. 73 S., R 81 E.(Craig C-4 quad) On Prince of Whales Island, in Tongas National Forest, at Hollis Highway crossing, about 800 ft upstream from mouth, and 2.7 mi east of Klawock. | 5.26 | 2000 | 12-07-00
2-13-01
4-22-01
7-10-01
8-30-01 | 24
137
17
41
17 | | 15086250
Coffman Creek near
Coffman Cove | Clarence Strait | Lat $55^{\circ}59'31''$, long $132^{\circ}52'12''$, in $NW^1/_4$ $SE^1/_4$ $NW^1/_4$, sec. 10, T. 68 S., R. 81 E. (Craig D-3 quad), on Prince of Wales Island, in Tongass National Forest, 33 feet upstream from bridge, 140 feet upstream from mouth and 1.5 miles south of Coffman Cove. | | | 7-13-01 | 27 | | 15087675
Wrinkleneck Creek
at Mouth at Sitka | Swan Lake | Lat $57^{\circ}03'21''$, long $135^{\circ}19'59''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 36, T. 55 S., R. 63 E. (Sitka A-4 SW quad), Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 10 feet upstream from culvert under Lake Street, 50 ft upstream from mouth, 200 ft north of intersection of Lake Street and Degroff Streets in Sitka. | | | 5-19-01 | 1.3 | | 15087682
Swan Lake Outlet at
Sitka | Crescent Bay | Lat 57°03′16″, long 135°20′02″, in SW¹/4 NW¹/4 SW¹/4, sec. 36, T. 55 S., R. 63 E. (Sitka A-5 SE quad) Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 10 ft upstream of culvert entrance at outlet of Swan Lake at southern end of lake, 50 ft north of intersection of Halibut Point Road,
Sawmill Creek Boulevard, and Lake Streets in Sitka. | - | | 5-19-01 | 1.2 | | 15087695
Indian River above
CBS Pumphouse
near Sitka | Crescent Bay | Lat 57°03′34″, long 135°18′15″, in SE¹/4 SW¹/4 NW¹/4, sec. 31, T. 55 S., R. 64 E. (Sitka A-4 quad), Greater Sitka Borough, on Baranof Island, 50 ft upstream from City and Borough of Sitka diversion to pump pond, 200 ft northeast of end of road and pumphouse, 0.9 mi northeast of Sitka, and 1.2 mi upstream from mouth. | 11.4 | 1999-2000 | 5-13-01 | 63 | | | | | Drainage | Measured | Measurements | | |---|---------------------|---|----------------------------|--------------------------------|--|---| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKAContinued | I | | | | | 15087730
Indian River Diversion to Sheldon Jackson College at
Sawmill Creek Road at Sitka | Indian River | Lat 57°03′13″, long 135°19′04″, in NE¹/4 SW¹/4 SE¹/4, sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Greater Sitka Borough, on Baranof Island, in Tongass National Forest, on left bank at entrance to a box culvert under Sawmill Creek Road, 12 ft downstream from end of a 42-in. diversion pipe, about 1,000 ft upstream from Sheldon Jackson College campus, and about 1,500 ft downstream from point of diversion. | | 1998,
(‡)1999-2000 | 3-13-01
6-14-01 | 8.7
13 | | 15087810
Sawmill Creek below
Upper Tailrace near
Sitka | Silver Bay | Lat 57°03′40″, long 135°12′35″, in NE¹/ ₄ SE¹/ ₄ NE¹/ ₄ , sec. 34, T. 55 S., R. 64 E., (Sitka A-4 quad), on Baranof Island, in Tongass National Forest, at footbridge crossing at campground, 240 ft downstream from upper powerplant tailrace, 0.35 mi downstream from dam at Blue Lake, 1.2 mi upstream from mouth and 4.6 mi east of Sitka. | 38.0 | 1994-95,
1998-2000 | 11-9-00 | 60 | | 15088400
Cupola Peak Creek at
Bear Cove near Sitka | Bear Cove | Lat 57°00′39″, long 135°09′11″, in NE¹/ ₄ SE¹/ ₄ SE¹/ ₄ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Green Lake Road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka. | 0.43 | †2000 | 11-08-00
1-06-01
4-05-01
5-17-01
7-23-01 | no flow-d
no flow-d
no flow-d
no flow-d
no flow-d | | 15109029
+ Upper Peterson
Creek near Auke Bay | Stephens
Passage | Lat $58^{\circ}16'27''$, long $134^{\circ}38'58''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 2.20 mi upstream from mouth, 7.4 mi south of Auke Bay, and 9.0 mi west of Douglas. | 0.43 | | 4-05-01
7-12-01 | 0.40
2.1 | | 15109031
+ Peterson Creek Trib-
utary No. 8 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'25''$, long $134^{\circ}39'02''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest. 10 ft upstream from mouth at a point 2.11 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 90 mi west of Douglas. | 0.39 | | 4-05-01
7-12-01 | 0.37
0.19 | | 15109033
+ Peterson Creek Trib-
utary No, 7 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'30''$, long $134^{\circ}39'06''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth at a point 2.03 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas. | 0.82 | | 4-05-01
7-12-01 | 0.05
0.12 | | | | | Drainage | previously | Measurements | | |--|----------------|---|-------------------------|-----------------------------|--|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | | Date | Discharge (ft ³ /s) | | | | SOUTHEAST ALASKAContinued | d | | | | | 15109035
+ Peterson Creek Trib-
utary No. 6 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'36''$, long $134^{\circ}39'11''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.85 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas. | 0.16 | | 4-05-01
7-12-01 | 0.16
1.1 | | 15109039
+ Peterson Creek Trib-
utary No. 4 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'43''$, long $134^{\circ}39'26''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 32 , T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.65 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.2 mi west of Douglas. | 1.04 | | 4-05-01
7-12-01 | 0.37
0.91 | | 15109041
+ Peterson Creek Trib-
utary No. 3 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'51''$, long $134^{\circ}39'35''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.48 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.3 mi west of Douglas. | 0.48 | | 4-05-01
7-12-01 | 0.40
0.83 | | 15109043
Peterson Creek Trib-
utary No. 2 near
Auke Bay | Peterson Creek | Lat $58^{\circ}16'56''$, long $134^{\circ}39'42''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.39 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.4 mi west of Douglas. | 0.08 | | 4-05-01 | 0.06 | | 15109045
+ North Fork Peterson
Creek near Auke Bay | Peterson Creek | Lat 58°16′49″, long 134°39′28″, in SE¹/ ₄ SE¹/ ₄ SW¹/ ₄ , sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas. | r1.59 | (†)1985-87,
(†)1997-2000 | 10-6-00
11-14-00
4-05-01
5-25-01
7-12-01 | 10
2.8
1.1
2.3
1.8 | | 15129590
Ophir Creek at Airport Road at Yakutat | Tawah Creek | Lat $59^{\circ}32'28''$, long $139^{\circ}43'18''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 30, T. 27 S., R. 34 E. (Yakutat C-5 SW quad), in Tongass National Forest, at airport road crossing 2.5 mi upstream from Summit Lake, and 0.9 mi south of Yakutat. | | 1989,
1992-2000 | 6-19-01 | 0.17 | | 15129600
Ophir Creek near
Yakutat | Tawah Creek | Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, 0.8 mi upstream from Summit Lake, and 2 mi south of Yakutat. Currently operated as a continuous-record station. | a2.5 | (‡)1992-2000 | 11-30-00
2-03-01
4-25-01
6-19-01 | 36
39
17
2.4 | | 15129615
Ophir Creek tributary
at confluence near
Yakutat | Ophir Creek | Lat 59°31′04″, long 139°44′43″, in $NW^1/_4$ $NW^1/_4$ $NE^1/_4$, sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, at confluence with Ophir Creek, and 2.3 mi south of Yakutat. | | 1992-2000 | 6-19-01 | 0.06 | | | | | Drainage | Measured | Measurements | | |---|-----------------------|--|-------------------------|--|---|---------------------------------| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTH-CENTRAL ALASKA | | | | | | 15200400
Gulkana River
at Gulkana | Copper River | Lat $62^{\circ}16'08''$, long $145^{\circ}23'52''$, in $SE^{1}/_{4}$, sec. 27, T. 6 N., R. 1 W. (Gulkana B-3 quad), at mile 126.9 Richardson Highway. | 1,966 | 1948-50
1954
1957-60
1965-66
1970-71
1998 | 8-23-01 | 997 | | 15201000
Dry Creek near
Glennallen | Copper River | Lat $62^{\circ}08'49''$, long $145^{\circ}28'31''$, in $NE^{1}/_{4}$, sec. 7, T. 4
N., R. 1 W. (Gulkana A-3 quad), 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen. | 11.4 | †1963-2000 | 5-11-01 | 32 | | 15202000
Tazlina River
near Glennallen | Copper River | Lat $62^{\circ}03'18''$, long $145^{\circ}25'30''$, in $SW^{1}/_{4}$, sec. 9, T. 3 N., R. 1 W.(Gulkana A-3 quad), at bridge, 115.3 Richardson Highway, 5 mi southeast of Glennallen. | a2,670 | ‡1949-72
1997-99 | 7-18-01 | 15,800 | | 15210025
McCarthy Creek
at McCarthy | Kennicott River | Lat $61^{\circ}25'54''$, long $142^{\circ}55'02''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ NE $^{1}/_{4}$, sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth. | 79.0 | †1993-2000 | 9-27-00
5-31-01 | ge4,000
464 | | 15212500
Boulder Creek
near Tiekel | Tiekel River | Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), at mi 51.4 on the former Richardson Highway. | 9.80 | †1964-2000 | 7-24-01 | 70 | | 15212800
Ptarmigan Creek
Tributary near
Valdez | Ptarmigan
Creek | Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1}_{/4}$ $NE^{1}_{/4}$, sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), 275 ft upstream from Richardson Highway, 21 mi east of Valdez. | 0.72 | †1965-70
†1995-2000 | 7-24-01 | 11 | | 15227500
Mineral Creek
near Valdez | Port Valdez | Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in $SW^1/_4$ $NE^1/_4$ $SE^1/_4$, sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), 120 ft upstream from bridge, 1.8 mi above mouth, and 0.5 mi northwest of Valdez. | 44.0 | 1913,
1948-50,
1972-73,
†1990-2000 | 9-19-01 | 372 | | 15236200
Shakespeare Creek
at Whittier | Passage
Channel | Lat $60^{\circ}46'35''$, long $148^{\circ}43'35''$, in $NE^{1}/_{4}$, sec.22, T. 8 N., R. 4 E. (Seward D-5 quad), at bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska Railroad terminal building at Whittier. | 1.61 | 1969,
†1970-80,
†1985-2000 | 6-25-01 | 77 | | 601105149385100
Exit Glacier Creek
Tributary at mile 0.6
of Harding Trail near
Seward | Exit Glacier
Creek | Lat 60°11′05″, long 149°38′51″, in $NW^1/_4NW^1/_4NW^1/_4$, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, at footbridge at mi. 0.64 Harding Ice Field Trail, 8 mi. northwest of Seward. | | | 7-27-01
8-06-01
8-20-01
9-11-01
9-25-01 | 8.4
5.7
7.0
3.0
4.2 | | 601105149382400
Exit Glacier Creek
channel at mile 0.1 of
Harding Trail near
Seward | Resurrection
River | Lat 60°11′05″, long 149°38′24″, in $NE^1/_4 NW^1/_4 NW^1/_4$, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, 50 ft. west of mi. 0.05 of Harding Ice Field Trail, 8 mi. northwest of Seward. | | | 7-27-01
8-06-01
8-20-01
9-11-01
9-25-01 | 21
25
11
1.1
3.8 | | | | | Drainage | Measured
previously
(water
years) | Measurements | | |--|----------------------------|---|-------------------------|---|--|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | | Date | Discharge (ft ³ /s) | | | | SOUTH-CENTRAL ALASKAContin | nued | | | | | 601143149353400
Exit Glacier Creek
Distributary at Exit
Glacier Road near
Seward | Resurrection
River | Lat 60°11′43″, long 149°35′34″, in $SE^1/_4$ $NE^1/_4$ $NE^1/_4$, sec. 10, T. 1 N., R. 2 W. (Seward A-7 quad), Kenai Peninsula Borough, 200 ft. west of Exit Glacier Road bridge, 7 mi. northwest of Seward | | | 7-11-01 | 5.4 | | 15237900
Glacier Creek at
Bruno Road near
Seward | Resurrection
River | Lat 60°10′49″, long 149°22′46″, in NW¹/4, sec.13, T. 1 N., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, at Bruno Road bridge, 5.6 mi northeast of Seward. | | †1987-2000 | 7-13-01
9-21-01 | 158
102 | | 15239500
Fritz Creek near
Homer | Kachemak Bay | Lat $59^{\circ}42'30''$, long $151^{\circ}20'35''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), 25 ft downstream from culvert on East Road, and 8 mi northeast of Homer. | 10.4 | †1963-66,
†f 1967-70,
†1971-77,
†f 1978-80
†+1981-85,
‡1986-92
†1993-2000 | 1-24-01
4-19-01
4-25-01
5-16-01 | 33
36
53
63 | | 594507151290000
Beaver Creek 2 miles
above mouth near
Bald Mountain near
Homer | Anchor River | Lat $59^{\circ}45'02''$, long $151^{\circ}29'07''$, $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 10, T. 5 S., R. 13 W. (Seldovia D-4 quad), Kenai Peninsula Borough, 2 mi. upstream from mouth, and 8 mi. northeast of Homer. | 18.3 | | 4-19-01
8-29-01 | 26
25 | | 594734151142900
Anchor River near
Bald Mountain near
Homer | Cook Inlet | Lat 59°47′34″, long 151°14′29″, NW¹/4 NW¹/4, sec. 31, T. 4 S., R. 11 W. (Seldovia D-4 quad), Kenai Peninsula Borough, 1000 ft. upstream from unnamed tributary, and 16.5 mi. northeast of Homer. | 3.73 | | 4-24-01 | 382 | | 595126151391000
Chakok River 7.5
miles above mouth
near Anchor Point | North Fork
Anchor River | Lat $59^{\circ}51'26''$, long $151^{\circ}39'18''$, $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 3, T. 4 S., R. 14 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 300 ft. downstream from unnamed tributary, 7.5 mi. from mouth, and 8.5 mi. northeast of Anchor Point. | 21.4 | | 4-24-01
8-23-01 | 126
16 | | 15239840
Anchor River above
Twitter Creek near
Homer | Cook Inlet | Lat $59^{\circ}43'08''$, long $151^{\circ}38'31''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 27, T. 5 S., R. 14 W. (Seldovia C-5 quad), Kenai Peninsula Borough, 30 ft upstream from Twitter Creek, and 6.3 mi northwest of Homer. | r104 | f1978-80 | 8-20-01 | 233 | | 15239900
Anchor River near
Anchor Point | Cook Inlet | Lat 59°44'50″, long 151°45'11″, in NE¹/4, sec. 13, T. 5 S., R. 15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at bridge on Sterling Highway, 4.3 mi southeast of Anchor Point. | 137 | \$1965-73
\$1974
\$1978-86
\$1987
\$1991-92
1996, 1999,
2000 | 7-18-01 | 147 | | 15240000
+ Anchor River at
Anchor Point | Cook Inlet | Lat $59^{\circ}46'21''$, long $151^{\circ}50'05''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 4, T.5 S., R.15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at Old Sterling Highway bridge at Anchor Point, 0.1 mi downstream from North Fork, and 1 mi upstream from mouth. | 224 | ‡1953-66
f1978-80
†1984-92
1990-91 | 4-16-01
8-20-01 | 690
513 | | | | | Drainage | Measured | Measurements | | |--|-----------------------------|---|-------------------------|--|--------------------|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTH-CENTRAL ALASKAContin | nued | | | | | 595506151403300
+ Stariski Creek 2
miles below
unnamed tributary
near Ninilchik | Cook Inlet | Lat 59°55′02″, long 151°40′40″, in $NW^1/_4$ $NW^1/_4$, sec. 15, T. 3 S., R. 14 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 0.8 mi. upstream from unnamed tributary, and 11.5 mi. northeast of Anchor Point. | 27.4 | | 4-20-01
8-24-01 | 48
22 | | 15240300
+ Stariski Creek near
Anchor Point | Cook Inlet | Lat $59^{\circ}51'04''$, long $151^{\circ}47'23''$, in $NW^{1}_{/4}$, sec. 12, T. 4 S., R. 15 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 100 ft downstream from culvert at Sterling Highway, and 5.5 mi north of Anchor Point. | 48.4 | 1951-52
f1978-80 | 4-17-01
8-25-01 | 166
34 | | 600107151112800
+ North Fork Deep
Creek 4 miles above
mouth near Ninilchik | Deep Creek | Lat $60^{\circ}01'06''$, long $151^{\circ}11'34''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 9, T. 2 S., R. 11 W. (Kenai A-4 quad), Kenai Peninsula Borough, 300 ft. downstream from unnamed tributary, and 16.5 mi. east of Ninilchik. | 27.7 | | 4-25-01
8-30-01 | 32
31 | | 600204151401800
+ Deep Creek 0.6
miles above Sterling
Highway near
Ninilchik | Cook Inlet | Lat 60°02′01″, long 151°40′30″, in $SE^1/_4$ $NW^1/_4$, sec. 3, T. 2 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, 1.3 mi. upstream from mouth, and 1 mi. south of Ninilchik. | 217 | | 4-18-01
8-21-01 | 285
258 | | 600945151210900
+ Ninilchik River 1.5
miles below tribu-
tary 1 near Ninilchik | Cook Inlet | Lat $60^{\circ}09'44''$, long $151^{\circ}21'14''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$, sec. 22, T. 1 N., R 12 W. (Kenai A-4 quad), Kenai Peninsula Borough, 50 ft downstream from unnamed trib., 0.2 mi upstream from bridge, and 14 mi. northeast of Ninilchik. | 29.8 | | 4-23-01
8-23-01 | 171
17 | | 600321151325000
+ Ninilchik River
below tributary 3
near Ninilchik | Cook Inlet | Lat $60^{\circ}03'17''$, $long 151^{\circ}32'59''$, $in SW^{1}_{/4} SE^{1}_{/4}$, sec. 29, T. 1 S., R. 13 W. (Kenai A-5 quad), Kenai Peninsula Borough, 1000 ft. upstream from small, unnamed
tributary, and 4 mi. northeast of Ninilchik. | 117 | | 4-18-01
8-21-01 | 225
113 | | 15273040
+ Rabbit Creek at Por-
cupine Trail Road
near Anchorage | Turnagain Arm | Lat $61^{\circ}05'15''$, long $149^{\circ}49'06''$ in $SE^{1}_{/4}$ $SE^{1}_{/4}$ $NW^{1}_{/4}$, sec. 33, T. 12 N., R. 3 W. (Anchorage A-8 quad), Municipality of Anchorage, 0.8 mi upstream from Potter Marsh, 0.3 mi upstream from Old Seward Highway, and 9.7 mi south of Anchorage. | 13.3 | 1999-2000 | 7-05-01
7-05-01 | 56
58 | | 15273097
+ Little Rabbit Creek at
Goldenview Drive
near Anchorage | Rabbit Creek | Lat 61°04'54", long 149°46'20" in SW¹/4 SW¹/4, sec. 35, T.12 N., R.3W. (Anchorage A-8 quad), Municipality of Anchorage, at Goldenview Drive, and 11 mi southeast of Anchorage | r5.57 | 1968-69
1971-72
1999-2000 | 7-05-01
7-05-01 | 16
11 | | 15273900
+ South Fork Campbell Creek at Canyon
Mouth near Anchorage | Turnagain Arm | Lat 61°08'52", long 149°43'12" in NE¹/4, sec. 12, T. 12 N., R. 3 W., (Anchorage A-8 quad), Municipality of Anchorage, 0.5 mi upstream from pipeline crossing, 1.9 mi upstream from pedestrian bridge at Campbell Airstrip, and 6.8 mi southeast of Anchorage. | 25.2 | ‡1967 - 79,
c1980,
‡1981,
c1989 | 1-18-01
2-09-01 | 22
18 | | 15274796
+ South Branch of
South Fork Chester
Creek at tank trail
near Anchorage | South Fork
Chester Creek | Lat 61°11'25", long 149°42'13" in SE ${}^{1}_{4}NW^{1}_{4}$ sec. 30, T. 13 N., R. 2 W.(Anchorage A-8 quad), Municipality of Anchorage, 100 ft downstream from bridge on tank trail (Bulldog Trail), and 6.5 mi east of Anchorage. | 4.30 | 1968, 72
1980
1998-2000 | 10-30-00 | 4.4 | | | | | Drainage | Measured
previously
(water
years) | Measurements | | |---|--------------------|---|-------------------------|--|--|---------------------------------| | Stream | Tributary to | Location | area (mi ²) | | Date | Discharge (ft ³ /s) | | | | SOUTH-CENTRAL ALASKAContir | nued | | | | | 15283500
Moose Creek above
Wishbone Hill near
Sutton | Matanuska
River | Lat 61°44′02″, long 149°01′35″, in NE¹/4 SE¹/4, sec. 14, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 30 ft downstream from bridge, 40 ft upstream from unnamed tributary, 1.8 mi upstream from Buffalo Creek, and 4.5 mi northwest of Sutton. | 30.4 | 1999-2000 | 3-27-01
6-19-01 | 8.7
254 | | 15283600
Premier Creek near
Sutton | Moose Creek | Lat 61°42′40″ long 149°05′12″, in SE¹/4 NE¹/4, sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 10 ft downstream from culvert on Buffalo Mine Road (named Moose Creek Road on Anchorage C-6 quad), 4 mi north of Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer. | 3.38 | †1996-2000 | 5-08-01 | 9.4 | | 15285000
Wasilla Creek near
Palmer | Knik Arm | Lat 61°38′37″, long 149°11′46″, in SE¹/₄ SW¹/₄, sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 20 ft downstream from culverts on Palmer-Fishhook Road, and 4.1 mi northeast of Palmer. | 16.8 | †1971,
f†1976-83,
†1984-2000 | 9-24-01 | 13 | | 15286000
Cottonwood Creek
near Wasilla | Knik Arm | Lat 61°34′30″, long 149°24′35″, in NE¹/₄ SW¹/₄, sec. 11, T. 17 N., R. 1 W. (Anchorage C-7 quad), Matanuska-Susitna Borough, 30 ft upstream from Wasilla-Matanuska Trunk Road, and 0.8 mi downstream from Wasilla Lake, and 1.1 mi. southwest of Wasilla. | 28.5 | 1947-48
‡1949-54
1981-83
‡1998-2000 | 10-06-00 | 20 | | 15290200
Nancy Lake Tribu-
tary near Willow | Nancy Lake | Lat 61°41′17″, long 149°57′58″, in SE¹/ ₄ SE¹/ ₄ , sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, 50 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth, and 4.5 mi southeast of Willow. | 8.00 | f1978-79,
†1980,
f1981,
†1983-86,
†1990-2000 | 5-01-01
8-04-01 | 22
5.9 | | 15291100
Raft Creek near
Denali | Susitna River | Lat $63^{\circ}03'04''$, $\log 147^{\circ}16'22''$, $\inf SE^{1}/_{4}$, sec. 36, T. 21 S., R. 2 E., (Healy A-1 quad), Matanuska-Susitna Borough, 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali. | 4.33 | †1963-67,
†1971-75,
†1977-82,
†1984-90,
†1993-2000 | 07-11-01 | 18 | | 15297200
Myrtle Creek near
Kodiak | Kalsin Bay | Lat $57^{\circ}36'12''$, long $152^{\circ}24'12''$ in $NW^1/_4SW^1/_4$, sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak. | 4.74 | ‡1963-86,
†1987-89,
†1991-2000 | 12-28-00 | 120 | | | | SOUTHWEST ALASKA | | | | | | 15297609
Stapp Creek near
Cold Bay | Cold Bay | Lat 55°11'17", long $162^{\circ}42'47$ ", in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 1, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 0.9 mi upstream from mouth, and 1 mi south of Cold Bay. | 1.68 | | 10-16-00
2-15-01
4-24-01
6-11-01
8-27-01 | 2.2
5.1
2.9
0.8
0.8 | | | | | Drainage | Measured
previously
(water
years) | Measurements | | |---|---------------------|--|----------------------------|--|--|-------------------------------------| | Stream | Tributary to | Location | area
(mi ²) | | Date | Discharge (ft ³ /s) | | | | SOUTHWEST ALASKAContinued | d | | | | | 15297810
Frosty Creek near
Cold Bay | Izembek
Lagoon | Lat 55°09'59", long $162^{\circ}48'22''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 8, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay. | 5.92 | | 10-17-00
2-15-01
4-24-01
6-11-01
8-27-01 | 37
28
32
42
44 | | 15297970
Tlikakila River at
Mouth near Port
Alsworth | Lake Clark | Lat $60^{\circ}23'34''$, long $153^{\circ}48'44''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ SW $^{1}/_{4}$, sec. 33, T. 4 N., R. 26 W. (Lake Clark B-3 quad), about 22 mi northeast of Port Alsworth. | 622 | 1999-2000 | 5-11-01 | 449 | | 15297980
Currant Creek at
Mouth near Port
Alsworth | Lake Clark | Lat $60^{\circ}18\varepsilon'2''$, long $154^{\circ}00'03''$, in $SW^1/_4$ NE $^1/_4$, sec. 32, T. 3 N., R. 27 W. (Lake Clark B-3 quad), about 14 mi northeast of Port Alsworth. | 165 | 1999-2000 | 6-05-01
7-10-01
8-21-01
9-25-01 | 1,440
1,470
1,620
671 | | 15297990
Kijik River at Mouth
near Port Alsworth | Lake Clark | Lat $60^{\circ}17'06''$, long $154^{\circ}13'26''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 12, T. 2 N., R. 29 W. (Lake Clark B-4 quad), about 8 mi northeast of Port Alsworth. | 298 | 1999-2000 | 8-20-01
9-25-01 | 817
447 | | 15298010
Tanalian River at
Mouth at Port
Alsworth | Lake Clark | Lat $60^{\circ}11'55''$, long $154^{\circ}20'27''$, in $NW^1/_4$ $NW^1/_4$, Sec. 8, T. 1 N., R. 29 W. (Lake Clark A-4 quad), about 0.5 mi southeast of airport runway at Port Alsworth. | 205 | 1999-2000 | 5-11-01
6-05-01
8-20-01
9-24-01 | 129
1,560
2,090
450 | | 15298050
Chulitna River near
Port Alsworth | Lake Clark | Lat $60^{\circ}10'58''$, long $154^{\circ}34'33''$, in $NE^1/_4$ $NW^1/_4$ $NE^1/_4$, sec. 13, T. 1 N., R. 31 W. (Lake Clark A-5 quad), about 9 mi southwest of Port Alsworth. | 1,157 | 1999-2000 | 6-04-01
7-09-01
8-20-01
9-25-01 | 7,420
2,230
2,370
1,870 | | 15299000
Lake Clark Outlet
near Port Alsworth | Newhalen River | Lat $60^{\circ}01'10''$, long $154^{\circ}45'11''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 10, T. 2 S., R. 32 W. (Lake Clark A-5 quad), about 20 mi southwest of Port Alsworth. | 2,942 | 1999-2000 | 6-04-01
7-09-01
8-20-01
9-25-01 | 8,530
23,800
21,600
10,600 | | 15300350
Chinkelyes Creek
tributary near Pedro
Bay | Chinkelyes
Creek | Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), Lake and Peninsula Borough, 60 ft upstream from culvert, 8 mi east of Pile Bay and 11 mi east of Pedro Bay. | 0.40 | †1998-2000 | 6-27-01 | 10 | | 15300700
+Alagnak River below
Nonvianuk River
near Igiugig | Kvichak River | Lat 59°01'16", long 155°50'51", in NE¹/4 SE¹/4, sec. 30, T. 13 S., R. 39 W. (Iliamna A-8 quad), Lake and Peninsula Borough, 600 ft downstream from mouth of Nonvianuk River, 4.6 mi upstream from Sugarloaf Mountain Creek, and 21.5 mi south of Igiugig | 922 | 1999-2000 | 2-27-01
6-06-01 | 1,420
4,420 | | 15300730
+Alagnak River 27
miles above mouth
near McCormick
near Levelock | Kvichak River | Lat 59°06'52", long 156°23'01", in NW¹/4 NE¹/4, sec. 29, T. 12 S., R. 42 W. (Dillingham A-2 quad), Lake and Peninsula Borough, 560 ft downstream from McCormick's cabin, 27 mi above mouth, and 16.5 mi east of Levelock. | 1148 | 1999-2000 | 2-27-01
6-04-01 | 1,420
3,830 | | 15300770
+Alagnak River 13
miles above mouth
near lower barge near
Levelock | Kvichak River | Lat 59°03'05", long 156°37'25", in $SW^1/_4 NE^1/_4$, sec. 16,
T.13 S., R.44 W. (Dillingham A-2 quad), Lake and Peninsula Borough, 1300 upstream from lower barge, 13 mi above mouth, and 9.5 mi southeast of Levelock. | 1282 | 1999-2000 | 6-05-01 | 3,990 | | | | | Drainage | Measured | Meası | irements | |---|-----------------------------------|---|-------------------------|--|--|---| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | SOUTHWEST ALASKAContinue | ed | | | | | 15302900
Moody Creek at
Aleknagik | Wood River | Lat $59^{\circ}16'34''$, long $158^{\circ}35'42''$,in $SE^{1}/_{4}$, sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), 500 ft upstream from mouth at Wood River at the Aleknagik Mission. | 1.28 | 1968
†1969-73,
†1975-83,
†1988-89
†1993-2000 | 5-14-01
8-16-01 | 6.2
1.0 | | 15303660
Gold Creek at
Takotna | Takotna River | Lat $62^{\circ}59'20''$, long $156^{\circ}04'08''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$, sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, 350 ft upstream from bridge, and 400 ft upstream from mouth. | 6.31 | †1987-2000 | 5-22-01 | 42 | | | | YUKON ALASKA | | | | | | 15305900
Dennison Fork near
Tetlin Junction | South Fork
Forty Mile
River | Lat 63°25′24″, long 142°29′00″, in SW¹/4 sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), 10 ft downstream from culvert at mi 10.7 Taylor Highway and 8.3 mi northeast of Tetlin Junction. | 2.93 | †1964-70,
†1972-75,
†1977,
†1979,
†1981-84,
†1983-90,
†1992-2000 | 7-25-01
9-02-01 | 15
10 | | 15344000
King Creek
near Dome
Creek | O'Brien Creek | Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), at mi 120 Taylor Highway, 1,100 ft upstream from culvert at mi 119.9, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle. | 5.87 | †1975-77
†1979-80
†1982
†1983-1990
†1991-2000 | 5-22-01
7-25-01 | 43
42 | | 15388030
Nation River
near Nation | Yukon River | Lat 65°14' 23", long 141°39' 10" in NW¹/4 NW¹/4, sec. 30, T. 5N.,R. 30E., (Charley River A-2 quad), in Yukon-Charley Preserve, 3.75 mi upstream from mouth, 4.25 mi downstream from mouth of Hard Luck Creek, 5 mi northeast of Nation townsite, and 33 mi northwest of Eagle. | 931 | ‡1991-2000 | 12-16-00
3-09-01 | 198
122 | | 15388060
Kandik River
near Nation | Yukon River | Lat 65°23′44″,long 142°25′41″ in NW¹/4 NE¹/4, sec. 32, T. 6N., R. 25E., (Charley River B-3 quad), in Yukon-Charley Rivers National Preserve, on right bank, 0.75 mi upstream of the mouth of Threemile Creek, 3.75 mi above the mouth of the Kandik River, 23 mi northwest of Nation townsite and 55 mi north-northwest of Eagle. | 1084 | ‡1994-2000 | 12-15-00
3-09-01
8-30-01 | 85
43
941 | | 15389000
Porcupine River near
Fort Yukon | Yukon River | Lat $66^{\circ}59'26''$,long $143^{\circ}08'16''$ in $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 16, T. 25N., R. 21E., (Black River D-5 quad), 1,000 ft upstream from John Herberts Village, and 65 mi northeast of Fort Yukon. | a29,500 | ‡1964-79 | 3-29-01
6-30-01
7-16-01
8-07-01
8-27-01
9-17-01 | 1,090
20,500
24,200
16,700
18,800
18,900 | | 15439800
Boulder Creek near
Central | Crooked Creek | Lat 65°34′05″, long 144°53′13″, in NW^1 / ₄ , sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), 2000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central. | 31.3 | †1964-65,
‡1966-82,
†1983,
‡1984-86,
†1988-2000 | 5-23-01
7-18-01 | 206
37 | | | | | Drainage | Measured | Measu | irements | |---|---------------|--|-------------------------|---|--------------------|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | YUKON ALASKAContinued | | | | | | 15442500
Quartz Creek near
Central | Crooked Creek | Lat 65°37′09″, long 144°28′55″, in $SW^1/_4$, sec. 7, T. 9 N., R. 16 E. (Circle C-2 quad), at mi 138.1 on Steese Highway, 1 mi upstream from mouth, and 10 mi east of Central. | 17.2 | †1990,
†1992-2000 | 5-23-01
7-18-01 | 76
73 | | 15453610
Ray River Tributary
near Stevens Village | Ray River | Lat $65^{\circ}56'57''$, long $149^{\circ}54'50''$ in $SE^{1}_{/4}$, sec.17, T.13 N., R. 11 W. (Livengood D-6 quad), at mi 63.8 on the Dalton Highway and 22 mi west of Stevens Village. | 8.00 | †1977,
†1979-80
†1982
†1987-88
†1990-2000 | 5-23-01
8-22-01 | 85
8.2 | | 15470300
Little Jack
Creek near
Nabesna | Jack Lake | Lat $62^{\circ}32'39''$, long $143^{\circ}19'22''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 22 T. 9 N., R. 11 E. (Nabesna C-5 quad), mi 25.8 Nabesna Road, and 15.6 mi northwest of Nabesna. | 6.73 | †1975-77
†1980
†1982-83
†1985-88
†1990-95
†1997-2000 | 6-20-01
8-01-01 | 6.6
24 | | 15472000
Tanana River near
Tok Junction | Yukon River | Lat 63°19′00″, long 142°38′30″ in NW¹/₄, sec. 25, T. 18 N., R. 14 E. (Tanacross B-4 quad) 1.4 mi west of junction of Alaska and Taylor Highways, at bridge crossing. | 6,800 | ‡1950-1953 | 8-23-01 | 24600 | | 15476300
Berry Creek near
Dot Lake | Tanana River | Lat $63^{\circ}41'23''$, long $144^{\circ}21'47''$, in $NW^{1}/_{4}$, sec. 13 T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), 100 ft upstream from former bridge site at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake. | 65.1 | †1963-71,
†1972-81,
†1982,1984,
†1988
†1990-94
†1997-2000 | 5-24-01
7-24-01 | 141
268 | | 15478093
Suzy Q Creek near
Pump Station 10 | Delta River | Lat $63^{\circ}29'43''$, long $145^{\circ}51'27''$, in $SW^{1}/_{4}$, sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), at mi 224.8 on Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10. | 1.29 | †1987,
†1991-94,
†1997-2000 | 6-12-01
7-24-01 | 12
7.7 | | 15480000
Banner Creek at
Richardson | Tanana River | Lat $64^{\circ}17'24''$ long $146^{\circ}20'56''$, in $SW^{1}_{/4}$, sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), 400 ft upstream from bridge at mi 295.4 Richardson Highway 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson. | 20.2 | †1964-67,
†1969-70,
†1972,
†1974-75,
†1977,
†1982-84,
†1989-93,
†1995-96 | 7-31-01 | 26 | | 15493400
Chena River below
Hunts Creek near
Two Rivers | Tanana River | Lat 64°51′36″, long 146°48′12″, in NW¹/4, sec. 5, T. 1 S., R. 5 E. (Big Delta D-6 quad), approximately 0.6 mi downstream from Hunts Creek and 1.5 mi south of mi 25.8 Chena Hot Springs Road. | 1,344 | 1985,
1987-89,
1991-2000 | 9-27-01 | 798 | | | | | Drainage | Measured previously | Meası | Measurements | | | |--|---------------------------------|---|-------------------------|---|---|--------------------------------|--|--| | Stream | Tributary to | Location | area (mi ²) | (water
years) | Date | Discharge (ft ³ /s) | | | | | | YUKON ALASKAContinued | | | | | | | | 15493700
Chena River below
Moose Creek Dam | Tanana River | Lat 64°48′03″, long 147°13′40″, in NW¹/4, sec. 30, T. 1 S., R. 3 E. (Fairbanks C-1 quad), 3.1 mi downstream from Moose Creek Dam, 1.4 mi upstream from Potlatch Creek, 5 mi northeast of North Pole, and 14.7 mi east of Fairbanks | 1,460 | ‡1979-96,
1997-99 | 9-26-01 | 893 | | | | 1551400425
Noyes Slough at
Minnie Street Bridge | Chena River | Lat $64^{\circ}50'54''$, long $147^{\circ}42'26''$, in $NW^{1}_{/4}$ sec. 11, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), Hydrologic Unit 19040506, 900 ft. downstream from Noyes Slough entrance 0.3 mi downstream from Wendell StreetBridge, 5.6 mi upstream from mouth, and 11.3 mi downstream from Chena Slough entrance. | | 1967,1971,
1989,1990,
1992-1994
2000 | 7-31-01
8-17-01
8-20-01 | 36
0
14 | | | | 15516200
Slime Creek near
Cantwell | Nenana River | Lat $63^{\circ}30'34''$, long $148^{\circ}48'39''$, in $SE^{1}/_{4}$, sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), at mi 219.9 George Parks Highway, 9.1 mi northeast of Cantwell | 6.90 | †1990-2000 | 7-11-01 | 27 | | | | 15517980
Dragonfly Creek
near Healy | Nenana River | Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in SW $^{1}/_{4}$, sec. 9, T.13 S., R.
7 W., (Healy D-4 quad), at mi 242.6 George Parks Highway, 6 mi southeast of Healy. | 0.71 | †1990-95,
1997-2000 | 7-27-01 | 2.0 | | | | 15541600
Globe Creek near
Livengood | Tatilina River | Lat 65°17′08″, long 148°07′56″, in SE¹/₄, sec. 3, T. 5 N., R. 3 W. (Livengood B-3 quad), 0.2 mi upstream from culvert at mi 36.7 on Elliott Highway. | 23.0 | †1964-70,
†1972-74,
†1976,
†1982-83,
†1985-86,
†1989-91,
†1993,
†1995-2000 | 5-23-01 | 95 | | | | 15564868
Snowden Creek near
Wiseman | Dietrich River | Lat $67^{\circ}44'20''$, long $149^{\circ}44'24''$, in $SW^{1}_{/4}$, sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), upstream from culvert at mi 213.5 of the Dalton Highway and 24.5 mi northeast of Wiseman. | 16.7 | †1977-80,
†1982,
†1984-85,
†1987-94,
†1996-2000 | 6-07-01
6-21-01
8-23-01 | 202
30
19 | | | | 15564872
Nugget Creek near
Wiseman | Middle Fork
Koyukuk
River | Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in $NW^{1}/_{4}$, sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman. | 9.47 | †1975-79,
†1982,
†1985,
†1987,
†1989-2000 | 5-24-01
6-7-01
6-21-01
8-23-01 | 12
64
16
3.7 | | | | 15564884
Prospect Creek near
Prospect Camp | Jim River | Lat $66^{\circ}46'56''$, long $150^{\circ}41'06''$, in $NW^{1}/_{4}$, sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), at mi 135.2 Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth . | 110 | †1975-78,
†1980
†1982
†1989
†1992-2000 | 5-24-01 | 466 | | | | 15564887
Bonanza Creek
Tributary near
Prospect Camp | Bonanza Creek | Lat $66^{\circ}36'52''$, long $150^{\circ}41'24''$, in $SE^{1}/_{4}$, sec. 25, T. 21 N., R. 15 W., 0.3 mi downstream from culverts at mi 121.2 on the Dalton Highway, 3.4 mi upstream from mouth, and 13.5 mi south of pump station 5. | 11.7 | †1975-76,
†1982,
†1985-86,
†1989-95,
†1997-2000 | 5-24-01 | 64 | | | | | | | Drainage | Measured | Meası | irements | |---|-------------------------------|---|-------------------------|---|------------------------------|--------------------------------| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | YUKON ALASKAContinued | | | | | | 15564950
Indian River at
Utopia | Koyukuk River | Lat 65°59′49″, long 153°41′31″, in NW¹/₄, sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), at mi 0.2 on road to Indian Mountain, and 1.8 mi upstream from mouth of Flat Creek. | 38.8 | †1998-2000 | 6-1-01
6-14-01
9-7-01 | 232
124
107 | | 15564960
Utopia Creek at
Utopia | Indian River | Lat $65^{\circ}59'19''$, long $153^{\circ}42'18''$, in $SE^{1}/_{4}$, sec. 24, T. 7 N., R. 24 E. (Melozitna D-2 quad), 0.3 mi south of landing strip at Utopia, and 1.2 mi upstream from mouth. | 5.18 | †1998-2000 | 6-01-01
6-14-01
9-7-01 | 25
18
14 | | 15565400
Anvik River near
Anvik | Yukon River | Lat 62°47′22″, long 160°41′49″, in NW¹/ ₄ SE¹/ ₄ , sec. 10, T. 31 N., R. 61 W. (Holy Cross D-4 quad), approx. 25 river mi upstream from mouth and 18 mi northwest of Anvik. | | | 8-03-01 | 2,190 | | 15565449
Municipal Reserve
Creek at Pilot Sta-
tion. | Yukon River | Lat $61^{\circ}56'19''$, long $162^{\circ}52'53''$, in $NW^1/_4$ $SE^1/_4$, sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), 0.3 mile upstream from mouth, and 0.1 mile north of Village of Pilot Station. | 1.43 | †1993-97 | 6-27-01
9-22-01 | .95
.91 | | | | NORTHWEST ALASKA | | | | | | 15565730
Chiroskey River near
Unalakleet | Unalakleet
River | Lat 63°55′06″, long 160°18′58″, in NW¹/₄, sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), 0.75 mi upstream from mouth, 14 mi northeast of Unalakleet. | 296 | †1998 | 6-14-01 | 934 | | 15583500
Etta Creek near
Council | East Fork
Solomon
River | Lat $64^{\circ}41'56''$, long $164^{\circ}09'57''$, in $NE^{1}_{/4}$ $NE^{1}_{/4}$, sec. 24, T. 9 S., R 28 W. (Solomon C-5 quad), 100 ft upstream from Nome-Council Road, 0.2 mi upstream from mouth, and 25 mi southwest of Council. | 1.33 | | 7-17-01 | 5.9 | | 15585000
Goldengate
Creek near
Nome | Norton Sound | Lat $64^{\circ}26'51''$, long $165^{\circ}03'14''$, in $SW^{1}/_{4}$, sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), 500 ft upstream from culvert on Nome-Council Road and 11 mi southeast of Nome. | 1.55 | †1965
1966
†1986-88
†1990-2000 | 7-18-01 | .78 | | 15624998
Arctic Creek
above tributary near
Nome | Cripple River | Lat 64°38′16″, long 165°42′42″, in NE¹/₄, sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), 300 ft upstream from Nome-Teller Road crossing, about 125 ft upstream from tributary entering left bank, 2 mi upstream from mouth, and 13 mi northwest of Nome. | 1.13 | † 1975,
†1979-84,
†1986-2000 | 7-16-01 | 4.0 | | 15633000
Washington Creek
near Nome | Sinuk River | Lat $64^{\circ}42'52''$, long $165^{\circ}49'13''$, in NW $^{1}/_{4}$, sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome. | 6.34 | †1964-66,
†1968-78,
†1980-2000 | 7-02-01 | .76 | | 15635000
Eldorado Creek near
Teller | Tisuk River | Lat 64°57'38", long 166°11'59", in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 20, T.6 S., R.37 W. (Nome D-3 quad), 30 ft downstream from bridge at mi 46.3 of Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River and 21 mi south of Teller. | 5.83 | 1986-87
‡1988-90
1991
‡1992-2000 | 10-04-00
7-02-01 | 9.8
26 | | | | | Drainage | Measured | Measurements | | | |---|-----------------|--|---|--------------------------------|--|--|--| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | | NORTHWEST ALASKAContinue | ed | | | | | | 15746890
Competition Creek
near Kivalina | Wulik River | Lat 68°08′05″, long 163°03′37″, in NW¹/₄, sec. 32, T. 32 N., R. 19 W. (DeLong Mts A-2 quad), 600 ft upstream from mouth, 7 mi northwest of Red Dog Mine mill site, 39 mi north of Noatak, and 48 mi northeast of Kivalina. | 6.85 | | 7-8-00
10-6-00
7-10-01 | 4.8
3.4
4.9 | | | 15746980
Ikalukrok Creek
above Red Dog
Creek near Kivalina | Wulik River | Lat $68^{\circ}05'38''$, long $162^{\circ}56'47''$, in $SE^{1}/_{4}$, sec. 11, T. 31 N., R. 19 W. (DeLong Mts A-2 quad), 300 ft upstream from Red Dog Creek, 3 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 9. | 59.2 | ‡1991-92,
1993-2000 | 10-5-00
6-8-01
7-10-01
9-11-01
9-14-01 | 39
523
94
328
191 | | | 15746983
Red Dog Mine Clean
Water Ditch near
Kivalina | Ikalukrok Creek | Lat $68^{\circ}04'28''$, long $162^{\circ}51'35''$, in $NE^{1}/_{4}$, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft downstream from outfall of clean water ditch, 300 ft northwest of Red Dog Mine mill site, 0.4 mi upstream from South Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 140. | 4.74
(total)
4.3
(contributing) | ‡1991-92,
1993-2000 | 10-6-00
5-14-01
5-15-01
5-16-01
6-8-01
7-11-01
9-11-01 | 1.9
1.8
2.9
3.0
47
4.6 | | | 1574698750
Red Dog Creek
above North Fork
Red Dog Creek near
Kivalina | Ikalukrok Creek | Lat 68°04′58″, long 162°52′54″, in SW¹/4, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft upstream from North Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 20. | 9.3
(total)
5.5
(contributing) | 1991-93 | 5-16-01 | 24 | | | 15746988
North Fork Red Dog
Creek near Kivalina | Ikalukrok Creek | Lat 68°05′03″, long 162°52′52″, in SW¹/₄, sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 12. | 15.9 | ‡1991-94,
†1995-2000 | 10-6-00
6-4-01
6-5-01
6-6-01
6-8-01
7-11-01
9-10-01 | 12
336
287
326
215
12
54 | | | 15746990
Red Dog Creek
above Mouth near
Kivalina | Ikalukrok Creek | Lat 68°05′20″, long 162°55′30″, in NW¹/4, sec. 13, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 0.6 mi upstream from mouth, 2.3 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 10. | 24.6
(total)
20.8
(contributing) | ‡1991-92,
1993-2000 | 10-5-00
10-8-00
7-10-01
7-11-01
9-14-01 | 28
8.3
31
16
73 | | | 1574699020
Ikalukrok Creek 0.6
mi below Red Dog
Creek near Kivalina | Wulik River | Lat 68°05′09″, long 162°58′07″, in NE¹/₄, sec. 15, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), Northwest Arctic Borough, 0.6 mi downstream from Red Dog Creek, 3 mi westnorthwest of Red Dog Mine, 36 mi north of Noatak, and 48 mi
northeast of Kivalina. Cominco Station 150. | n | | 6-5-01
6-8-01
7-9-01
9-12-01 | 910
800
120
345 | | | 15746994
Ikalukrok Creek
below Dudd Creek
near Kivalina | Wulik River | Lat 68°00′17″, long 163°02′26″, in NW¹/₄, sec. 16, T. 30 N., R. 19 W. (DeLong Mts. A-2 quad), Northwest Arctic Borough, 200 ft downstream from Dudd Creek, 30 mi north of Noatak, and 43 mi northeast of Kivalina. Cominco Station 7. | | †1991-92
1999-2000 | 10-6-00
6-4-01
6-9-01
7-10-01
9-14-01 | 62
1320
933
165
387 | | | | | | Drainage | Measured | Measurements | | |--|------------------------|--|-------------------------|--|--|---| | Stream | Tributary to | Location | area (mi ²) | previously
(water
years) | Date | Discharge (ft ³ /s) | | | | NORTHWEST ALASKAContinue | ed | | | | | 15746998
Tutak Creek near
Kivalina | Wulik River | Lat 67°52′28″, long 163°40′14″, in NE¹/4, sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak. | 119 | 1991,
†1992-2000 | 6-7-01
7-11-01
9-13-01 | 1180
32
165 | | | | ARCTIC SLOPE ALASKA | | | | | | 15904800
Atigun River near
Pump Station 4 | Sagavanirktok
River | Lat $68^{\circ}12'54''$, long $149^{\circ}24'13''$, in $SW^{1}/_{4}$, sec. 20, T. 14 S., R. 12 E. (Phillip Smith Mts. B-4 quad), at mi 253.1 on Dalton Highway, and 15 mi south of Pump Station 4. | 48.7 | ‡1991-95
1999-2000 | 11-7-00
4-17-01
6-7-01
6-12-01
6-21-01
8-1-01
9-5-01 | 2.4
0
365
183
238
92
34 | | 15904900
Atigun River Tribu-
tary near Pump Sta-
tion 4 | Atigun River | Lat 68°22′25″, long 149°18′48″, in SE¹/4, sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mts. B-4 quad), 0.2 mi upstream from culvert at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4. | 32.6 | ‡1977-86,
†1987-91,
†1994,
†1996-99 | 6-8-01
6-20-01 | 211
91 | | 15910300
Sagavanirktok River
Tributary near Happy
Valley Camp | Sagavanirktok
River | Lat $69^{\circ}09'38''$, long $148^{\circ}49'40''$, in $NE^{1}/_{4}$, sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), 500 ft upstream from culvert at mi 335.2 on Dalton Highway, 0.8 mi upstream from mouth, and 16 mi south of Sagwon. | 12.7 | †1997-2000 | 6-10-01
6-12-01 | 101
48 | | 15918200
Sagavanirktok River
Tributary near
Deadhorse | Sagavanirktok
River | Lat $69^{\circ}57'14''$, long $148^{\circ}43'48''$, in $NE^{1}/_{4}$, sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), at mi 386.2 on Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse. | a 12 | †1988-91,
†1995-97
†1999-2000 | 6-10-01
6-20-01 | 14
1.6 | # FOOTNOTES - † Operated as a crest-stage partial-record station - ‡ Operated as a continuous-record station - + See analysis of samples collected at miscellaneous water-quality sites - * Operated as a stage-only partial-record station - a Approximately - b Ponded water but no flow - d Channel dry - e Estimated - $f \quad \text{ Low-flow partial-record station}$ - g Not previously published - h Previously published as 15052482 Jordan Creek at Trout Street Bridge near Auke Bay - j Ice effect - n To be determined - p Peak flow - r Revised # SOUTHEAST ALASKA #### 15049900 GOLD CREEK NEAR JUNEAU | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | |-----------------|---|--|--|--|--|---|--|--|--|--|---|---|--| | NOV
15 | 1000 | 9 | 9 | 35.3 | 27 | 20 | 3044 | 130 | 7.6 | 8.0 | 3.0 | | . 2 | | JAN
02 | 0950 | 9 | 9 | 33.6 | 34 | 10 | 3044 | | | | 4.0 | 5 | . 2 | | FEB
08 | 1100 | 9 | 9 | 30.2 | 39 | 20 | 3044 | 139 | 7.8 | 1.0 | 1.5 | <1 | .3 | | MAR
08 | 0930 | 9 | 9 | 11.8 | 21 | 20 | 3044 | 162 | 7.6 | 4.0 | 3.0 | <1 | .3 | | MAY
31 | 0915 | 9 | 9 | 50.0 | 184 | 10 | 3044 | 85 | 7.4 | | 4.0 | <1 | | | JUL
18 | 1030 | 9 | 9 | 46.4 | 144 | 20 | 3044 | 77 | 7.1 | 17.0 | 6.0 | <1 | | | AUG
13 | 1450 | 9 | 9 | 39.2 | 112 | 20 | 3044 | 69 | 7.3 | 36.5 | 11.0 | <1 | | | 15
SEP | 1045 | 9 | 9 | 42.5 | 125 | 20 | 3044 | 70 | 7.3 | 12.0 | 6.5 | <1 | | | 10
25 | 1245
0900 | 9
9 | 9
9 | 32.5
45.0 | 91
146 | 10
10 | 3044
3044 | 109
81 | 7.1
7.6 | 15.0 | 9.0
10.5 | <1
<1 | | | DATE | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | NOV
15 | | | | | | 32 | 38 | 31 | | | | | | | JAN
02 | | 65 | 17.8 | 4.97 | 1.0 | | | | 32.4 | .8 | <.2 | .01 | 2.5 | | FEB
08 | | 70 | 19.3 | 5.27 | .9 | 34 | 42 | 34 | 33.3 | .9 | <.2 | <.01 | 2.8 | | MAR
08 | 5.9 | 76 | 20.6 | 5.88 | 1.1 | 35 | 43 | 35 | 38.3 | .9 | <.2 | <.01 | 2.5 | | MAY
31 | 1.8 | 40 | 11.8 | 2.52 | .7 | 23 | 26 | 21 | 16.3 | 1.2 | .1 | <.01 | 2.0 | | JUL
18 | . 4 | 37 | 10.7 | 2.51 | .7 | 22 | 26 | 21 | 16.8 | .5 | <.01 | <.01 | 1.7 | | AUG
13 | 20 | 32 | 9.33 | 2.03 | .6 | 20 | 22 | 18 | 14.4 | .3 | .1 | <.01 | 1.7 | | 15
SEP | 1.1 | 31 | 9.16 | 2.03 | .6 | 19
29 | 22
33 | 18
27 | 14.7 | . 4 | .1 | <.01 | 1.6 | | 10
25 | 1.1 | 34
37 | 8.11
10.7 | 3.34 2.35 | 1.4 | 22 | 25
25 | 20 | 21.4 | .6
 | <.2 | <.01 | 9.8
1.9 | | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | NOV
15 | | | | | | | | | | | | | | | JAN
02 | 90 | | | | | <2.0 | 32.9 | <1.00 | <8.00 | <.8 | <13.0 | <4.7 | <10 | | FEB
08 | 95 | | | | | <2.0 | 35.4 | <1.00 | <8.00 | <.8 | <13.0 | <4.7 | <10 | | MAR
08 | 101 | <.006 | .501 | | <.018 | <2.0 | 33.7 | <1.00 | <8.00 | <.8 | <13.0 | <4.7 | <10 | | MAY
31 | 52 | <.006 | .271 | | <.020 | <2.0 | 26.6 | <1.00 | <8.00 | <.8 | <13.0 | <5.0 | <10 | | JUL
18 | 48 | E.005 | .090 | | <.020 | <2.0 | 22.1 | <1.00 | <8.00 | <.8 | <13.0 | <5.0 | <10 | | AUG
13
15 | 31
39 | <.006
<.006 | .080 | E.022 |
<.020 | <2.0
<2.0 | 22.4
21.9 | <1.00
<1.00 | <8.00
<8.00 | <.8
<.8 | <13.0
<13.0 | <5.0
<5.0 | <10
<10 | | SEP
10 | 62 | <.006 | E.156 | <.040 | <.020 | <2.0 | 21.9 | <1.00 | <8.00 | <.8 | <13.0 | <5.0 | 70 | | 25 | 50 | .029 | .498 | | <.020 | <2.0 | 24.9 | <.50 | <8.00 | <.8 | <13.0 | <6.0 | <10 | #### SOUTHEAST ALASKA #### 15049900 GOLD CREEK NEAR JUNEAU--Continued | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) |
NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |-----------|---|---|---|---|--|---|--|---|---|---|---| | NOV | | | | | | | | | | | | | 15 | | | | | | | | | | | | | JAN | T 00 | .2.0 | .2.0 | <.23 | <45.0 | <53.0 | D1 6 | .1 6 | 04.6 | .0.0 | 710 | | 02
FEB | E.08 | <3.9 | <3.2 | <.23 | <45.0 | <53.0 | E1.6 | <4.6 | 94.6 | <8.0 | E10 | | 08 | E.06 | <3.9 | <3.2 | < . 23 | <45.0 | <53.0 | E1.3 | <4.6 | 103 | <8.0 | <20 | | MAR | | | | | | | | | | | | | 08 | <.08 | <3.9 | <3.2 | <.23 | <45.0 | <53.0 | <2.4 | <4.6 | 105 | <8.0 | <20 | | MAY | 2.1 | .1 0 | .2 0 | | .50.0 | .50 0 | .0.0 | 0 | F0 6 | .0.0 | -00 | | 31
JUL | .31 | <4.0 | <3.0 | | <50.0 | <50.0 | <2.0 | <5.0 | 58.6 | <8.0 | <20 | | 18 | <.08 | <4.0 | <3.0 | <.01 | <50.0 | <50.0 | <2.0 | <5.0 | 55.8 | <8.0 | <20 | | AUG | | | | | | | | | | | | | 13 | <.08 | <4.0 | <3.0 | <.01 | <50.0 | <50.0 | <2.0 | <5.0 | 46.5 | <8.0 | <20 | | 15 | E.04 | <4.0 | <3.0 | <.01 | <50.0 | <50.0 | <2.0 | <5.0 | 46.7 | <8.0 | <20 | | SEP
10 | <.08 | <4.0 | 13.6 | <.01 | <50.0 | <50.0 | <2.0 | <5.0 | 29.4 | <8.0 | <20 | | 25 | .13 | <4.0 | <2.0 | <.01 | <50.0 | <30.0 | E1.0 | <9.0 | 53.9 | <8.0 | <24 | | 23 | | -1.0 | -2.0 | | .50.0 | .50.0 | 22.0 | .,,, | 55.5 | | -2-1 | #### 15052900 MENDENHALL RIVER AT BROTHERHOOD BRIDGE AT AUKE BAY | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | |-----------|------|----------------|----------------|--|--|--|---|--|--|--|--|--|---| | JUN
06 | 0940 | 9 | А | 19 | 7.77 | 1.21 | E.08 | <.10 | 1.2 | 1460 | <1 | 25 | <3.0 | | | SILVER, | ZINC, | |------|---------|---------| | | TOTAL | TOTAL | | | RECOV- | RECOV- | | | ERABLE | ERABLE | | DATE | (UG/L | (UG/L | | | AS AG) | AS ZN) | | | (01077) | (01092) | | JUN | | | | 05 | - 40 | -31 | # SOUTHEAST ALASKA #### 15109029 UPPER PETERSON CREEK NEAR AUKE BAY | | | DIS-
CHARGE,
INST.
CUBIC
FEET | STREAM | BARO-
METRIC
PRES-
SURE
(MM | OXYGEN,
DIS- | OXYGEN,
DIS-
SOLVED
(PER-
CENT | PH
WATER
WHOLE
FIELD
(STAND- | SPE-
CIFIC
CON-
DUCT- | TEMPER-
ATURE | | | |--|------|---|------------------------------------|---|--|---|--|--|---|--|--| | DATE | TIME | PER
SECOND
(00061) | WIDTH
(FT)
(00004) | OF
HG)
(00025) | SOLVED
(MG/L)
(00300) | SATUR-
ATION)
(00301) | ARD
UNITS)
(00400) | ANCE
(US/CM)
(00095) | WATER
(DEG C)
(00010) | | | | JUL
12 | 1220 | 2.1 | 8.20 | 760 | 12.2 | 117 | 6.5 | 52 | 13.5 | | | | | | 151 | 09031 PE | TERSON | CREEK ' | TRIBUTA | RY NUM | BER 8 NI | EAR AUKE BAY | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | JUL
12 | 1240 | .20 | 3.60 | 760 | 10.8 | 94 | 7.3 | 45 | 9.0 | | | | | | 151 | 09033 PI | ETERSON | CREEK | TRIBUTA | RY NUM | BER 7 N | EAR AUKE BAY | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | FIELD
(STAND-
ARD | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | JUL
12 | 1300 | .10 | 1.20 | 760 | 11.5 | 96 | 7.1 | 46 | 7.5 | | | | 15109035 PETERSON CREEK TRIBUTARY NUMBER 6 NEAR AUKE BAY | | | | | | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | JUL
12 | 1340 | 1.1 | 4.80 | 760 | 12.4 | 101 | 7.2 | 39 | 6.5 | | | | | | 151 | 09039 PE | TERSON | CREEK | TRIBUTA | RY NUM | BER 4 NI | EAR AUKE BAY | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | JUL
12 | 1440 | .90 | 3.20 | 760 | 11.3 | 97 | 7.2 | 53 | 8.5 | | | | | | 151 | 09041 PE | TERSON | CREEK | TRIBUTA | RY NUM | BER 3 NI | EAR AUKE BAY | | | | | | DIS- | | BARO- | | OXYGEN, | PH | | | | | | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | STREAM
WIDTH
(FT)
(00004) | METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | JUL
12 | 1520 | .80 | 4.60 | 760 | 11.8 | 98 | 7.3 | 57 | 7.5 | | | #### SOUTH-CENTRAL ALASKA #### 601105149382400 EXIT GLACIER CREEK CHANNEL AT MI .1 HARDING TRAIL NEAR SEWARD | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|---|---|--|---|---|--|--------------------------------------|---|--|---|---|---
--| | JUL
27
AUG | 1330 | 9 | 9 | | 21 | | | 43 | 7.2 | | 3.5 | | 13.5 | | 06
20
SEP | 1720
1100 | 9
9 | 9
9 | 16.6
13.5 | 25
11 | 10
70 | 8010
8010 | 24
52 | 7.5
7.8 | 20.5 | 2.0 | 752
737 | 12.5
13.2 | | 11
25 | 1430
1400 | 9
9 | 9
9 | 5.00
9.00 | 1.1 | 70
70 | 8010
8010 | 83
87 | 7.6
7.9 | 10.5 | 4.0
4.0 | 746
736 | 12.2 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | | | | | | | | | | | JUL
27 | | <1 | <1 | <1 | | | | | | | | | | | AUG
06
20 | 92
101 | <1
E3 | <1
<1 | E2
 | | | | | | | | | | | SEP
11
25 | 95
 | <1
E1 | <1
<1 | E1
 | | | | | | | | | | #### 601105149385100 EXIT GLACIER CREEK TRIBUTARY AT MILE .6 HARDING TRAIL NEAR SEWARD | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|---|---|--|---|---|---|---|--|--|--|--|---|--| | JUL | 1105 | | • | | 0.4 | 1.0 | 2045 | 2.2 | | | | 540 | 10.1 | | 27
AUG | 1135 | 9 | 9 | | 8.4 | 10 | 3045 | 89 | 7.9 | | 7.1 | 748 | 12.1 | | 06
20
SEP | 1650
1350 | 9
9 | 9
9 | 15.0
14.0 | 5.7
7.0 | 10
70 | 8010
8010 | 85
91 | 7.7
8.1 | 14.5
12.0 | 7.5
6.5 | 752
 | 10.3
12.1 | | 11
25 | 1400
1320 | 9
9 | 9
9 | 14.5
13.0 | 3.0
4.2 | 70
70 | 8010
8010 | 113
109 | 7.9
7.8 | 10.5 | 6.0
5.5 |
725 | 12.8
9.4 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | JUL
27
AUG | 102 | <1 | <1 | <3 | 42 | 15.5 | .854 | 1.2 | 38 | .11 | 49 | .0 | 38 | | 06 | 87 | E1 | <1 | <1 | | | | | | | | | | | 20
SEP | | E3 | E1 | E2 | | | | | | | | | | | 11
25 |
78 | <1 | <1 | <1 | | | | | | | | | | | | | E33 | <1 | E3 | | | | | | | | | | # SOUTH-CENTRAL ALASKA #### 601105149385100 EXIT GLACIER CREEK TRIBUTARY AT MILE .6 HARDING TRAIL NEAR SEWARD--Continued | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | |-----------|--|--|---|---|---|--|--|--|--|---|--|---|--| | JUL | | | | | | | | | | | | | | | 27
AUG | 5.9 | .7 | <.2 | 4.5 | 59 | 53 | <.001 | .028 | .002 | E.06 | <.10 | E.004 | <.006 | | 06 | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | SEP
11 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | | | | | | | | | | JUL
27 | <.007 | <10 | <3.0 | E.21 | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 06
20 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | #### 601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |-----------------|--|--|--|--|---|---|--|--|--|--|--|---|---| | JUL
17
17 | 1230
1300 | 9
H | 9
9 | 8.40 | 5.4 | 10 | 3045 | 98
 | 7.3 | 4.0 | 761
 | 13.1 | 100 | | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | JUL
17
17 | 44 | 15.9 | 1.04 | 1.1 | 36
 | .27 | 47
 | 36
 | 6.6 | 1.3 | <.2 | 1.8 | 56
 | | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) |
NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ALDRIN,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49319) | | JUL
17
17 | 51
 | .001 | .074 | .003 | .10 | <.10 | .312 | <.006 | <.007 | <10 | 17.8 | 1.4 |
<1 | | DATE | CHLORO-
NEB,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49322) | DCPA,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49324) | DIEL-
DRIN,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49331) | ENDRIN,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49335) | HEPTA-
CHLOR,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49341) | HEPTA-
CHLOR
EPOXIDE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49342) | BENZENE
HEXA-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49343) | ISODRIN
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49344) | LINDANE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49345) | MIREX,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49348) | OXY-
CHLOR-
DANE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49318) | PENTA-
CHLORO-
ANISOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49460) | PCB,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49459) | | JUL
17
17 |
<5 |
<5 |
<1 | <2 |
<1
<50 | #### SOUTH-CENTRAL ALASKA #### 601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD-- Continued | DATE | TOXA-
PHENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49351) | ENDO-
SULFAN
I,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49332) | ALPHA-
BHC,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49338) | ALPHA-
BHC, D6
SURROGT
SED, BM
WS,<2MM
DW, REC
PERCENT
(49275) | BETA-
BHC,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49339) | CIS-
CHLOR-
DANE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49320) | CIS-
NONA-
CHLOR,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49316) | CIS-
PER-
METHRIN
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49349) | O, P'-
DDD,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49325) | O, P'-
DDE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49327) | O, P'-
DDT,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49329) | METHOXY
CHLOR,
O,P'-,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49347) | P, P'-
DDD,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49326) | |-----------------|---|--|--|--|--|--|--|--|--|---|--|--|---| | JUL
17
17 |
<200 |
<1 |
<1 |
88 |
<1 |
<1 |
<1 |
<5 |
<1 |
<1 | <2 |
<5 | <1 | | DATE | P, P'-
DDE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49328) | P, P'-
DDT,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49330) | METHOXY CHLOR P,P'-, SED, BM WS,<2MM DW, REC (UG/KG) (49346) | TRANS-
CHLOR-
DANE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49321) | TRANS-
NONA-
CHLOR,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49317) | TRANS-
PER-
METHRIN
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49350) | ALUM-
INUM
BOT MAT
<63U WS
FIELD
PERCENT
(34790) | ANTI-
MONY
BOT MAT
<63U WS
FIELD
(UG/G)
(34795) | ARSENIC
BOT MAT
<63U WS
FIELD
(UG/G)
(34800) | BARIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34805) | BERYL-
LIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34810) | BISMUTH
BOT MAT
<180UWS
FIELD
(UG/G)
(34816) | CADMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34825) | | JUL
17
17 |
<1 | <2 |
<5 | <1 | <1 |
<5 | 7.9 | 2.3 | 18 | 710 | 1.1 | <1 | . 2 | | DATE | CHRO-
MIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34840) | COPPER
BOT MAT
<63U WS
FIELD
(UG/G)
(34850) | CALCIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34830) | COBALT
BOT MAT
<63U WS
FIELD
(UG/G)
(34845) | CERIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34835) | EURO-
PIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34855) | GOLD
BOT MAT
<63U WS
FIELD
(UG/G)
(34870) | GALLIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34860) | HOLMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34875) | IRON
BOT MAT
<63U WS
FIELD
PERCENT
(34880) | LANTHA-
NUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34885) | LEAD
BOT MAT
<63U WS
FIELD
(UG/G)
(34890) | LITHIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | | JUL
17
17 | 99 |
68 | 1.6 |
17 |
58 | 1 | <1 |
16 | <1 | 3.8 | 30 | 13 | 40 | | DATE | MAGNE-
SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | MANGA-
NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | MERCURY
BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | MOLYB-
DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | NEODYM-
IUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34920) | NICKEL
BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | NIOBIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHOS-
PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | SCAN-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | SELE-
NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | SILVER
BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | SODIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34960) | STRON-
TIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34965) | | JUL
17
17 | 1.4 |
670 |
.06 | .7 |
29 |
44 | 11 | .160 |
16 | .3 | . 2 | 2.5 |
370 | | DATE | SULFUR
BOT MAT
<63U WS
FIELD
PERCENT
(34970) | TANTA-
LUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34975) | THORIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34980) | TIN
BOT MAT
<63U WS
FIELD
(UG/G)
(34985) | TITA-
NIUM,
SED, BM
WS,<63U
DRY WGT
REC
PERCENT
(49274) | URANIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35000) | VANA-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35005) | YTTRIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35010) | YTTER-
BIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(35015) | ZINC
BOT MAT
<63U WS
FIELD
(UG/G)
(35020) | CARBON,
ORGANIC
SED, BM
WS,<63U
DW, REC
(PER-
CENT)
(49266) | CARBON,
INORG,
SED, BM
WS,<63U
DW, REC
(PER-
CENT)
(49269) | CARBON,
ORG +
INORG,
SED, BM
WS,<63U
DW, REC
PERCENT
(49267) | | JUL
17
17 | .09 |
<1 |
6 | 2 | .520 | 1.6 | 130 |
19 |
2 |
93 | .38 | .21 |
.59 | | DATE | CARBON,
ORG +
INORG
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49272) | CARBON,
INORG,
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49270) | CARBON,
ORGANIC
SED, BM
WS,<2MM
DW, REC
(G/KG)
(49271) | BENZENE
124TRI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49438) | BENZENE
O-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49439) | NAPTHAL
ENE, 12
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49403) | BENZENE
M-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49441) | BENZENE
P-DI-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49442) | NAPTHAL
ENE, 16
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49404) | 9H-FLU-
ORENE,
1METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49398) | PHENAN
THRENE
1METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49410) | PYRENE,
1-
METHYL,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49388) | 2,2'-BI
QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49391) | | JUL
17
17 | 3.5 | . 2 | 3.3 |
<50 #### SOUTH-CENTRAL ALASKA #### 601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD-- Continued | DATE | NAPTHAL
ENE,236
TRIMETH
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49405) | TOLUENE
2,4-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49395) | NAPTHAL
ENE, 26
DIMETHL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49406) | TOLUENE
2,6-DI-
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49396) | NAPTHAL
ENE, 2-
CHLORO-
SED, BM
WS,<2MM
DW,
REC
(UG/KG)
(49407) | PHENOL,
2CHLORO
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49467) | NAPTHAL
ENE, 2-
ETHYL-
SED BM
WS <2MM
DW REC
(UG/KG)
(49948) | ANTHRA-
CENE, 2-
METHYL-
SED, BM
WS, < 2MM
DW, REC
(UG/KG)
(49435) | 3,5-
XYLENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49421) | 4-BROMO
PHNPHNL
ETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49454) | M-CRE-
SOL, 4-
CHLORO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49422) | 4CHLORO
PHNPHN
LETHER
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49455) | 4HCYPEN
PHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49411) | |-----------------|--|---|--|--|--|---|--|---|--|---|---|---|--| | JUL
17
17 |
<50 | 17 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | | DATE | ACENAPH
THENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49429) | ACENAPH
THYLENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49428) | ACRI-
DINE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49430) | ANTHRA-
CENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49434) | 9,10-
ANTHRA-
QUINONE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49437) | AZO-
BENZENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49443) | BENZ(A)
ANTHRA-
CENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49436) | BENZO (A) PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49389) | BENZOB
FLUOR-
ANTHENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49458) | BENZOCI
NNOLINE
BED MAT
WS < 2MM
DRY WGT
REC
(UG/KG)
(49468) | BENZO(G
HI)PERY
LENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49408) | BENZO K
FLUOR-
ANTHENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49397) | PHTHALA
TE,BIS2
ETHHEXL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49426) | | JUL
17
17 |
<50 | DATE | PHTHALA
TEBUTYL
BENZYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49427) | PHENOL
C8-
ALKYL-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49424) | CARBA-
ZOLE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49449) | CHRY-
SENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49450) | PHTHAL-
ATE,
DIBUTYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49381) | PHTHAL
ATE, D
IOCTYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49382) | DIBENZ
(AH), AN
THRACEN
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49461) | THIOPH
ENE,DI-
BENZO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49452) | PHTHAL-
ATE, D
IETHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49383) | PHTHAL-
ATE,DI-
METHYL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49384) | FLUOR-
ANTHENE
BED MAT
WS <2MM
DRY WGT
REC
(UG/KG)
(49466) | 9H-FLU-
ORENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49399) | INDENO
123-CD
PYRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49390) | | JUL
17 | | | | | | | | | | | | | | | 17 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | | DATE | ISOPHOR
ONE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49400) | ISO-
QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49394) | DPROPYL
AMINE,N
NITROSO
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49431) | DIPHNYL
AMINE,N
NITROSO
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49433) | NAPHTH-
ALENE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49402) | BENZENE
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49444) | BENZENE
PNTCHLR
NITRO-
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49446) | PHENAN
THRENE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49409) | PHENAN-
THRI-
DINE
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49393) | PHENOL
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49413) | PYRENE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49387) | QUINO-
LINE,
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49392) | METHANE
2CHLORO
ETHOXY
SED, BM
WS,<2MM
DW, REC
(UG/KG)
(49401) | | JUL
17
17 |
<50 BIS2CHL BIS2CHL ETHYL P-ETHER CRESOL SED, BM SED, BM WS,<2MM WS,<2MM DW, REC DW, REC (UG/KG) (UG/KG) (49456) (49451) DATE JUL 17... -- -17... <50 E40 Remark codes used in this report: < -- Less than E -- Estimated value # SOUTH-CENTRAL ALASKA #### 594734151142900 ANCHOR RIVER NEAR BALD MOUNTAIN NEAR HOMER | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |--------|---|--|--|--|---|--|---|--|--|--|--|--|---| | APR 24 | 1530 | 9 | 9 | 56.0 | 382 | 10 | 3045 | 1006 | 61 | 7.4 | 6.5 | 3.0 | 741 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR 24 | 12.7 | 97 | 22 | 4.58 | 2.61 | 3.8 | 25 | 1.29 | 30 | 24 | .6 | 2.8 | <.2 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | APR 24 | 21.0 | 60 | 53 | .002 | .210 | .019 | .28 | .21 | .110 | .035 | .030 | 510 | 68.6 | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | | | | | APR 24 | 4.6 | 2.0 | .172 | 82 | 85 | 62 | | | | | | | | # SOUTH-CENTRAL ALASKA # 594507151290000 BEAVER CREEK 2 MILE ABOVE MOUTH NEAR BALD MOUNTAIN NEAR HOMER | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) |
SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |-----------------|---|---|--|--|--|--|---|--|---|--|--|---|---| | APR
19 | 1300 | 9 | 9 | 14.0 | 26 | 10 | 3045 | 1006 | 72 | 7.4 | 8.0 | 1.0 | 750 | | AUG
29 | 1145 | D | 9 | | | 8010 | 8010 | 1006 | | | | | | | 29 | 1250 | 9 | 9 | 16.5 | 25 | 10 | 3045 | 1006 | | | 15.0 | 8.5 | 733 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | WATER
DIS IT
FIELD | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR
19 | 13.6 | 97 | 24 | 5.45 | 2.60 | 3.7 | 31 | 1.62 | 38 | 31 | . 6 | 3.7 | <.2 | | AUG
29 | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | 19
AUG | 24.8 | 81 | 63 | .003 | .238 | .003 | .39 | .20 | .071 | .037 | .029 | 900 | 113 | | 29 | | | | .003 | .134 | .012 |
.42 |
.38 | .099 | .081 |
.065 | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG + | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | | PERI- | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
* FINER
THAN
.062 MM
(70331) | .005 | | | | APR
19 | 5.3 | .6 | .053 | | | | | 10 | .70 | 88 | | | | | AUG
29
29 | | | | .6 | 37.7 | 38.7 | .3 | # SOUTH-CENTRAL ALASKA #### 15239840 ANCHOR RIVER ABOVE TWITTER CREEK NR HOMER | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |-----------------|--|---|--|--|--|---|--|---|--|--|---|--|---| | AUG
20
20 | 1625
1720 | D
9 | 9
9 |
48.0 | 233 | 8010
10 | 8010
3045 | 1006
1006 |
65 |
7.4 |
17.0 | 10.0 |
742 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR-A
PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2)
(70957) | PERI-
PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M
(00572) | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M
(00573) | | AUG
20
20 | 10.5 |
96 | .002 | .084 | .027 | .34 | .28 | .109 | .056 | .041 | 1.0 | 40.3 | 41.6 | | DATE | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | | | | | | | | | | | | | | AUG
20
20 | . 4
 | | | | | | | | | | | | | # $595126151391000\,$ CHAKOK RIVER 7.5 MILE ABOVE MOUTH NEAR ANCHOR POINT | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |--|--|--|--|--
--|---|--|---|--
--|--|---| | 1140 | 9 | 9 | 16.0 | 126 | 10 | 3045 | 1006 | 50 | 7.1 | 8.5 | 1.0 | 741 | | 1629
1740 | D
9 | 9 | 15.0 | 16 | 8010
10 | 8010
3045 | 1006
1006 | 70 | 7.2 | 16.0 | 12.5 | 741 | | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | 13.3

8.8 | 96 | 18 | 4.02 | 1.88 | 2.8 | 20 | 1.49 | 24 | 19 | .3 | 2.2 | <.2 | | | 1140
1629
1740
OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
13.3 | OXYGEN, DIS- SOLVED OXYGEN, DIS- SOLVED OXYGEN, ATION O0300) OX301) 13.3 96 | TIME CODE TYPE 1140 9 9 1629 D 9 1740 9 9 OXYGEN, DIS- HARD- SOLVED NESS OXYGEN, CENT (MG/L) SOLVED SATUR- AS (MG/L) ATION) CACO3) (00300) (00301) (00900) 13.3 96 18 | TIME CODE TYPE WIDTH (FT) (00004) 1140 9 9 16.0 1629 D 9 1740 9 9 15.0 OXYGEN, DIS- HARD- SOLVED NESS CALCIUM OXYGEN, PER- TOTAL DIS- DIS- CENT (MG/L SOLVED SOLVED SATUR- AS (MG/L SOLVED (MG/L) ATION) CACO3) AS CA) (00300) (00301) (00900) (00915) 13.3 96 18 4.02 | MEDIUM SAMPLE STREAM CUBIC C | MEDIUM SAMPLE STREAM FEET PLING CODE | MEDIUM SAMPLE STREAM FEET PLING SAMPLER TIME CODE TYPE WIDTH PER METHOD, TYPE (FT) SECOND CODES (CODE) (EDS) (ED | MEDIUM SAMPLE STREAM FEET PLING SAMPLER SITE FET PLING SAMPLER SITE SECOND CODES CODE | MEDIUM SAMPLE STREAM FEET PLING SAMPLER SITE DUCT- | MEDIUM SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM STREAM FEBT PLING SAMPLE STREAM STREAM FEBT PLING SAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STAMPL | MEDIUM SAMPLE STREAM FEET PLING SAMPLER STTE DUCT (STAND ATURE CODE CODE (D0004) (00061) (82398) (84164) (50280) (00095) (00400) (00020) | MEDIUM | #### SOUTH-CENTRAL ALASKA #### 50512/151201000 CHAROK BIVED 7.5 MH F ADOVE MOUTHINEAD ANCHOR DOINT CONT. | | 5951 | 26151391 | 000 CHA | KOK RIV | ER 7.5 M | ILE ABO | VE MOU' | TH NEAR | ANCHO | R POINT- | Continue | ed | | |------------------|---|--|--|---|--|---|---|--|---|--|--|--|---| | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | APR
24
AUG | 14.8 | 52 | 41 | .001 | .086 | .005 | .46 | .25 | .125 | .025 | .016 | 870 | 101 | | 23 | | | | .001 | .029 | .014 | .36 | .22 | .142 | .064 | .049 | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | CHLOR-A
PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2)
(70957) | PERI-
PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M
(00572) | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M
(00573) | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | APR 24 | 7.2 | 1.4 | .132 | | | | | 44 | 15 | 65 | | | | | AUG
23
23 | | | | 2.1 | 37.8 | 39.2 | 1.3 | | | | | | | | | | | | 1524000 | 00 ANCH | OR RIVE DIS- CHARGE, | R AT AN | CHOR PC | INT | SPE- | PH
WATER | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | GAGE
HEIGHT
(FEET)
(00065) | INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | APR
16 | 1600 | 9 | 9 | 106 | 10.39 | 690 | 10 | 3045 | 1006 | 72 | 7.9 | 6.5 | 3.0 | | AUG
20
20 | 1135
1220 | D
9 | 9
9 | 93.5 | |
513 | 8010
10 | 8010
3045 | 1006
1006 |
68 | 7.4 | 12.0 | 10.0 | | DATE | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | | APR
16
AUG | 751 | 12.9 | 97 | 23 | 5.17 | 2.49 | 4.4 | 26 | 1.62 | 32 | 27 | .5 | 3.8 | | 20
20 |
747 |
11.1 | 100 | | | | | | | | | | | | DATE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L | SILICA,
DIS-
SOLVED
(MG/L
AS | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED |
SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L | PHOS-
PHORUS
TOTAL
(MG/L | PHOS-
PHORUS
DIS-
SOLVED
(MG/L | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | IRON,
DIS-
SOLVED
(UG/L | (MG/L AS N) (00631) .059 .073 PERT- BIOMASS PHYTON ASH WEIGHT G/SQ M (00572) 40.5 SOLVED (MG/L) (70301) NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570) .119 SOLVED (MG/L) (70300) 68 CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 1.4 AS N) (00613) .002 .002 CHLOR-A PERI-PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957) AS F) (00950) <.2 MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056) 111 DATE APR 16... AUG 20... 20... DATE APR 16... ATIG 20... SIO2) (00955) 19.4 CARRON DIS- SOLVED (MG/L AS C) 5.5 ORGANIC AS N) (00625) .30 .44 PHEO- PHYTIN A, PERI-PHYTON (MG/M2) (62359) . 3 AS N) (00623) SEDI- MENT. SUS-PENDED (MG/L) 30 .20 AS P) (00665) .087 .156 SEDI- MENT, DIS- CHARGE. SUS-PENDED (T/DAY) (80155) 56 (MG/L AS N) (00608) .003 .013 PERI- PHYTON BIOMASS TOTAL G/SQ M (00573) DRY WEIGHT AS P) (00666) .033 .051 SED. SUSP. DIAM. .062 MM (70331) 80 상 FINER THAN (MG/L (00671) .026 .034 AS P) (UG/L AS FE) (01046) 880 # SOUTH-CENTRAL ALASKA #### 595506151403300 STARISKI CREEK 2 MILE BELOW UNNAMED TRIBUTARY NEAR NINILCHIK | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |------------------|---|--|--|---|--|---|---|--|--|--|--|--|---| | APR
20
AUG | 1250 | 9 | 9 | 18.3 | 48 | 10 | 3045 | 1006 | 68 | 7.4 | 6.0 | 2.0 | 759 | | 24
24 | 1341
1440 | D
9 | 9
9 |
15.0 |
22 | 8010
10 | 8010
3045 | 1006
1006 |
72 | 7.2 |
16.0 | 10.0 |
749 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR
20
AUG | 13.6 | 99 | 24 | 5.18 | 2.70 | 3.3 | 31 | 1.40 | 38 | 30 | . 4 | 2.6 | <.2 | | 24
24 | 10.2 |
92 | | | | | | | | | | | | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | APR
20 | 22.1 | 74 | 58 | .002 | .102 | .004 | .37 | .19 | .116 | .040 | .034 | 810 | 81.7 | | AUG
24 | | | | | | | | | | | | | | | 24 | | | | .003 | .162 | .013 | . 27 | . 22 | .103 | .077 | .069 | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | CHLOR-A
PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2)
(70957) | PERI-
PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M
(00572) | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M
(00573) | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | APR
20 | 5.1 | 1.8 | .153 | | | | | 33 | 4.2 | 72 | | | | | AUG
24
24 | | | | 3.5 | 37.7 | 39.2 | 1.4 | | | | | | | | | | | 1 | 5240300 | CTADICK | T CDEEK | NEADA | NCHOR I | POINT | | | | | | | | | | 3240300 | S II II III | CKLLIN | TILLING I | пченок | Onvi | | | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | | APR
17 | 1520 | 9 | 9 | 29.0 | 166 | 10 | 3045 | 1006 | 54 | 7.7 | 6.0 | 2.0 | 757 | | AUG
25
25 | 1324
1420 | D
9 | 9
9 |
26.0 |
34 | 8010
10 | 8010
3045 | 1006
1006 |
82 | 7.3 | | 12.5 |
750 | | | -120 | | - | | | | | | | | | | . 50 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR
17 | 12.3 | 90 | 19 | 4.32 | 1.93 | 3.4 | 22 | 1.16 | 26 | 21 | . 2 | 2.5 | <.2 | | AUG
25
25 |
9.9 |
94 | | | | | | | | | | | | | 45 | 9.9 | 94 | | | | | | | | | | | | # SOUTH-CENTRAL ALASKA #### 15240300 STARISKI CREEK NEAR ANCHOR POINT--Continued | APR 17 13.3 54 41 .001 .029 .007 .48 .24 .128 .032 .023 1250 161 AUG .25002 .106 .015 .015 .29 .23 .121 .081 .071 | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | |--|------|---
--|---|---|---|---|--|---|---|---|---|--|--| | 17 | | (00955) | (70300) | (70301) | (00613) | (00631) | (00608) | (00625) | (00623) | (00665) | (00666) | (00671) | (01046) | (01056) | | AUG 25 25 CARBON, NITRO- CHLOR-A PERI- PHYTON PHEO- MENT, SUSP. ORGANIC ORGANIC TICULTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIEVE DIS- PARTIC. WAT FLT CHROMO- SUSP GRAPHIC ASH DRY OAS C) AS C) AS N) (MG/M2) G/SQ M G/SQ M (MG/M2) (MG/L) (T/DAY) .062 MM (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (70331) APR 17 7.6 2.1 1.167 9 46.2 47.4 9 | | | | | | | | | | | | | | | | 25 | | 13.3 | 54 | 41 | .001 | .029 | .007 | . 48 | .24 | .128 | .032 | .023 | 1250 | 161 | | CARBON, INORG + GEN, PAR PERI- PHYTON PHEO- MENT, SUSP. ORGANIC ORGANIC TICLUTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIEVE DIS- PARTIC. WAT FLT CHROMO- BIOMASS TOTAL A, MENT, CHARGE, DIAM. SOLVED TOTAL SUSP GRAPHIC ASH DRY PERI- SUS- SUS- FINER (MG/L (MG/L (MG/L FLUOROM WEIGHT WEIGHT PHYTON PENDED PENDED THAN (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (70331) APR 17 7.6 2.1 .167 130 58 50 AUG 25 9 46.2 47.4 .9 | 25 | | | | | | | | | | | | | | | CARBON, INORG + GEN,PAR PERI PERI PHYTON PHEO MENT, SUSP. | 25 | | | | .002 | .106 | .015 | . 29 | .23 | .121 | .081 | .071 | | | | 17 7.6 2.1 .167 130 58 50 AUG 259 46.2 47.4 .9 | DATE | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C) | GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N) | PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2) | PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M | PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M | PHYTIN
A,
PERI-
PHYTON
(MG/M2) | MENT,
SUS-
PENDED
(MG/L) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | | | | | 259 46.2 47.4 .9 | 17 | 7.6 | 2.1 | .167 | | | | | 130 | 58 | 50 | | | | | 25 | | | | | . 9 | 46.2 | 47.4 | . 9 | | | | | | | #### 600107151112800 NORTH FORK DEEP CREEK 4 MILE ABOVE MOUTH NEAR NINILCHIK | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |-----------------|---|--|--|---|--|---|---|--|--|--|--|---|---| | APR
25 | 1340 | 9 | 9 | 21.0 | 32 | 10 | 3045 | 1006 | 72 | 7.8 | 8.5 | 3.0 | 722 | | 30
30 | 1305
1500 | D
9 | 9
9 | 21.5 |
31 | 8010
10 | 8010
3045 | 1006
1006 |
63 |
7.6 | 13.0 |
9.5 |
 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR
25 | 12.6 | 99 | 28 | 5.39 | 3.55 | 3.4 | 35 | 1.38 | 42 | 35 | .7 | 1.2 | E.1 | | AUG
30
30 |
 | | | | | | | | | | | | | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180 | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | APR
25 | 27.4 | 82 | 64 | <.001 | .013 | <.002 | E.05 | <.10 | .023 | .019 | .018 | 50 | 22.7 | | AUG
30 | | | | - | . | | | | - | . | - | | | | 30 | | | | <.001 | .006 | .003 | E.08 | .11 | .022 | .020 | .015 | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | CHLOR-A
PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2)
(70957) | PERI-
PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M
(00572) | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M
(00573) | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | | | | | APR
25 | 1.7 | E.2 | E.026 | | | | | 2 | .17 | | | | | | AUG
30 | | | | 1.4 | 46.0 | 49.6 | 1.8 | | | | | | | | 30 | | | | | | | | | | | | | | # SOUTH-CENTRAL ALASKA #### 600204151401800 DEEP CREEK 0.6 MILE ABOVE STERLING HIGHWAY NEAR NINILCHIK | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |-----------------|---|--|---|---|--|---|--|--|--|--|--|---|---| | APR
18 | 1640 | 9 | 9 | 80.0 | 285 | 10 | 3045 | 1006 | 70 | 7.5 | 5.5 | 3.0 | 763 | | AUG
21
21 | 1602
1700 | D
9 | 9
9 |
57.0 |
258 | 8010
10 | 8010
3045 | 1006
1006 |
64 |
7.6 |
18.0 | 12.5 |
752 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CACO3 |
SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | APR
18 | 13.0 | 96 | 25 | 5.43 | 2.88 | 3.3 | 32 | 1.36 | 39 | 32 | .6 | 2.1 | <.2 | | 21
21 |
9.4 |
89 | | | | | | | | | | | | | DATE | DIS- | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI- | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | APR
18 | 21.2 | 75 | 57 | .002 | .067 | .004 | .54 | .17 | .215 | .033 | .027 | 640 | 63.6 | | AUG
21
21 | | | | <.001 | .017 | <.002 |
.27 | .21 | .064 | .040 | .029 | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | CHLOR-A
PERI-
PHYTON
CHROMO-
GRAPHIC
FLUOROM
(MG/M2)
(70957) | PERI-
PHYTON
BIOMASS
ASH
WEIGHT
G/SQ M
(00572) | PERI-
PHYTON
BIOMASS
TOTAL
DRY
WEIGHT
G/SQ M
(00573) | PHEO-
PHYTIN
A,
PERI-
PHYTON
(MG/M2)
(62359) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | APR
18 | 4.4 | 3.8 | . 268 | | | | | 220 | 169 | 53 | | | | | AUG
21
21 | | | | 4.1 | 40.3 | 42.6 | 1.7 | #### 600945151210900 NINILCHIK RIVER 1.5 MILE BELOW TRIBUTARY 1 NEAR NINILCHIK | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|---|--|---|---|---|---|--|--|--|--|--|---|--| | APR | | | | | | | | | | | | | | | 23
AUG | 1450 | 9 | 9 | 99.5 | 171 | 70 | 3045 | 1006 | 47 | 7.4 | .5 | 747 | 11.4 | | 23 | 1340 | 9 | 9 | 9.50 | 17 | 10 | 3045 | 1006 | 89 | 7.0 | 8.0 | 742 | 9.0 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | APR
23
AUG | 81 | 18 | 4.15 | 1.75 | 2.5 | 23 | 1.42 | 27 | 22 | . 2 | 1.1 | <.2 | 14.1 | | 23 | 78 | | | | | | | | | | | | | # SOUTH-CENTRAL ALASKA #### 600945151210900 NINILCHIK RIVER 1.5 MILE BELOW TRIBUTARY 1 NEAR NINILCHIK--Continued | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | |------------------|--|--|--|---|--|---|--|---|--|--|---|---|---| | APR 23
AUG 23 | 45 | 40 | .001 | <.005 | .004 | .28 | .23 | .097 | .058 | .051 | 930 | 99.2 | 6.7 | | DATE | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | | | | | | | | | | APR 23
AUG 23 | . 6 | .056 | 10 | 4.6 | | | | | | | | | | # 600321151325000 NINILCHIK RIVER BELOW TRIBUTARY 3 NEAR NINILCHIK | DIS- CHARGE, INST. CUBIC SAM- PURPOSE CON- TIME CODE TYPE WIDTH PER METHOD, TYPE VISIT, ANCE AR (FT) SECOND CODES (CODE) (CODE) (US/CM) UNIT (00004) (00061) (82398) (84164) (50280) (00095) (0048) | E PRES- D TEMPER- TEMPER- SURE D- ATURE ATURE (MM AIR WATER OF S) (DEG C) (DEG C) HG) | |--|--| | 18 1150 9 9 41.0 225 10 3045 1006 76 7. | 6.0 .5 759 | | 21 1110 D 9 8010 8010 1006 21 1250 9 9 30.0
113 10 3045 1006 91 7. | 760
19.5 11.0 749 | | OXYGEN | Y CHLO- FLUO-
IS SULFATE RIDE, RIDE,
I DIS- DIS- DIS-
D SOLVED SOLVED SOLVED
AS (MG/L (MG/L (MG/L)
3 AS SO4) AS CL) AS F) | | APR 18 12.7 88 27 6.19 2.84 3.9 34 1.75 42 34 | .2 1.9 <.2 | | AUG 21 | | | 21 9.1 84 | | | SOLIDS, SOLIDS, NITRO- NITRO | S ORTHO, IRON, NESE, - DIS- DIS- DIS- ED SOLVED SOLVED L (MG/L (UG/L (UG/L) AS P) AS FE) AS MN) | | APR 18 19.1 85 58 .002 .037 .018 .55 .26 .198 .0 | 4 .045 1110 191 | | AUG | | | 21 |
0 .061 | | CARBON, NITRO- CHLOR-A PERI- PHYTON PHEO- MENT, SU ORGANIC ORGANIC TICULTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIE DIS- PARTIC. WAT FLT CHROMO- BIOMASS TOTAL A, MENT, CHARGE, DIS- SOLVED TOTAL SUSP GRAPHIC ASH DRY PERI- SUS- SUS- \$ FI DATE (MG/L (MG/L FLUOROM WEIGHT WEIGHT PHYTON PHYDON PENDED TH AS C) AS N) (MG/MZ) G/SQ M G/SQ M (MG/M2) (MG/L) (T/DAY) .062 (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (703 | P.
E
M.
ER
N | | | 1) | | APR | 1) | | | 1) | # SOUTH-CENTRAL ALASKA #### 15273040 RABBIT CREEK AT PORCUPINE TRAIL ROAD NEAR ANCHORAGE | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------------|--|---|---|---|--|--|---|---|--|--|---|---|---| | JUL
05
05 | 0955
1855 | 9
9 | 9
9 | 17.2 | 56
58 | 10
10 | 3045
3045 | 1099
1006 | 68
63 | 7.1
7.7 | 6.0
6.7 | 738
738 | 11.4
11.1 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | | JUL
05
05 | 95
94 | <.004
<.004 | <.002
<.002 | <.007
<.007 | <.005
<.005 | <.010
<.010 | <.002
<.002 | <.020
<.020 | <.041
E.004 | <.005
<.005 | <.018
<.018 | <.003
<.003 | <.003
<.003 | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
EC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | | 05
05 | <.006
<.006 | <.005
<.005 | <.005
<.005 | <.002
<.002 | <.021
<.021 | <.009
<.009 | <.005
<.005 | <.002
<.002 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.013
<.013 | | DATE | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | | JUL
05
05 | <.006
<.006 | <.050
<.050 | <.002
<.002 | <.007
<.007 | <.007
<.007 | <.006
<.006 | <.002
<.002 | <.010
<.010 | <.006
<.006 | <.011
<.011 | <.010
<.010 | <.015
<.015 | <.004
<.004 | | DATE | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | | | | | | | | | JUL
05
05 | <.023
<.023 | <.011
<.011 | <.016
<.016 | <.034
<.034 | <.017
<.017 | <.005
<.005 | | | | | | | | # SOUTH-CENTRAL ALASKA #### 15273097 LITTLE RABBIT CREEK AT GOLDENVIEW DRIVE NEAR ANCHORAGE | DATE
JUL | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------------|--|---|--|---|--|--|---|---|--|--|---|---|---| | 05
05 | 1110
1925 | 9
9 | 9
9 | 13.0 | 16
11 | 10
10 | 3045
3045 | 1099
1006 | 113
112 | 8.1
8.1 | 7.5
8.0 | 738
738 | 10.6
10.5 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | | JUL
05
05 | 91
92 | <.004
<.004 | <.002 | <.007
<.007 | <.005
<.005 | <.010
<.010 | <.002 | <.020
<.020 | E.008
E.002 | <.005
<.005 | <.018
<.018 | <.003 | <.003 | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) |
2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | DIS-
SOLVED
(UG/L) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | DIS- | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | | JUL
05
05 | <.006
<.006 | <.005
<.005 | <.005
<.005 | <.002
<.002 | <.021
<.021 | <.009
<.009 | <.005
<.005 | <.002 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.013
<.013 | | DATE | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | DIS- | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | 0.7 U | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | | JUL
05
05 | <.006
<.006 | <.050
<.050 | <.002
<.002 | <.007
<.007 | <.007
<.007 | <.006
<.006 | <.002
<.002 | <.010
<.010 | <.006
<.006 | <.011
<.011 | <.010
<.010 | <.015
<.015 | <.004
<.004 | | DATE JUL 05 | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681)
<.005 | | | | | | | | | 05 | <.023 | <.011 | <.016 | <.034 | <.017 | <.005 | | | | | | | | #### 15273900 SOUTH FORK CAMPBELL CREEK AT CANYON MOUTH NEAR ANCHORAGE | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-------------|---|---|--|---|--|--------------------------------------|--|--|--|---|---|---|--| | JAN | | | | | | | | | | | | | | | 18
FEB | 1445 | 9 | 9 | 22 | 70 | 8010 | 1099 | 97 | 7.9 | 1.0 | .00 | | | | 09 | 1330 | 9 | 9 | 18 | 70 | 8010 | 1099 | 90 | 8.1 | .00 | .00 | 755 | 13.3 | | DATE
JAN | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | | | | | | | | | | | 18 | | E8 | E4 | <1 | | | | | | | | | | | FEB
09 | 92 | E2 | E1 | E3 | | | | | | | | | | ## SOUTH-CENTRAL ALASKA ### 15274796 SOUTH BRANCH OF SOUTH FORK CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | |-------------|--|---|--|---|--|--|---|---|--|---|--|--|--| | OCT
31 | 1440 | Н | 9 | 7.00 | 10.0 | 3.0 | 4.4 | 8010 | 8010 | 3003 | 113 | 7.9 | . 5 | | DATE | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ALUM-
INUM
BOT MAT
<63U WS
FIELD
PERCENT
(34790) | ANTI-
MONY
BOT MAT
<63U WS
FIELD
(UG/G)
(34795) | ARSENIC
BOT MAT
<63U WS
FIELD
(UG/G)
(34800) | BARIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34805) | BERYL-
LIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34810) | BISMUTH
BOT MAT
<180UWS
FIELD
(UG/G)
(34816) | CADMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34825) | CHRO-
MIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34840) | COPPER
BOT MAT
<63U WS
FIELD
(UG/G)
(34850) | | OCT
31 | 1.5 | 739 | 13.9 | 102 | 6.7 | .8 | 17 | 550 | 1.0 | <1 | .2 | 200 | 42 | | DATE | CALCIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34830) | COBALT
BOT MAT
<63U WS
FIELD
(UG/G)
(34845) | CERIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34835) | EURO-
PIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34855) | GOLD
BOT MAT
<63U WS
FIELD
(UG/G)
(34870) | GALLIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34860) | HOLMIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34875) | IRON
BOT MAT
<63U WS
FIELD
PERCENT
(34880) | LANTHA-
NUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34885) | LEAD
BOT MAT
<63U WS
FIELD
(UG/G)
(34890) | LITHIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34895) | MAGNE-
SIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34900) | MANGA-
NESE
BOT MAT
<63U WS
FIELD
(UG/G)
(34905) | | OCT
31 | 2.1 | 20 | 34 | 1 | <1 | 15 | <1 | 4.6 | 18 | 12 | 25 | 1.4 | 1500 | | | | 20 | 24 | Τ. | < ± | 13 | | | | | 37 | | | | DATE | MERCURY
BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | MOLYB-
DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | NEODYM-
IUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34920) | NICKEL
BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | NIOBIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHOS-
PHORUS
BOT MAT
<63U WS
FIELD
PERCENT
(34935) | SCAN-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | SELE-
NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | SILVER
BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | SODIUM
BOT MAT
<63U WS
FIELD
PERCENT
(34960) | STRON-
TIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34965) | SULFUR
BOT MAT
<63U WS
FIELD
PERCENT
(34970) | TANTA-
LUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34975) | | DATE OCT 31 | BOT MAT
<63U WS
FIELD
(UG/G) | MOLYB-
DENUM
BOT MAT
<63U WS
FIELD
(UG/G) | NEODYM-
IUM
BOT MAT
<63U WS
FIELD
(UG/G) | NICKEL
BOT MAT
<63U WS
FIELD
(UG/G) | NIOBIUM
BOT MAT
<63U WS
FIELD
(UG/G) | PHOS-
PHORUS
BOT MAT
<63U WS
FIELD
PERCENT | SCAN-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
(UG/G) | BOT MAT
<63U WS
FIELD
PERCENT | STRON-
TIUM
BOT MAT
<63U WS
FIELD
(UG/G) | SULFUR
BOT MAT
<63U WS
FIELD
PERCENT | LUM
BOT MAT
<63U WS
FIELD
(UG/G) | | OCT | BOT MAT
<63U WS
FIELD
(UG/G)
(34910) | MOLYB-
DENUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34915) | NEODYM-
IUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34920) | NICKEL
BOT MAT
<63U WS
FIELD
(UG/G)
(34925) | NIOBIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34930) | PHOS-
PHORUS
BOT MAT
<63U
WS
FIELD
PERCENT
(34935) | SCAN-
DIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34945) | NIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34950) | BOT MAT
<63U WS
FIELD
(UG/G)
(34955) | BOT MAT
<63U WS
FIELD
PERCENT
(34960) | STRON-
TIUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34965) | SULFUR
BOT MAT
<63U WS
FIELD
PERCENT
(34970) | LUM
BOT MAT
<63U WS
FIELD
(UG/G)
(34975) | ## SOUTH-CENTRAL ALASKA ### 15283550 MOOSE CREEK ABOVE WISHBONE HILL NEAR SUTTON | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | SAM-
PLING
METHOD,
CODES
(82398) | STREAM
WIDTH
(FT)
(00004) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|--|---|--|---|--|--|---|--|--|---|--|---|---| | MAR
27 | 1030 | 9 | 9 | 8.7 | 5 | 10 | 28.0 | 713 | 12.9 | 95 | 7.8 | 129 | . 3 | | JUN
19 | 1100 | 9 | 9 | 254 | | 10 | | 737 | 12.4 | 102 | 7.1 | 51 | 5.5 | | 19 | 1100 | | | 234 | | 10 | | 737 | 12.4 | 102 | 7.1 | 31 | 3.3 | | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC
WATER
UNFLTRD
FET
FIELD
MG/L AS
CACO3
(00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | MAR
27 | 52 | 17.9 | 1.82 | .52 | 4.6 | 32 | 33 | 38 | 6.5 | <.2 | 6.2 | 15.6 | 82 | | JUN
19 | 22 | 7.42 | .725 | . 29 | .8 | 18 | 19 | 23 | . 4 | < . 2 | 3.5 | 4.6 | 43 | | 17 | 22 | 7.12 | . 723 | .25 | .0 | 10 | 10 | 23 | | 1.2 | 3.3 | 1.0 | 15 | | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | MAR
27 | 73 | .014 | E.06 | E.05 | .328 | .001 | <.022 | <.006 | E.005 | E.002 | < . 1 | <.1 | .36 | | JUN | | | | | | | | | | | | · | | | 19 | 29 | .002 | .12 | <.08 | .076 | <.001 | <.022 | <.006 | <.007 | .019 | . 2 | | .57 | | DATE | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | CYANIDE
TOTAL
(MG/L
AS CN)
(00720) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | MAR
27 | <.1 | <28 | E1 | 33.3 | <2.50 | <.11 | <1 | <1.8 | <.01 | <10 | <10 | <1 | <3.2 | | JUN
19 | | 212 | E1 | 22.3 | <2.50 | <.10 | <1 | 1.2 | <.01 | <10 | 220 | <1 | <3.0 | | 17 | | 212 | ĒΪ | 44.3 | \4.5U | ·.10 | ~ ± | 1.4 | ∼. ∪⊥ | /T0 | 220 | ν 1 | \3. 0 | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | PURPOSE
SITE
VISIT,
(CODE)
(50280) | SAMPLER
TYPE
(CODE)
(84164) | | | | | MAR
27 | <3 | <.14 | <2 | <2.6 | < .43 | <31 | <1 | | 1099 | 3045 | | | | | JUN
19 | 5 | .01 | <2 | <3.0 | <.40 | <31 | 17 | 12 | 1099 | 3045 | | | | | | | | | | | | | | | | | | | ### SOUTHWEST ALASKA ### 604504152514600 TLIKAKILA RIVER NEAR SUMMIT LAKE NEAR PORT ALSWORTH | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |----------------|---|--|---|--|--|---|--|--|---|--|---|---|---| | SEP 2001
17 | 1530 | 9 | 9 | 739 | 12.1 | 100 | 7.2 | 58 | 6.0 | 22 | 8.24 | .438 | 1.44 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | | SEP
17 | . 8 | 19 | 20 | 25 | .3 | <.2 | 3.2 | 5.1 | 29 | 32 | 40 | 12.0 | -146 | | DATE | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | | | | | | | | | | | | | | SEP
17 | -19.17 | | | | | | | | | | | | | ### 604529152520600 GLACIER FORK NEAR SUMMIT LAKE NEAR PORT ALSWORTH | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) |
PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |-----------|---|--|---|--|--|---|--|--|---|--|---|---|---| | SEP
17 | 1600 | 9 | 9 | 739 | 12.2 | 99 | 7.4 | 48 | 5.3 | 23 | 8.37 | .469 | 1.33 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | | SEP
17 | .7 | 17 | 18 | 22 | .2 | <.2 | 2.8 | 6.9 | 56 | 32 | 30 | 3.3 | -147 | | DATE | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | | | | | | | | | | | | | | SEP
17 | -19.59 | | | | | | | | | | | | | ### 604011153081400 TLIKAKILA RIVER ABOVE NORTH FORK TLIKAKILA RIVER NEAR PORT ALSWORTH | | | | | BARO- | | OXYGEN, | PH | | | | | | | |------|------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | METRIC | | DIS- | WATER | SPE- | | HARD- | | MAGNE- | POTAS- | | | | | | PRES- | | SOLVED | WHOLE | CIFIC | | NESS | CALCIUM | SIUM, | SIUM, | | | | | | SURE | OXYGEN, | (PER- | FIELD | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | | | | MEDIUM | SAMPLE | (MM | DIS- | CENT | (STAND- | DUCT- | ATURE | (MG/L | SOLVED | SOLVED | SOLVED | | DATE | TIME | CODE | TYPE | OF | SOLVED | SATUR- | ARD | ANCE | WATER | AS | (MG/L | (MG/L | (MG/L | | | | | | HG) | (MG/L) | ATION) | UNITS) | (US/CM) | (DEG C) | CACO3) | AS CA) | AS MG) | AS K) | | | | | | (00025) | (00300) | (00301) | (00400) | (00095) | (00010) | (00900) | (00915) | (00925) | (00935) | | | | | | | | | | | | | | | | | SEP | | _ | _ | | | | | | | | | | | | 17 | 1245 | 9 | 9 | 744 | 12.7 | 101 | 7.0 | 47 | 4.7 | 20 | 7.32 | .486 | 1.23 | ### SOUTHWEST ALASKA ### 604011153081400 TLIKAKILA RIVER ABOVE NORTH FORK TLIKAKILA RIVER NEAR PORT ALSWORTH--Continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | |-----------|---|--|---|--|--|---|--|--|---|--|---|---|---| | SEP
17 | . 8 | 17 | 18 | 22 | . 4 | <.2 | 3.7 | 4.9 | 30 | 30 | 30 | 5.8 | -146 | | DATE | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | | | | | | | | | | | | | | SEP 17 | -19.35 | | | | | | | | | | | | | ### 604015153082300 NORTH FORK TLIKAKILA RIVER AT MOUTH NEAR PORT ALSWORTH | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |-------------------|---|-----------------------------|-------------------------|---|--|---|--|--|---|--|---|---|--| | SEP
17 | 1220 | 9 | 9 | 745 | 12.6 | 100 | 6.8 | 45 | 4.8 | 18 | 6.46 | .561 | 1.01 | | | | ALKA- | ANC | BICAR- | | | | | SOLIDS, | SOLIDS, | | | H-2 / | | | SODIUM,
DIS- | LINITY
WAT DIS
TOT IT | WATER
UNFLTRD
FET | BONATE
WATER
DIS IT | CHLO-
RIDE,
DIS- | FLUO-
RIDE,
DIS- | SILICA,
DIS-
SOLVED | SULFATE
DIS- | RESIDUE
AT 180
DEG. C | SUM OF
CONSTI-
TUENTS, | IRON,
DIS- | MANGA-
NESE,
DIS- | H-1
STABLE
ISOTOPE | | DATE | SOLVED
(MG/L | FIELD
MG/L AS | FIELD
MG/L AS | FIELD
MG/L AS | SOLVED
(MG/L | SOLVED
(MG/L | (MG/L
AS | SOLVED
(MG/L | DIS-
SOLVED | DIS-
SOLVED | SOLVED
(UG/L | SOLVED
(UG/L | RATIO
PER | | | AS NA)
(00930) | CACO3
(39086) | CACO3
(00410) | HCO3
(00453) | AS CL)
(00940) | AS F)
(00950) | SIO2)
(00955) | AS SO4)
(00945) | (MG/L)
(70300) | (MG/L)
(70301) | AS FE)
(01046) | AS MN)
(01056) | MIL
(82082) | | SEP | | | | | | | | | | | | | | | 17 | .7 | 16 | 17 | 21 | .3 | <.2 | 3.6 | 4.7 | 29 | 28 | 30 | 3.2 | -147 | | DATE
SEP
17 | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | | | | | | | | | | | | | ### 603205153315900 TLIKAKILA RIVER 12 MILE ABOVE MOUTH NEAR PORT ALSWORTH | | | | | BARO- | | OXYGEN, | PH | | | | | | | |------|------|--------|--------|-----------------|---------|----------------|----------------|---------------|---------|---------------|---------|-----------------|-----------------| | | | | | METRIC
PRES- | | DIS-
SOLVED | WATER
WHOLE | SPE-
CIFIC | | HARD-
NESS | CALCIUM | MAGNE-
SIUM, | POTAS-
SIUM, | | | | | | SURE | OXYGEN, | (PER- | FIELD | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | | | | MEDIUM | SAMPLE | (MM | DIS- | CENT | (STAND- | DUCT- | ATURE | (MG/L | SOLVED | SOLVED | SOLVED | | DATE | TIME | CODE | TYPE | OF | SOLVED | SATUR- | ARD | ANCE | WATER | AS | (MG/L | (MG/L | (MG/L | | | | | | HG) | (MG/L) | ATION) | UNITS) | (US/CM) | (DEG C) | CACO3) | AS CA) | AS MG) | AS K) | | | | | | (00025) | (00300) | (00301) | (00400) | (00095) | (00010) | (00900) | (00915) | (00925) | (00935) | | SEP | | | | | | | | | | | | | | | 17 | 1320 | 9 | 9 | 754 | 12.3 | 99 | 7.1 | 54 | 5.8 | 22 | 7.78 | .580 | 1.24 | ### SOUTHWEST ALASKA ### 603205153315900 TLIKAKILA RIVER 12 MILE ABOVE MOUTH NEAR PORT ALSWORTH--Continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) |
CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | |-----------|---|--|---|--|---|---|--|--|---|--|---|---|---| | SEP
17 | . 9 | 18 | 19 | 23 | .5 | <.2 | 4.3 | 5.1 | 35 | 32 | 30 | 4.9 | -144 | | DATE | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | | | | | | | | | | | | | | SEP
17 | -19.18 | | | | | | | | | | | | | ### 15297970 TLIKAKILA RIVER AT MOUTH NEAR PORT ALSWORTH | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | H-2 /
H-1
STABLE
ISOTOPE
RATIO
PER
MIL
(82082) | O-18 /
O-16
STABLE
ISOTOPE
RATIO
PER
MIL
(82085) | |-----------|------|----------------|----------------|---|--|---|--|--|---|---|---| | SEP
17 | 1400 | 9 | 9 | 757 | 12.1 | 101 | 7.1 | 60 | 7.1 | -142 | -19.03 | ### 15300700 ALAGNAK RIVER BELOW NONVIANUK RIVER NEAR IGIUGIG | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(00004) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |----------|--|---|--|---|--|---|---|--|--|--|--|---|---| | FEB 27 | 1520 | 0 | 0 | 251 | | 1420 | 20 | 3044 | 43 | 7. 2 | _ | | 715 | | 27 | 1530
1542 | 9
9 | 9
9 | 251 | 12.0 | 1420 | 20 | 3044 | 43 | 7.3
7.1 | .5 | .5 | 715
715 | | 27 | 1542 | 9 | 9 | | 68.0 | | | | 42 | 7.1 | | 1.0 | 715 | | 27 | 1544 | 9 | 9 | | 77.0 | | | | 39 | 7.2 | | .5 | 715 | | 27 | 1548 | 9 | 9 | | 116.0 | | | | 40 | 7.2 | | 1.0 | 715 | | 27 | 1550 | 9 | 9 | | 154.0 | | | | 40 | 7.2 | | 1.0 | | | 27 | 1552 | 9 | 9 | | 231.0 | | | | 40 | 7.3 | | .5 | 715 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | FEB | | | | | | | | | | | | | | | 27 | | | 15 | 4.78 | .829 | 2.0 | 12 | .30 | 14 | 11 | 5.7 | 1.5 | <.2 | | 27 | 14.3 | 106 | | | | | | | | | | | | | 27
27 | 14.2 | 106 | | | | | | | | | | | | | 27 | 14.9 | 112 | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | 14.2 | 105 | | | | | | | | | | | | ### SOUTHWEST ALASKA ### 15300700 ALAGNAK RIVER BELOW NONVIANUK RIVER NEAR IGIUGIG--Continued | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |----------|---|---|--|---|--|--|---|--|---|--|--|---|---| | FEB | | | | | | | | | | | | | | | 27 | 4.3 | 22 | 26 | .001 | .028 | .003 | .08 | .11 | E.003 | <.006 | <.007 | M | <3.2 | | 27
27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | | | | | | | | | | FEB | 0.4 | . 0 | - | 2.0 | | | | | | | | | | | 27
27 | .84 | <.2 | 1 | 3.8 | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | ### 15300730 ALAGNAK RIVER 27 MILES ABOVE MOUTH NEAR MCCORMICK NEAR LEVELOCK | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SAM-
PLING
METHOD,
CODES | SAMPLER
TYPE
(CODE) | TEMPER-
ATURE
AIR
(DEG C) | TEMPER-
ATURE
WATER
(DEG C) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |--------|--|--|---|--|--
--|--|--|---|---|---|--|---| | | | | | (00004) | (00061) | (82398) | (84164) | (00020) | (00010) | (00025) | (00300) | (00900) | (00915) | | FEB 28 | 1540 | 9 | 9 | 163 | 1420 | 20 | 3044 | -4.5 | .00 | 739 | 12.5 | 16 | 4.54 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | FEB 28 | 1.05 | 2.2 | 16 | . 34 | 18 | 15 | 5.3 | 1.9 | <.2 | 6.0 | 31 | 30 | <.001 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | FEB 28 | .011 | <.002 | .10 | <.10 | .014 | E.004 | <.007 | 20 | 8.4 | .91 | .3 | 9 | 35 | ## YUKON ALASKA ### 15389000 PORCUPINE RIVER NEAR FORT YUKON | DATE | TIME | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | | | | | | |--|--|---|--|---|---|---|---|--|--|---|--|---|--| | | | (72103) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | | | | | | JUN 30 30 30 30 JUL | 1726
1728
1730
1737
1739 | 160.0
330.0
525.0
725.0
940.0 | 174
175
174
173
173 | 7.2
7.1
7.2
7.3
7.3 | 16.5
16.5
16.5
16.5 | 734
734
734
734
734 | 8.9
9.1
8.8
8.8
8.8 | 95
97
94
94
95 | | | | | | | 16
16
16
16 | 1446
1448
1449
1450
1451 | 970.0
744.0
532.0
346.0
163.0 | 154
152
154
155
155 | 7.3
7.3
7.3
7.3
7.3 | 16.0
16.0
16.0
16.0 | 752
752
752
752
752 | 9.0
8.9
9.0
9.0
8.9 | 92
92
92
92
92 | | | | | | | 07
07
07
07
27
27
27
27 | 1441
1443
1444
1445
1446
1538
1542
1544
1546 | 929.0
718.0
520.0
255.0
183.0
1025
850.0
664.0
483.0
276.0 | 244
244
244
244
244
223
224
225
225 | 8.0
7.9
7.9
8.0
8.0
7.7
7.6
7.6
7.6 | 13.2
13.1
13.1
13.1
11.5
11.5
11.5
11.5 |

752
752
752
752
752 | 10.5
10.5
10.6
10.5
10.4
10.2
10.2
10.2 |

95
95
95
95
96 | | | | | | | SEP
17
17
17
17 | 1544
1545
1547
1548
1549 | 268.0
465.0
655.0
840.0 | 183
182
183
182
181 | 7.7
7.7
7.7
7.7
7.7 | 7.0
7.0
7.0
7.0
7.0 | 756
756
756
756
756 | 11.6
11.6
11.6
11.6 | 96
96
96
96
96 | | | | | | | DATE | TIME | MEDIUM
CODE | SAMPLE
TYPE | STREAM
WIDTH
(FT)
(0004) | GAGE
HEIGHT
(FEET)
(00065) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | SAMPLER
TYPE
(CODE)
(84164) | QUALITY
ASSUR-
ANCE
DATA
INDICA-
TOR
CODE
(99111) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER -
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | MAR | | | | | | | | | | | | | | | 29
JUN | 1630 | 9 | 9 | | | 1090 | 20 | 3044 | 30 | 376 | 7.6 | -21.0 | .00 | | 30
JUL | 1600 | 9 | 9 | 1210 | 14.05 | 20500 | 20 | 3055 | 100 | 173 | 7.7 | 24.0 | 16.5 | | 16
AUG | 1400 | 9 | 9 | 1250 | 14.45 | 24200 | 20 | 3055 | 30 | 154 | 7.3 | 19.5 | 16.0 | | 07
27 | 1330
1500 | 9
9 | 7
9 | 1160
1190 | 13.44 | 16700
18800 | 20
20 | 3055
3055 | 100
30 | 244
224 | 7.9
7.6 | 14.0 | 13.1
11.2 | | SEP
17 | 1320 | 9 | 9 | 1200 | 13.58 | 18900 | 20 | 3055 | 30 | 182 | 7.7 | | 7.2 | | DATE | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV
ABSORB-
ANCE
254 NM,
WTR FLT
(UNITS
/CM)
(50624) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | MAR | _ | | | | 950 | | 2.5 | 0.00 | 50.5 | 10 - | | | | | 29
JUN | . 5 | 3.9 | .047 | .034 | 758 | 5.2 | 36 | 200 | 58.9 | 12.1 | 4.5 | 141 | .57 | | JUL | | 17 | .377 | .276 | 734 | 8.9 | 95 | 86 | 26.1 | 5.15 | 2.2 | 58 | .54 | | 16 | | | | | | | | | | | | | | | AUG | | 18 | | | 752 | 9.0 | 92 | 78 | 22.8 | 5.00 | 2.0 | 50 | .48 | | |
 | 18
10
14 |
.185
.237 |
.135
.173 | 752

752 | 9.0
10.5
10.2 | 92

94 | 78
120
110 | 22.8
33.7
31.8 | 5.00
7.72
7.13 | 2.0
2.9
2.3 | 50
74
71 | .48
.52
.42 | ## YUKON ALASKA ### 15389000 PORCUPINE RIVER NEAR FORT YUKON--Continued | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | |------------------|---|---|--|--|--|---|---|---|--
--|--|--|---| | MAR
29 | 171 | | 141 | 35.1 | 4.2 | <.2 | 4.1 | 233 | 205 | <.001 | .204 | .008 | E.07 | | JUN
30 | 68 | .0 | 55 | 23.0 | .8 | E.1 | 3.2 | 131 | 95 | .002 | .017 | .003 | .36 | | JUL
16 | 59 | .0 | 49 | 22.9 | .6 | <.2 | 3.6 | 125 | 87 | .001 | .014 | .005 | .42 | | AUG
07
27 | 89
84 | .0 | 73
69 | 44.6
39.0 | 1.1 | <.2
E.1 | 3.2
3.6 | 144
168 | 138
127 | .001 | .013 | <.002 | .22 | | SEP
17 | 70 | .0 | 58 | 33.2 | .8 | <.2 | 4.6 | 142 | 109 | .002 | .029 | .007 | .34 | | DATE | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | NITRO-
GEN,
TOTAL,
SEDIMNT
SUSP,
(WEIGHT
PERCNT
(62845) | PHOS-
PHORUS
SEDI-
MENT
SUSP.
PERCENT
(30292) | ALUM-
INUM
SED, SUS
PERCENT
(30221) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | AN-
TIMONY
SED.
SUSP.
(UG/G)
(29816) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
SED.
SUSP.
(UG/G)
(29818) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM
SED.
SUSP.
(UG/G)
(29820) | | MAR
29 | E.08 | E.003 | <.006 | <.007 | | | | 2 | | .05 | | .2 | | | JUN
30
JUL | .28 | .037 | .007 | <.007 | | .11 | 8.6 | 32 | 1.8 | .13 | 17 | . 4 | 1000 | | 16
AUG | .32 | .030 | .007 | <.007 | | .12 | 7.8 | 49 | 1.7 | .11 | 17 | .4 | 1200 | | 07
27 | .18 | .016
.024 | <.006
E.004 | <.007
<.007 | | .12 | 7.6
7.9 | 24
25 | 1.8 | .09 | 26
20 | .3 | 1100
1000 | | SEP
17 | .32 | .032 | E.005 | <.007 | .44 | .12 | 8.4 | 103 | 2.0 | .10 | 20 | .3 | 1500 | | DATE | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM
SED.
SUSP.
(UG/G)
(29822) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
SED.
SUSP.
(UG/G)
(29826) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM
SED.
SUSP.
(UG/G)
(29829) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT
SEDI-
MENT
SUSP.
(UG/G)
(35031) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
SED.
SUSP.
(UG/G)
(29832) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON
SEDI-
MENT
SUSP.
PERCENT
(30269) | | MAR
29 | 90.9 | | <.06 | 10 | | <.04 | | <.8 | | .12 | | .7 | | | JUN
30
JUL | 53.8 | 2 | <.06 | E6 | .8 | <.04 | 130 | E.4 | 19 | .09 | 34 | 2.4 | 4.3 | | 16
AUG | 57.5 | 2 | <.06 | 7 | .6 | E.03 | 160 | E.6 | 22 | .09 | 37 | 2.8 | 4.5 | | 07
27 | 66.5
57.5 | 2
2 | <.06
<.06 | 9
E7 | 1.4 | <.04
<.04 | 170
170 | <.8
E.6 | 26
21 | .08 | 39
33 | 1.9
1.6 | 4.9
4.8 | | SEP
17 | 51.5 | 3 | <.06 | E4 | 1.6 | E.03 | 140 | E.6 | 25 | .15 | 41 | 2.9 | 5.2 | | DATE | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD
SED.
SUSP.
(UG/G)
(29836) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
SEDI-
MENT
SUSP.
(UG/G)
(35050) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MAN-
GANESE
SED.
SUSP.
(UG/G)
(29839) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
SED.
SUSP.
(UG/G)
(29841) | MOLYB-
DENUM
SED.
SUSP.
(UG/G)
(29843) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL
SED.
SUSP.
(UG/G)
(29845) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM
SED.
SUSP.
(UG/G)
(29847) | | MAR
29 | 10 | | <.08 | | 6.2 | | 10.9 | | | .6 | | .69 | | | JUN
30 | | | .22 | 65 | 3.1 | 940 | 2.7 | .22 | 4 | .4 | 81 | 2.04 | 1 | | | 190 | 22 | | 0.5 | | | | | | | | | | | JUL
16 | 190
220 | 26 | .10 | 73 | 2.9 | 890 | 2.7 | .19 | 7 | .3 | 100 | 2.36 | 2 | | 16
AUG
07 | 220
70 | 26
37 | .10
E.06 | 73
59 | 2.9
4.1 | 890
1300 | 2.4 | .16 | 8 | .5 | 110 | 2.36 | 2 | | 16
AUG | 220 | 26 | .10 | 73 | 2.9 | 890 | | | | | | 2.36 | 2 | ## YUKON ALASKA ### 15389000 PORCUPINE RIVER NEAR FORT YUKON--Continued | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER
SED.
SUSP.
(UG/G)
(29850) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM
SEDI-
MENT
SUSP.
(UG/G)
(35040) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM
SUS SED
(UG/G)
(49955) | TITA-
NIUM
SEDI-
MENT
SUSP.
PERCENT
(30317) | VANA-
DIUM
SED.
SUSP.
(UG/G)
(29853) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC
SED.
SUSP.
(UG/G)
(29855) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
SEDI-
MENT
SUSP.
(UG/G)
(35046) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |-----------------|---|---|--|--|---|--|---|---|---|---|--|--|---| | MAR | | | | | | | | | | | | | | | 29
JUN | . 4 | | <1.0 | | 155 | | | | 1.0 | | 2 | | .74 | | 30
JUL | <.3 < | :1 | <1.0 | 150 | 76.7 | <100 | .470 | 200 | .5 | 240 | 1 | <100 | .32 | | 16
AUG | <.3 | 1 | <1.0 | 140 | 73.8 | <100 | .470 | 220 | .3 | 310 | 2 | <100 | .24 | | 07
27
SEP | | :1
:1 | <1.0
<1.0 | 140
150 | 127
104 | <100
<100 | .470
.470 | 220
210 | E.2 | 340
250 | 1 2 | <100
<100 | .43 | | 17 | E.2 | <.500000 | <1.0 | 160 | 82.2 | <50 | .460 | 260 | .5 | 480 | 3 | < 50 | .29 | | DATE | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON
SED.
SUSP.
PERCENT
(30244) | CARBON,
ORGANIC
SUS-
PENDED,
TOTAL
PERCENT
(50465) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | SEDI-
MENT
SUSP.,
FLOW-
THROUGH
CENTRIF
(MG/L)
(50279) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | MAR
29 | 1.9 | <.1 | <.1 | <.1 | | | <.022 | | <1 | | | | | | JUN
30 | 11 | <.1 | . 9 | . 9 | 4.1 | | .060 | 21 | 24 | 1330 | 94 | | | | JUL
16 | 13 | <.1 | . 6 | . 6 | 4.2 | | .022 | 21 | 25 | 1630 | 95 | | | | AUG | | | | | | | | | | | | | | | 07
27 | 6.0
6.8 | <.1
<.1 | 1.0 | 1.0 | | | .133
.052 | 11
14 | 12
15 | 541
761 | 97
94 | | | | SEP
17 | 12 | <.1 | 1.2 | 1.2 | 5.0 | 4.7 | .060 | 18 | 26 | 1330 | 97 | | | Figure 3. Locations of ground-water observation wells. Location of Mendenhall Valley wells. #### JUNEAU ### 582125134342401. Local number, CD04006631DBAD1022. LOCATION.--Lat $58^{\circ}21'25$ ", long $134^{\circ}34'24$ ", in $NE^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on Juneau International Airport property in Jordan Creek streambed, about 50 ft downstream from culvert under Crest Street, and 300 ft south of intersection of Crest Street and Yandukin Drive, Juneau. Owner: Juneau International Airport. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 3.06 ft, screened 0.06 to 3.06 ft, well point driven into streambed. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 12.32 ft above sea level (determined by levels survey). Measuring point: top of steel casing 3.94 ft above land-surface datum. REMARKS.--Observation well installed by U.S. Geological Survey, designated as Duck Creek #19 (Airport Well). Well is in a stream channel and is intermittently flooded. PERIOD OF RECORD.-June 1999 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 1.83 ft above land-surface datum, April 10, 2001; lowest measured, 1.63 ft above land-surface datum, June 29, 1999. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | |--------|-------| | DATE | LEVEL | | | | | APR 10 | -1.83 | Minus sign indicates that the water level was above land-surface datum. ### 582131134343101. Local number, CD04006631ACDC2002. LOCATION.--Lat $58^{\circ}21'31''$, long $134^{\circ}34'31''$, in $SE^{1}_{/4}$
$SW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 31, T. 40 S., R 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek stream channel, 30 ft upstream from culvert under Yandukin Drive, and 300 ft west of the intersection of Yandukin Drive and Creek Street, Juneau. Owner: City and Borough of Juneau. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 3.15 ft, screened 0.15 to 3.15 ft, well point driven into streambed. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 15.72 ft above sea level (determined by levels survey). Measuring point: top of steel casing 3.85 ft above land-surface datum. REMARKS.--Observation well installed by U.S. Geological Survey, designated as Duck Creek #20 (Yandunkin Well). Well is in a stream channel and is intermittently flooded. PERIOD OF RECORD.-June 1999 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.37 ft above land-surface datum, June 29, 1999; lowest measured, 0.35 ft below land-surface datum, March 14, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | |--------|----------------| | APR 10 | -1 35 | Minus sign indicates that the water level was above land-surface datum. #### JUNEAU-CONTINUED ### 582136134344802. Local number, CD04006631ACBC1015. LOCATION.--Lat $58^{\circ}21'36''$, long $134^{\circ}34'48''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located about 20 ft southeast of a trail running between the intersection of Jordan Avenue and Teal Street, about 50 ft south of Teal Street, and about 20 ft northeast of a footbridge over Jordan Creek, Juneau. Owner: City and Borough of Juneau. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 8 ft, screened 6 to 8 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 19.84 ft above sea level (determined by levels survey). Measuring point: top of steel casing, 0.6 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #2 (Jordan Avenue Well). Area near well is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.1 ft above land-surface datum, July 13, 1997; lowest measured, 3.28 ft below land-surface datum, March 12, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 1.05 | APR 12 | 2.50 | | NOV 4 | 1.22 | APR 24 | 2.79 | | APR 10 | 2.47 | AUG 15 | 2.41 | ### 582146134351701. Local number, CD04006631BBDD1016. LOCATION.--Lat $58^{\circ}21'46''$, long $134^{\circ}35'17''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near the left bank of Duck Creek, about 10 ft northwest of the intersection of Cessna Drive and Alex Holden Way, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2 in., depth 12 ft, screened 10 to 12 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 25.35 ft above sea level (determined by levels survey). Measuring point: top of casing 0.88 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #3 (Cessna Drive Well). PERIOD OF RECORD .-- June 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.9 ft below land-surface datum, July 13, 1997; lowest measured, 10.06 ft below land-surface datum, March 21, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------| | OCT 27 | 8.14 | APR 12 | 9.33 | | NOV 4 | 8.24 | 24 | 9.86 | | APR 10 | 9.27 | AUG 15 | 8.94 | #### JUNEAU-CONTINUED ### 582147134351401. Local number, CD04006631BBDB1017. LOCATION.--Lat $58^{\circ}21'47''$, long $134^{\circ}35'14''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near the right bank of Duck Creek, about 70 ft downstream of the Berners Avenue crossing, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2 in., depth 8.8 ft, screened 6.8 to 8.8 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 19.52 ft above sea level (determined by levels survey). Measuring point: Top of PVC pipe casing 1.9 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #4 (Berners Avenue Well). Water from well was sampled for water quality on September 5, 1997, January 29, 1998, and September 3, 1998. PERIOD OF RECORD.--June 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, September 3, 1998; lowest measured, 4.12 ft below land-surface datum, March 21, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 1.60 | APR 12 | 3.41 | | NOV 4 | 1.80 | APR 24 | 3.92 | | APR 10 | 3.25 | AUG 14 | 2.75 | ### 582150134344501. Local number, CD04006631BAAD1021. LOCATION.--Lat $58^{\circ}21'50''$, long $134^{\circ}34'45''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek channel, near right bank, 10 ft upstream from footbridge, about 200 ft downstream from Trout Street bridge, Juneau. Owner: City and Borough of Juneau. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 6 ft, screened 3 to 6 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel. DATUM.--Elevation of land-surface datum is 23.65 ft above sea level (determined by levels survey). Measuring point: Top of steel pipe casing 1.00 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #21 (Trout Street Well). PERIOD OF RECORD.--March 2000 to current year. EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 4.61 ft below land-surface datum, April 12, 2001; lowest measured, dry, March 14, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | |--------|-------| | DATE | LEVEL | | APR 12 | 4 61 | #### JUNEAU-CONTINUED ### 582154134350501. Local number, CD04006630CDCB1027. LOCATION.--Lat $58^{\circ}21'54''$, long $134^{\circ}35'05''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is about 15 ft east of a tributary to Duck Creek and about 1,200 ft northwest of Jordan Creek, 90 ft southwest of the First Church of God on Ka-See-An Drive, Juneau. Owner: First Church of God. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 17.5 ft, screened 15.5 to 17.5 ft using a sandpoint. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 26.30 ft above sea level (determined by levels survey). Measuring point: top of casing 2.05 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #5 (Ka-See-An Drive Church Well). PERIOD OF RECORD.--June 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.41 ft below land-surface datum, October 23, 1999; lowest measured, 9.62 ft below land-surface datum, March 12, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 6.06 | APR 12 | 8.67 | | NOV 4 | 6.31 | APR 24 | 9.45 | | APR 10 | 8.60 | AUG 15 | 8.05 | #### 582156134351701. Local number, CD04006631BBBA1018. LOCATION.--Lat $58^{\circ}21'56''$, long $134^{\circ}35'17''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel about 90 ft downstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 11 ft, screened 9 to 11 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 18.48 ft above sea level (determined by levels survey). Measuring point: top of casing 1.86 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological
Survey, designated as Duck Creek #6 (FAA Downstream Well). Well is in stream channel and is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since May 1997; lowest measured, 3.62 ft below land-surface datum, March 13, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | OCT 27 | X | APR 12 | 2.55 | | NOV 4 | X | APR 24 | 3.37 | | APR 10 | 2.54 | | | X surface-water affected, stream stage was higher than top of well casing #### JUNEAU-CONTINUED ### 582158134344101. Local number, CD04006630DCCC1034. LOCATION.--Lat $58^{\circ}21'58''$, long $134^{\circ}34'41''$, in $SW^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek channel about 3 ft downstream from downstream footbridge crossing about 50 ft downstream of Egan Expressway, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 5.4 ft, screened 2.4 to 5.4 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel. DATUM.-Elevation of land-surface datum is 23.78 ft above sea level (determined by levels survey). Measuring point: top of casing 1.60 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #22. Well is in stream channel and is intermittently flooded. PERIOD OF RECORD.--August 1999 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since August 1999; lowest measured, dry, March 14, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR AUGUST 1999 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |----------------|----------------|--------------|----------------| | *DEC 30, 1999 | 1.13 | APR 10, 2001 | 3.50 | | * MAR 14, 2000 | D | APR 12, 2001 | 3.58 | ^{*} Not previously published. D Dry ### 582158134352001. Local number, CD04006630CCCD2017. LOCATION.--Lat $58^{\circ}21'58''$, long $134^{\circ}35'20''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel, 20 ft upstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AOUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 12 ft, screened 10 to 12 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 19.62 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.2 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #7 (FAA Upstream Well). Well is in stream channel and is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during many periods since 1997; lowest measured, 3.63 ft below land-surface datum, July 2, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------| | OCT 27 | X | APR 12 | 1.81 | | NOV 4 | X | APR 24 | 2.94 | | APR 10 | 1.62 | | | X surface-water affected, stream stage was higher than top of well casing #### JUNEAU-CONTINUED ### 582203134351601. Local number, CD04006630CCDB1028. LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'16''$, in $SE^{1}_{/4}SW^{1}_{/4}SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 quad), Hydrologic Unit 19010301. Well is located on left bank of Duck Creek about 55 ft downstream from Del Rae Road crossing, 25 ft from Mendenhall Loop Road, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.5 in., depth 14 ft, screened 12 to 14 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 23.10 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.56 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #10 (Del Rae Road Well). PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was above top of well casing on December 26, 1999; lowest measured, 7.59 ft below land-surface datum, March 12, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |-----------------|----------------|--------|----------------| | OCT 27
NOV 4 | 1.93
2.15 | APR 10 | 5.90 | #### 582203134351701. Local number, CD04006630CCBD3015. LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'17''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ scc. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on left bank of Duck Creek, 30 ft downstream from Del Rae Road crossing, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.5 in., depth 11 ft, slotted 9 to 11 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 22.14 ft above sea level (determined by levels survey). Measuring point: Top of PVC casing 1.3 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #9 (Del Rae Road Well, mid-channel downstream). Well is near stream channel and is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, unknown, stream stage was higher than top of well during many periods since May 1997; lowest measured, 8.39 ft below land-surface datum, May 6, 1997. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 0.64 | APR 24 | 7.57 | | APR 10 | 5.14 | AUG 17 | 4.61 | | APR 12 | 5.34 | | | #### JUNEAU-CONTINUED ### 582203134351901. Local number, CD04006630CCBD2015. LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'19''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on right bank of Duck Creek, 75 ft downstream from Del Rae Road crossing and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2 in., depth 15 ft, screened 12 to 15 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 33 ft above sea level (determined from topographic map). Measuring point: top of casing 1.66 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #8 (Del Rae Well). Well is near stream channel and is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since 1997; lowest measured, 9.09 ft below land-surface datum, March 21, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | |--------|-------| | DATE | LEVEL | | | | | APR 10 | 7.42 | | APR 12 | 7.51 | #### 582206134351401. Local number, CD04006630CCAC1029. LOCATION.--Lat $58^{\circ}22'06''$, long $134^{\circ}35'14''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek stream channel, 12 ft upstream from Del Rae Road crossing, 900 ft southwest of intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.5 in., depth 12 ft, slotted 10 to 12 ft. Unknown debris placed inside well casing at about 3.6 ft below land surface sometime prior to March 12, 1998. Water levels cannot be determined below the obstruction, but water levels above the obstruction appear to representative of aquifer conditions. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 21.25 ft above sea level (determined by levels survey). Measuring point: Top of PVC casing 1.8 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #11 (Del Rae Road Well, 10 ft upstream from culvert). Well is
in stream channel and is intermittently flooded. PERIOD OF RECORD .-- May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.4 ft above land-surface datum (surface-water affected, stream stage was higher than top of well casing), July 13, 1997; lowest measured, 5.45 ft below land-surface datum, March 12, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------| | OCT 27 | -0.43 | APR 24 | D | | APR 10 | D | | | | APR 12 | O | | | Minus sign indicates that the water level was above land-surface datum. D Dry. O Obstruction. #### JUNEAU-CONTINUED ### 582208134351201. Local number, CD04006630CCAB1030. LOCATION.--Lat $58^{\circ}22'08''$, long $134^{\circ}35'12''$, in NE 1 /₄ SW 1 /₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located mid-channel of Duck Creek, about 130 ft upstream from Del Rae Road crossing, and 700 ft southwest of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.5 in., depth 11 ft, slotted 7 to 10 ft. INSTRUMENTATION.-- Measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 21.22 ft above sea level (determined by levels survey). Measuring point: top of PVC casing 2.14 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #12 (Del Rae Road Well, farthest upstream). Well is in stream channel and is intermittently flooded. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was above top of well casing during many periods since 1997; lowest measured, 5.46 ft below land-surface datum, March 21, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------| | OCT 27 | -0.61 | APR 12 | 3.66 | | APR 10 | 3.26 | APR 24 | 5.17 | Minus sign indicates that the water level was above land-surface datum. ### 582208134352601. Local number, CD04006630CCBB1031. LOCATION.--Lat $58^{\circ}22'08''$, long $134^{\circ}35'26''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near a church parking lot, 55 ft northeast of Del Rae Road, and 105 ft southeast of the Lutheran Church, Juneau. Owner: Lutheran Church. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 15 ft, screened 13 to 15 ft, casing has filled in with sediment to about 12.2 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 26.74 ft above sea level (determined by levels survey). Measuring point: top of steel coupling at top of casing 2.8 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #13 (Lutheran Church Well). PERIOD OF RECORD.--June 1997 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.58 ft below land-surface datum, October 23, 1999; lowest measured, dry, March 21 and April 8, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 8.02 | APR 24 | 12.19 | | NOV 4 | 8.67 | AUG 17 | 10.04 | ### JUNEAU-CONTINUED ### 582215134350501. Local number, CD04006630CBAD1032. LOCATION.--Lat $58^{\circ}22'15''$, long $134^{\circ}35'05''$, in NE 1 /₄ NW 1 /₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is near right bank of Duck Creek, 20 ft upstream from a footbridge and 225 ft upstream from the intersection of Egan Drive and Mendenhall Loop Road, Juneau. Owner: City and Borough of Juneau. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 12 ft, screened 10 to 12 ft. INSTRUMENTATION.--Intermittent measurements by U.S. Forest Service, U.S. Geological Survey or University of Alaska-Southeast personnel. DATUM.-Elevation of land-surface datum is 25.04 ft above sea level (determined by levels survey). Measuring point: top of casing 0.70 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #14 (Superbear Well). PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 1.17 ft below land-surface datum, October 9, 1999; lowest measured, 3.80 ft below land-surface datum, March 21, 2000. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------| | OCT 27 | 1.39 | APR 12 | 2.52 | | NOV 4 | 1.47 | APR 24 | 2.82 | | APR 10 | 2.49 | AUG 17 | 1.90 | ### JUNEAU-CONTINUED ### 582240134344501. Local number, CD04006630BADA2033. LOCATION.--Lat $58^{\circ}22'40''$, long $134^{\circ}34'45''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad) Hydrologic Unit 19010301, about 270 ft up a trail from the northern end of the road through Kodzoff #1 trailer Park, Juneau. Owner: Goldbelt Corporation AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2.0 in., depth 18.51 ft. INSTRUMENTATION.-- Electronic data logger and submersible pressure transducer February 2001 to current year. DATUM.--Elevation of land-surface datum is 40.57 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.70 ft above land-surface datum. REMARKS.--Record good. Well also known as Kodzoff Trailer Park Well. PERIOD OF RECORD.--February 2001 to current year. EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period February 2001 to September 2001, 8.72 ft below land-surface datum, September 16 and 17, lowest recorded, 10.94 ft below land-surface datum, April 26. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|------| | 1 | | | | | 9.28 | 9.52 | 10.17 | 10.49 | 9.62 | 10.12 | 9.18 | 9.29 | | 2 | | | | | 9.31 | 9.59 | 10.23 | 10.41 | 9.64 | 10.16 | 9.24 | 9.19 | | 3 | | | | | 9.39 | 9.71 | 10.29 | 10.08 | 9.55 | 10.20 | 9.32 | 9.19 | | 4 | | | | | 9.42 | 9.81 | 10.18 | 9.87 | 9.52 | 10.12 | 9.32 | 9.19 | | 5 | | | | | 9.48 | 9.89 | 10.16 | 9.82 | 9.52 | 9.87 | 9.35 | 9.08 | | 6 | | | | | 9.56 | 9.83 | 10.16 | 9.80 | 9.53 | 9.65 | 9.39 | 8.99 | | 7 | | | | | 9.60 | 9.78 | 10.17 | 9.78 | 9.58 | 9.48 | 9.48 | 8.94 | | 8 | | | | | 9.64 | 9.77 | 10.16 | 9.68 | 9.62 | 9.32 | 9.55 | 8.92 | | 9 | | | | | 9.70 | 9.62 | 10.12 | 9.49 | 9.65 | 9.26 | 9.61 | 8.93 | | 10 | | | | | 9.75 | 9.33 | 10.12 | 9.46 | 9.69 | 9.25 | 9.67 | 9.05 | | 11 | | | | | 9.83 | 9.12 | 10.15 | 9.47 | 9.69 | 9.26 | 9.74 | 9.17 | | 12 | | | | | 9.89 | 9.08 | 10.17 | 9.51 | 9.75 | 9.31 | 9.83 | 9.28 | | 13 | | | | | 9.58 | 9.10 | 10.22 | 9.55 | 9.78 | 9.28 | 9.92 | 8.96 | | 14 | | | | | 9.58 | 9.20 | 10.28 | 9.58 | 9.79 | 9.27 | 10.01 | 8.84 | | 15 | | | | | 9.65 | 9.28 | 10.35 | 9.64 | 9.82 | 9.27 | 10.05 | 8.82 | | 16 | | | | | 9.81 | 9.34 | 10.44 | 9.71 | 9.82 | 9.30 | 10.09 | 8.72 | | 17 | | | | | 9.93 | 9.35 | 10.50 | 9.77 | 9.85 | 9.39 | 10.13 | 8.72 | | 18 | | | | | 10.03 | 9.42 | 10.60 | 9.81 | 9.88 | 9.54 | 10.04 | 8.73 | | 19 | | | | | 10.15 | 9.49 | 10.64 | 9.84 | 9.91 | 9.63 | 9.77 | 8.82 | | 20 | | | | | 10.22 | 9.59 | 10.73 | 9.91 | 9.93 | 9.70 | 9.71 | 8.73 | | 21 | | | | | 10.29 | 9.70 | 10.80 | 9.84 | 9.93 | 9.74 | 9.70 | 8.76 | | 22 | | | | | 10.37 | 9.77 | 10.85 | 9.74 | 9.81 | 8.92 | 9.73 | 8.90 | | 23 | | | | | 10.44 | 9.85 | 10.89 | 9.59 | 9.75 | 8.86 | 9.78 | 8.94 | | 24 | | | | | 10.52 | 9.90 | 10.90 | 9.57 | 9.73 | 8.88 | 9.89 | 8.95 | | 25 | | | | | 10.62 | 9.95 | 10.87 | 9.56 | 9.79 | 8.85 | 10.00 | 9.02 | | 26 | | | | | 10.27 | 10.01 | 10.90 | 9.59 | 9.90 | 8.85 | 10.05 | 9.11 | | 27 | | | | | 9.46 | 10.03 | 10.75 | 9.62 | 9.99 | 8.88 | 9.55 | 9.21 | | 28 | | | | | 9.44 | 10.07 | 10.54 | 9.66 | 10.04 | 8.97 | 9.47 | 9.31 | | 29 | | | | | | 10.07 | 10.48 | 9.69 | 10.06 | 9.07 | 9.36 | 9.38 | | 30 | | | | | | 10.11 | 10.47 | 9.66 | 10.09 | 9.12 | 9.31 | 9.26 | | 31 | | | | | | 10.13 | | 9.63 | | 9.15 | 9.29 | | ### JUNEAU-CONTINUED ### 582240134352901. Local number, CD04006630BBCB1036. LOCATION.--Lat $58^{\circ}22'40''$, long $134^{\circ}35'29''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, at northeast edge of baseball field for Riverbend School on Riverside Drive, Juneau. Owner: City and Borough of Juneau. AQUIFRER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.-- Diameter 2.0 in., depth 15.9 ft, slotted 5 to 15 ft. INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by U.S. Geological Survey April 2001 to May 2001. Electronic data logger and submersible pressure transducer May 2001 to current year. DATUM.-- Elevation of land-surface datum is 31.95 ft above sea level (determined by survey grade GPS). Measuring point: Top of casing 0.20 ft below land-surface datum. REMARKS.-- Records good except for the period August 31 to September 30, which is poor. Well is also known as Riverbend School well. PERIOD OF RECORD .-- April 2001 to current year. EXTREMES FOR THE CURRENT YEAR.--Highest water
level recorded during period April 2001 to September 2001, 4.44 ft below land-surface datum, September 21; lowest recorded, 7.83 ft below land-surface datum, May 24. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|-----|-----|-----|-----|-----|-----|-------|------|------|------|------|------| | 1 | | | | | | | | | 7.17 | 7.16 | 5.36 | 5.43 | | 2 | | | | | | | | | 7.21 | 7.24 | 5.38 | 5.40 | | 3 | | | | | | | | | 7.33 | 7.05 | 5.37 | 5.40 | | 4 | | | | | | | | | 7.12 | 7.04 | 5.37 | 5.88 | | 5 | | | | | | | | | 7.13 | 7.02 | 5.50 | 5.61 | | 6 | | | | | | | | | 7.23 | 6.92 | 5.55 | 5.60 | | 7 | | | | | | | | | 7.28 | 6.91 | 5.91 | 5.37 | | 8 | | | | | | | | | 6.99 | 7.18 | 6.01 | 5.41 | | 9 | | | | | | | | | 7.00 | 7.17 | 5.89 | 5.13 | | 10 | | | | | | | | | 7.12 | 7.08 | 5.88 | 4.97 | | 11 | | | | | | | | | 7.29 | 7.02 | 5.98 | 4.90 | | 12 | | | | | | | | | 7.33 | 6.86 | 6.06 | 4.90 | | 13 | | | | | | | | | 7.29 | 6.85 | 6.17 | 5.05 | | 14 | | | | | | | | | 7.30 | 6.70 | 6.32 | 4.77 | | 15 | | | | | | | | | 7.40 | 6.43 | 6.29 | 4.88 | | 16 | | | | | | | | | 7.49 | 6.32 | 6.29 | 4.79 | | 17 | | | | | | | #6.97 | | 7.50 | 6.35 | 6.37 | 4.55 | | 18 | | | | | | | | | 7.37 | 6.51 | 6.49 | 4.47 | | 19 | | | | | | | | | 7.22 | 6.48 | 6.50 | 4.49 | | 20 | | | | | | | | | 7.17 | 6.45 | 5.90 | 4.53 | | 21 | | | | | | | | | 7.30 | 6.44 | 5.91 | 4.44 | | 22 | | | | | | | | 7.55 | 7.31 | 6.47 | 6.21 | 4.51 | | 23 | | | | | | | | 7.63 | 7.15 | 6.62 | 6.36 | 4.59 | | 24 | | | | | | | | 7.80 | 7.16 | 6.61 | 6.42 | 4.45 | | 25 | | | | | | | | 7.56 | 7.19 | 6.53 | 6.36 | 4.62 | | 26 | | | | | | | | 7.12 | 7.11 | 6.12 | 6.38 | 4.62 | | 27 | | | | | | | | 7.12 | 6.94 | 5.91 | 6.39 | 4.70 | | 28 | | | | | | | | 7.07 | 6.98 | 5.81 | 6.60 | 4.77 | | 29 | | | | | | | | 7.06 | 7.39 | 5.77 | 6.43 | 4.77 | | 29
30 | | | | | | | | 7.47 | 7.39 | 5.77 | 6.05 | 5.03 | | 31 | | | | | | | | 7.47 | | | | | | 5 L | | | | | | | | 1.34 | | 5.46 | 5.53 | | [#] Result of tapedown ### JUNEAU-CONTINUED ## 582256134340401. Local number, CD04006619DDBD1054. LOCATION.--Lat $58^{\circ}22'56''$, long $134^{\circ}34'04''$, in $NW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located at Glacier Valley School, at southwest corner of baseball field, 33 ft north of Evergreen Parkway, 120 ft southeast of a covered basketball court, and 460 ft east of Tongass Boulevard, Juneau. Owner: Glacier Valley School. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2 in., depth 11.2 ft, screened 6.9 ft to 11.2 ft, casing has filled in with sediment to about 9.4 ft. INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel. DATUM.-Elevation of land-surface datum is 39.33 ft above sea level (determined by levels survey). Measuring point: top of casing 1.8 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #16 (Glacier Valley School Well). PERIOD OF RECORD.--July 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.00 ft below land-surface datum, December 26, 1999; lowest measured, dry, March 21, 2000 and August 14, 2001. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 3.58 | APR 17 | 4.70 | | NOV 4 | 3.44 | APR 24 | 3.94 | | APR 10 | 4.25 | MAY 22 | 3.78 | | APR 12 | 4.27 | AUG 14 | D | | | | | | D Dry ### JUNEAU-CONTINUED ### 582306134344001. Local number, CD04006619DBCB1056. LOCATION.--Lat $58^{\circ}23'06''$, long $134^{\circ}34'40''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 19, T.40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Well is the northernmost of two wells (southernmost has casing welded shut), located about 300 ft west of Duck Creek, about 300 ft north of Stephen Richards Drive, Juneau. Owner: Glacier View Trailer Park. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2.0 in., depth 52.7 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey April 2000 to April 2001. Electronic data logger and submersible pressure transducer April 2001 to current year. DATUM.--Elevation of land-surface datum is 45.4 ft above sea level (determined by survey-grade GPS). Measuring point: Top of casing 1.4 ft above land-surface datum. REMARKS.--Record good. Well also known as Glacier View Well. PERIOD OF RECORD.--April 2000 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.78 ft below land-surface datum, July 22, 2001; lowest 9.07 ft below land-surface datum, April 26, 2001. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY HIGHEST WATER LEVEL | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-------|-----|-------|------|------|------|------|------| | 1 | | | | | #7.49 | | | 8.83 | 7.95 | 8.23 | 7.30 | 7.45 | | 2 | | | | | | | | 8.68 | 7.97 | 8.26 | 7.43 | 7.35 | | 3 | | | | | | | | 8.31 | 7.85 | 8.30 | 7.52 | 7.35 | | 4 | | | | | | | | 8.05 | 7.82 | 8.28 | 7.55 | 7.43 | | 5 | | | | | | | | 8.03 | 7.81 | 8.08 | 7.58 | 7.17 | | 6 | | | | | | | | 8.04 | 7.86 | 7.88 | 7.63 | 7.03 | | 7 | | | | | | | | 8.03 | 7.95 | 7.73 | 7.77 | 6.97 | | 8 | | | | | | | | 7.97 | 7.97 | 7.56 | 7.85 | 6.95 | | 9 | | | | | | | | 7.66 | 7.99 | 7.54 | 7.89 | 6.95 | | 10 | | | | | | | | 7.65 | 8.03 | 7.52 | 7.94 | 7.21 | | 11 | | | | | | | | 7.72 | 8.05 | 7.56 | 8.01 | 7.41 | | 12 | | | | | | | | 7.80 | 8.11 | 7.67 | 8.09 | 7.54 | | 13 | | | | | | | | 7.88 | 8.12 | 7.64 | 8.13 | 7.01 | | 14 | | | | | | | | 7.90 | 8.13 | 7.61 | 8.11 | 6.73 | | 15 | | | | | | | | 7.99 | 8.17 | 7.61 | 8.09 | 6.71 | | 16 | | | | | | | | 8.09 | 8.16 | 7.65 | 8.10 | 6.67 | | 17 | | | | | | | #8.86 | 8.14 | 8.19 | 7.73 | 8.18 | 6.68 | | 18 | | | | | | | | 8.21 | 8.19 | 7.86 | 8.18 | 6.76 | | 19 | | | | | | | | 8.22 | 8.18 | 7.92 | 7.97 | 6.94 | | 20 | | | | | | | | 8.30 | 8.18 | 7.90 | 7.88 | 6.86 | | 21 | | | | | | | | 8.22 | 8.16 | 7.87 | 7.89 | 6.89 | | 22 | | | | | | | | 8.13 | 8.07 | 5.78 | 7.93 | 7.06 | | 23 | | | | | | | | 7.93 | 7.98 | 6.79 | 8.01 | 7.08 | | 24 | | | | | | | | 7.87 | 7.97 | 6.82 | 8.12 | 7.07 | | 25 | | | | | | | | 7.86 | 8.07 | 6.78 | 8.19 | 7.20 | | 26 | | | | | | | #9.07 | 7.90 | 8.16 | 6.78 | 8.14 | 7.34 | | 27 | | | | | | | | 7.96 | 8.19 | 6.86 | 7.67 | 7.51 | | 28 | | | | | | | 8.76 | 8.01 | 8.16 | 7.05 | 7.56 | 7.65 | | 29 | | | | | | | 8.73 | 8.08 | 8.16 | 7.21 | 7.43 | 7.72 | | 30 | | | | | | | 8.76 | 8.01 | 8.19 | 7.26 | 7.42 | 7.60 | | 31 | | | | | | | | 7.97 | | 7.26 | 7.43 | | # Result of tapedown ### JUNEAU-CONTINUED ### 582314134344801. Local number, CD04006619BDDD1055. $LOCATION.\text{--Lat }58^{\circ}23'14'', long \ 134^{\circ}34'48'', in \ SE^{1}_{/4} \ SE^{1}_{/4} \ NW^{1}_{/4} \ sec. \ 19, T. \ 40 \ S., R. \ 66 \ E. \ (Juneau \ B-2 \ NW \ quad), Hydrologic Unit 19010301, Near the northwest corner of garage at 9002 Gee Street, Juneau. Owner: Tim and Debbie Banaszak.$ AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2.0 in., depth 44.2 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey February 2001 to June 2001. Electronic data logger and submersible pressure transducer June 2001 to September 2001. DATUM.--Elevation of land-surface datum is 46.4 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.80 ft above land-surface datum. REMARKS.--Record good. Well also known as Banaszak well. PERIOD OF RECORD.--February 2001 to current year. EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period February 2001 to September 2001, 6.10 ft below land-surface datum, September 15 and 16, lowest recorded, 7.86 ft below land-surface datum, February 7, result of tapedown. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|------|------|------| | 1 | | | | | | | | | | 7.68 | 6.70 | 6.91 | | 2 | | | | | | | | | | 7.73 | 6.85 | 6.86 | | 3 | | | | | | | | | | 7.76 | 6.95 | 6.86 | | 4 | | | | | | | | | | 7.76 | 6.97 | 6.98 | | 5 | | | | | | | | | | 7.56 | 7.00 | 6.74 | | 6 | | | | | | | | | | 7.35 | 7.04 | 6.55 | | 7 | | | | | #7.86 | | | | | 7.22 | 7.21 | 6.48 | | 8 | | | | | | | | | #7.52 | 7.04 | 7.31 | 6.45 | | 9 | | | | | | | | | 7.54 | 7.03 | 7.34 | 6.45 | | 10 | | | | | | | | | 7.57 | 7.03 | 7.40 | 6.73 | | 11 | | | | | | | | | 7.59 | 7.07 | 7.46 | 6.95 | | 12 | | | | | | | | | 7.66 | 7.20 | 7.54 | 7.08 | | 13 | | | | | | | | | 7.65 | 7.18 | 7.56 | 6.56 | | 14 | | | | | | | | | 7.65 | 7.14 | 7.51 | 6.15 | | 15 | | | | | | | | | 7.68 | 7.14 | 7.50 | 6.10 | | 16 | | | | | | | | | 7.67 | 7.17 | 7.50 | 6.10 | | 17 | | | | | | | | | 7.67 | 7.23 | 7.60 | 6.12 | | 18 | | | | | | | | | 7.66 | 7.35 | 7.62 | 6.22 | | 19 | | | | | | | | | 7.64 | 7.39 | 7.41 | 6.39 | | 20 | | | | | | | | | 7.64 | 7.32 | 7.31 | 6.41 | | 21 | | | | | | | | | 7.60 | 7.28 | 7.33 | 6.43 | | 22 | | | | | | | | | 7.51 | 6.64 | 7.36 | 6.62 | | 23 | | | | | | | | | 7.41 | 6.23 | 7.45 | 6.62 | | 24 | | | | | | | | | 7.39 | 6.24 | 7.57 | 6.61 | | 25 | | | | | | | | | 7.51 | 6.22 | 7.66 | 6.73 | | 26 | | | | | | | | | 7.63 | 6.21 | 7.60 | 6.89 | | 27 | | | | | | | | | 7.64 | 6.28 | 7.13 | 7.07 | | 28 | | | | | | | | | 7.61 | 6.49 | 6.98 | 7.25 | | 29 | | | | | | | | | 7.61 | 6.67 | 6.83 | 7.32 | | 30 | | | | | | | | | 7.64 | 6.70 | 6.82 | 7.23 | | 31 | | | | | | | | | | 6.69 | 6.86 | | [#] Result of tapedown. ### JUNEAU-CONTINUED ## 582314134351201. Local number, CD04006619BCDD2020. $LOCATION.\text{--Lat
}58^{\circ}23'14'', long\ 134^{\circ}35121'', in\ SE^{1}/_{4}\ SW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 19, T.\ 40\ S., R.\ 66\ E.\ (Juneau\ B-2\ NW\ quad), Hydrologic\ Unit\ 19010301, Near the northwest corner of garage at 9220\ Gee\ Street, Juneau.\ Owner:\ Don\ Thomas$ AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.5 in., depth 49.1 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey April 2000 to January 2001. Electronic data logger and submersible pressure transducer January 2001 to current year. DATUM.--Elevation of land-surface datum is 43.09 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.92 ft above land-surface datum. REMARKS.--Record good. Well also known as Don's well. PERIOD OF RECORD.--April 2000 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 5.93 ft below land-surface datum, July 24, 2000; lowest, 10.20 ft below land-surface datum, February 26, 2001 EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period January to September 2001, 5.95 ft below land-surface datum, September 15, lowest recorded, 10.20 ft below land-surface datum, February 26. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|--------|-------|------|-------|------|------|------|-------|------| | | | | | | 0.04 | 0 04 | 0.00 | 0 84 | 0.40 | п 00 | 6 01 | п оо | | 1 | | | | | 8.94 | 9.24 | 9.89 | 9.74 | 8.40 | 7.92 | 6.81 | 7.00 | | 2 | | | #9.11 | | 8.94 | 9.28 | 9.97 | 9.58 | 8.41 | 7.95 | 7.08 | 7.02 | | 3 | | | | | 9.09 | 9.45 | 9.89 | 9.37 | 8.28 | 8.00 | 7.15 | 7.02 | | 4 | #8.59 | | #9.12 | #9.36 | 9.19 | 9.58 | 9.87 | 9.17 | 8.15 | 7.99 | 7.16 | 7.33 | | 5 | | | | | 9.25 | 9.62 | 9.85 | 9.17 | 8.12 | 7.68 | 7.17 | 6.96 | | 6 | | #8.81 | | | 9.31 | 9.61 | 9.87 | 9.11 | 8.18 | 7.42 | 7.22 | 6.68 | | 7 | | | | | 9.29 | 9.59 | 9.88 | 9.09 | 8.26 | 7.28 | 7.47 | 6.67 | | 8 | | #8.86 | | | 9.33 | 9.56 | 9.89 | 9.13 | 8.22 | 7.15 | 7.60 | 6.63 | | 9 | | | #8.56 | #9.14 | 9.43 | 9.39 | 9.89 | 8.89 | 8.22 | 7.19 | 7.62 | 6.66 | | 10 | | | | #8.40 | 9.53 | 9.13 | 9.89 | 8.85 | 8.23 | 7.26 | 7.68 | 7.21 | | | | | | 110.10 | J.33 | ,.15 | J.03 | 0.05 | 0.23 | 7.20 | ,,,,, | , | | 11 | | #8.91 | #8.86 | 9.38 | 9.63 | 8.95 | 9.86 | 8.87 | 8.23 | 7.36 | 7.76 | 7.49 | | 12 | | #8.74 | #8.95 | 9.35 | 9.69 | 8.90 | 9.87 | 8.88 | 8.29 | 7.58 | 7.85 | 7.66 | | 13 | | #8.76 | | 9.38 | 9.60 | 8.93 | 9.93 | 8.92 | 8.24 | 7.58 | 7.74 | 6.72 | | 14 | | #8.84 | | 9.46 | 9.65 | 9.07 | 9.99 | 8.89 | 8.24 | 7.53 | 7.61 | 6.01 | | 15 | | | #9.28 | 9.27 | 9.71 | 9.08 | 9.97 | 8.94 | 8.21 | 7.53 | 7.58 | 5.95 | | | | | | | | | | | | | | | | 16 | | #8.98 | #9.38 | 9.18 | 9.72 | 9.10 | 9.93 | 9.00 | 8.18 | 7.57 | 7.58 | 6.14 | | 17 | | #8.84 | | 9.16 | 9.75 | 9.11 | 9.93 | 9.01 | 8.16 | 7.61 | 7.73 | 6.19 | | 18 | | #8.81 | | 9.10 | 9.80 | 9.19 | 10.01 | 8.99 | 8.11 | 7.74 | 7.75 | 6.39 | | 19 | | #8.81 | | 9.17 | 9.91 | 9.25 | 10.02 | 9.04 | 8.07 | 7.64 | 7.51 | 6.72 | | 20 | | #8.82 | | 9.21 | 9.95 | 9.43 | 10.01 | 9.09 | 8.00 | 7.45 | 7.37 | 6.94 | | | | | | | | | | | | | | | | 21 | | #8.75 | | 9.30 | 10.00 | 9.54 | 9.97 | 8.97 | 7.90 | 7.34 | 7.39 | 6.99 | | 22 | #8.26 | | | 9.34 | 10.02 | 9.56 | 9.92 | 8.91 | 7.77 | 6.68 | 7.39 | 7.28 | | 23 | | | | 9.27 | 10.05 | 9.60 | 9.89 | 8.76 | 7.59 | 6.26 | 7.53 | 7.20 | | 24 | | | | 9.22 | 10.06 | 9.59 | 9.89 | 8.69 | 7.58 | 6.29 | 7.73 | 7.19 | | 25 | | #8.35 | | 9.24 | 10.14 | 9.59 | 9.92 | 8.68 | 7.82 | 6.33 | 7.84 | 7.40 | | | | | | | | | | | | | | | | 26 | | | | 9.31 | 9.96 | 9.71 | 9.84 | 8.68 | 7.98 | 6.33 | 7.70 | 7.62 | | 27 | | #8.64 | | 9.13 | 9.34 | 9.72 | 9.80 | 8.70 | 7.90 | 6.47 | 7.07 | 7.89 | | 28 | | #8.70 | | 9.06 | 9.25 | 9.80 | 9.61 | 8.70 | 7.78 | 6.81 | 6.86 | 8.12 | | 29 | | | | 9.06 | | 9.86 | 9.58 | 8.70 | 7.78 | 6.99 | 6.70 | 8.18 | | 30 | | | | 9.10 | | 9.76 | 9.63 | 8.57 | 7.86 | 6.87 | 6.70 | 8.10 | | 31 | | | | 9.13 | | 9.79 | | 8.49 | | 6.82 | 6.85 | | | | | | | | | | | | | | | | [#] Result of Tapedown #### JUNEAU-CONTINUED ### 582322134341001. Local number, CD04006619ACAB1050. LOCATION.--Lat $58^{\circ}23'20''$, long $134^{\circ}34'17''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located at 3737 North El Camino Street, 30 ft west of the southwest corner of the house and 70 ft from North El Camino Street, Juneau. Owner: Nicholas Hindman. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 2 in., depth drilled 15 ft, cased to 4.7 ft, screened 2.5 to 4.7 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel. DATUM.--Elevation of land-surface datum is 43.87 ft above sea level (determined from levels survey). Measuring point: top of PVC casing 1.2 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #17 (Hindman Well). Well sampled for water quality, September 3, 1997, January 26, 1998, and September 3, 1998. PERIOD OF RECORD.--July 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.40 ft below land-surface datum, October 23, 1999; lowest measured, 2.53 ft below land-surface datum, March 12, 1998. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |--------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | | | | | | | OCT 27 | 1.51 | APR 12 | 1.88 | | NOV 4 | 1.45 | APR 24 | 2.15 | | APR 10 | 1.89 | AUG 14 | 2.16 | ### 582326134341901. Local number, CD04006619ADBA1011. LOCATION.--Lat $58^{\circ}23'36''$, long $134^{\circ}34'19''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located 6 ft southeast of a bike path, 25 ft southeast of Mendenhall Loop Road, and about 450 ft southwest of intersection of Mendenhall Loop Road and Valley Boulevard, Juneau. Owner: Bruce B. Bigelow. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 1.25 in., depth 15 ft, screened 11 to 15 ft. INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel. DATUM.--Elevation of land-surface datum is 45.76 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.3 ft above land-surface datum. REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #18 (Bigelow Well). PERIOD OF RECORD.--June 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.01 ft above land-surface datum, July 25 and August 12, 1997; lowest measured, 2.55 ft below land-surface datum, April 23, 1999. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | WATER | | WATER | |----------|-------|---------|-------| | DATE | LEVEL | DATE | LEVEL | | 0.077.07 | 0.70 | 4 DD 10 | 0.06 | | OCT 27 | 0.70 | APR 12 | 0.96 | | NOV 4 | 0.65 | APR 24 | 1.40 | | APR 10 | 0.78 | AUG 14 | 1.53 | ### JUNEAU-CONTINUED ### 582359134352103. Local number, CD04006618CBCA3019 85177. LOCATION.--Lat $58^{\circ}23'59''$, long $134^{\circ}35'21''$, $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Mendenhall Loop Road, Juneau. Owner: Harlan Olsen. AQUIFER .-- Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 6 in., depth 40 ft, screened 30 to 40 ft. INSTRUMENTATION.--Continuous strip-chart recorder November 1983 to August 1984. Digital recorder August 1984 to April 1997. Electronic data logger and submersible pressure transducer August 1997 to September 1998. Electronic data logger and encoder used September 1998 to current year. DATUM.--Elevation of land-surface datum is 50.53 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.77 ft above land-surface datum. REMARKS.--Record good. Well also known as Mendenhall well. PERIOD OF RECORD.--November 1983 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded 4.89 ft below land-surface datum, September 25, 1990; lowest, 13.54 ft below land-surface datum, February 2, 1997. EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 6.58 ft below land-surface datum, October 14-15, lowest recorded, 11.49 ft below land-surface datum, April 25-26. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | 1 | 8.04 | 9.16 | 8.86 | 11.05 | 8.82 | 9.30 | 10.81 | 11.35 | 9.98 | 10.37 | 9.23 | 8.78 | | 2 | 8.39 | 9.16 | 9.12 | 10.91 | 8.82 | 9.36 | 10.92 | 11.32 | 9.98 | 10.43 | 9.23 | 8.59 | | 3 | 8.61 | 8.90 | 9.27 | 10.26 | 9.00 | 9.61 | 11.00 | 10.92 | 9.94 | 10.45 | 9.23 | 8.59 | | 4 | 8.83 | 8.87 | 9.24 | 9.91 | 9.03 | 9.81 | 11.00 | 10.38 | 9.84 | 10.52 | 9.23 | 8.69 | | 5 | 8.63 | 8.87 | 7.45 | 9.91 | 9.10 | 9.92 | 10.98 | 10.27 | 9.84 | 10.45 | 9.24 | 8.31 | | | | | | | | | | | | | | | | 6 | 7.79 | 9.05 | 7.42 | 9.69 | 9.24 | 10.00 | 10.98 | 10.17 | 9.84 | 10.30 | 9.24 | 8.07 | | 7 | 7.55 | 9.12 | 7.45 | 9.57 | 9.31 | 9.87 | 10.98 | 10.17 | 9.87 | 10.18 | 9.26 | 7.96 | | 8 | 7.46 | 9.18 | 7.54 | 9.60 | 9.44 | 9.80 | 11.05 | 10.23 | 9.91 | 9.89 | 9.48 | 7.93 | | 9 | 7.46 | 9.24 | 7.74 | 9.60 | 9.68 | 9.55 | 11.05 | 9.70 | 9.91 | 9.80 | 9.51 | 7.93 | | 10 | 7.47 | 9.31 | 7.96 | 9.66 | 9.84 | 8.95 | 11.04 | 9.64 | 9.96 | 9.72 | 9.57 | 8.19 | | | | | | | | | | | | | | | | 11 | 7.19 | 8.65 | 8.27 | 9.91 | 10.00 | 8.58 | 11.01 | 9.64 | 9.98 | 9.70 | 9.64 | 8.37 | | 12 | 6.85 | 8.42 | 8.56 | 9.95 | 10.13 | 8.56 | 11.01 | 9.73 | 10.06 | 9.72 |
9.71 | 8.58 | | 13 | 6.62 | 8.45 | 8.74 | 10.05 | 10.19 | 8.56 | 11.05 | 9.79 | 10.07 | 9.68 | 9.79 | 8.09 | | 14 | 6.58 | 8.61 | 9.02 | 10.25 | 10.22 | 8.71 | 11.14 | 9.81 | 10.09 | 9.65 | 9.83 | 7.81 | | 15 | 6.58 | 8.80 | 9.23 | 9.72 | 10.28 | 8.78 | 11.17 | 9.87 | 10.15 | 9.62 | 9.85 | 7.80 | | | | | | | | | | | | | | | | 16 | 6.88 | 8.98 | 9.32 | 9.54 | 10.31 | 8.92 | 11.17 | 9.98 | 10.21 | 9.62 | 9.85 | 7.62 | | 17 | 7.16 | 8.48 | 9.70 | 9.44 | 10.38 | 8.92 | 11.17 | 10.04 | 10.21 | 9.64 | 9.96 | 7.62 | | 18 | 7.34 | 8.45 | 9.77 | 9.32 | 10.46 | 8.96 | 11.26 | 10.16 | 10.22 | 9.72 | 10.05 | 7.67 | | 19 | 7.69 | 8.54 | 10.04 | 9.38 | 10.59 | 9.12 | 11.30 | 10.23 | 10.22 | 9.77 | 9.94 | 7.83 | | 20 | 7.69 | 8.56 | 10.08 | 9.46 | 10.72 | 9.40 | 11.35 | 10.38 | 10.21 | 9.77 | 9.82 | 7.62 | | | | | | | | | | | | | | | | 21 | 7.87 | 8.55 | 10.22 | 9.65 | 10.82 | 9.59 | 11.35 | 10.38 | 10.24 | 9.77 | 9.82 | 7.62 | | 22 | 7.84 | 8.09 | 10.32 | 9.78 | 10.88 | 9.74 | 11.35 | 10.37 | 10.21 | 9.24 | 9.88 | 7.81 | | 23 | 7.93 | 7.79 | 10.47 | 9.66 | 11.00 | 9.90 | 11.36 | 10.19 | 10.17 | 9.24 | 9.96 | 7.80 | | 24 | 7.96 | 7.74 | 10.61 | 9.59 | 11.01 | 9.99 | 11.39 | 9.98 | 10.15 | 9.24 | 10.05 | 7.80 | | 25 | 8.02 | 7.80 | 10.64 | 9.59 | 11.16 | 10.11 | 11.48 | 9.93 | 10.20 | 9.24 | 10.15 | 7.95 | | | | | | | | | | | | | | | | 26 | 8.12 | 8.04 | 10.79 | 9.66 | 11.08 | 10.33 | 11.46 | 9.91 | 10.30 | 9.24 | 10.13 | 8.18 | | 27 | 8.30 | 8.27 | 10.95 | 9.25 | 9.48 | 10.48 | 11.46 | 9.91 | 10.31 | 9.24 | 9.65 | 8.42 | | 28 | 8.56 | 8.51 | 11.08 | 9.04 | 9.37 | 10.56 | 11.32 | 9.94 | 10.31 | 9.23 | 9.40 | 8.61 | | 29 | 8.85 | 8.56 | 11.08 | 9.04 | | 10.68 | 11.29 | 10.04 | 10.33 | 9.23 | 9.04 | 8.74 | | 30 | 9.06 | 8.74 | 11.11 | 9.10 | | 10.70 | 11.29 | 10.06 | 10.36 | 9.23 | 8.90 | 8.52 | | 31 | 9.06 | | 11.05 | 9.07 | | 10.70 | | 10.03 | | 9.23 | 8.78 | | | | | | | | | | | | | | | | ### SOUTH-CENTRAL ALASKA ### MUNICIPALITY OF ANCHORAGE. ### 611725149335401. Local number, SB01400223BCCD1003. LOCATION.--Lat $61^{\circ}17'26''$, long $149^{\circ}35'39''$, in SE $^{1}/4$ SW $^{1}/4$ SW $^{1}/4$ NW $^{1}/4$ sec.23, T.14 N., R.2 W.(Anchorage B-7SW quad), Hydrologic Unit 19020401, at Anchorage Regional Landfill, Glenn Highway and Hiland Road interchange, Anchorage. Owner: Municipality of Anchorage. AQUIFER.--Sand and gravel of the Quaternary System. WELL CHARACTERISTICS.--Diameter 6 in., depth 132 ft, cased to 118 ft, open hole. Casing perforated from 111 to 117 ft. Bedrock from 117 ft. Driller's log notes casing break at 80 ft. INSTRUMENTATION.--Monthly measurement with chalked steel tape by U.S. Geological Survey personnel July 1997 to September 1999. electronic data logger from September 3, 1999 to current year. DATUM.--Elevation of land surface datum is 542.56 ft above sea level (determined by level survey). Measuring point: Top of casing 3.4 ft above land-surface datum. REMARKS.--Observation well drilled by Municipality of Anchorage, designated as KB-6. PERIOD OF RECORD.--August 1986, July 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 107.88 ft below land-surface datum, June 7, 2000; lowest, 114.25 ft below land-surface datum, Aug. 21, 1986. EXTREMES FOR CURRENT YEAR.--Highest water level measured, 109.68 ft. below land-surface datum, June 27, July 4 and July 5; lowest, 110.61 ft. below land-surface datum, February 27 and March 12. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | | | | | | | | | | | | | 1 | 110.24 | 110.13 | 110.28 | 110.43 | 110.50 | 110.53 | 110.56 | 110.08 | 109.87 | 109.69 | 110.03 | 110.37 | | 2 | 110.25 | 110.11 | 110.30 | 110.38 | 110.50 | 110.54 | 110.47 | 110.06 | 109.86 | 109.69 | 110.03 | 110.37 | | 3 | 110.26 | 110.14 | 110.27 | 110.39 | 110.50 | 110.54 | 110.50 | 110.06 | 109.86 | 109.69 | 110.05 | 110.38 | | 4 | 110.23 | 110.10 | 110.25 | 110.43 | 110.49 | 110.52 | 110.57 | 110.05 | 109.85 | 109.68 | 110.06 | 110.38 | | 5 | 110.22 | 110.13 | 110.27 | 110.45 | 110.48 | 110.52 | 110.57 | 110.03 | 109.84 | 109.68 | 110.08 | 110.40 | | | | | | | | | | | | | | | | 6 | 110.26 | 110.12 | 110.33 | 110.40 | 110.47 | 110.52 | 110.54 | 110.00 | 109.84 | 109.69 | 110.10 | 110.40 | | 7 | 110.24 | 110.14 | 110.33 | 110.40 | 110.49 | 110.56 | 110.54 | 110.00 | 109.83 | 109.70 | 110.13 | 110.41 | | 8 | 110.30 | 110.15 | 110.32 | 110.47 | 110.46 | 110.52 | 110.56 | 110.00 | 109.81 | 109.72 | 110.13 | 110.42 | | 9 | 110.27 | 110.12 | 110.31 | 110.48 | 110.49 | 110.54 | 110.57 | 109.98 | 109.80 | 109.72 | 110.14 | 110.42 | | 10 | 110.23 | 110.11 | 110.31 | 110.47 | 110.48 | 110.52 | 110.52 | 109.97 | 109.80 | 109.73 | 110.16 | 110.42 | | | | | | | | | | | | | | | | 11 | 110.27 | 110.16 | 110.35 | 110.42 | 110.48 | 110.51 | 110.51 | 109.97 | 109.79 | 109.74 | 110.17 | 110.41 | | 12 | 110.24 | 110.16 | 110.33 | 110.44 | 110.50 | 110.58 | 110.54 | 109.94 | 109.78 | 109.75 | 110.19 | 110.42 | | 13 | 110.22 | 110.13 | 110.32 | 110.47 | 110.51 | 110.57 | 110.53 | 109.95 | 109.77 | 109.76 | 110.20 | 110.44 | | 14 | 110.23 | 110.20 | 110.34 | 110.42 | 110.49 | 110.53 | 110.52 | 109.93 | 109.77 | 109.77 | 110.21 | 110.46 | | 15 | 110.24 | 110.18 | 110.32 | 110.46 | 110.49 | 110.55 | 110.49 | 109.94 | 109.76 | 109.78 | 110.23 | 110.45 | | 16 | 110.23 | 110.17 | 110.34 | 110.44 | 110.48 | 110.57 | 110.46 | 109.94 | 109.75 | 109.79 | 110.24 | 110.44 | | 17 | 110.23 | 110.17 | 110.34 | 110.44 | 110.48 | 110.57 | 110.46 | 109.94 | 109.75 | 109.79 | 110.24 | 110.44 | | 18 | 110.22 | 110.10 | 110.33 | 110.42 | 110.50 | 110.55 | 110.40 | 109.93 | 109.74 | 109.81 | 110.28 | 110.40 | | 19 | 110.21 | 110.20 | 110.37 | 110.51 | 110.50 | 110.53 | 110.44 | 109.93 | 109.72 | 109.83 | 110.25 | 110.47 | | 20 | 110.18 | 110.19 | 110.34 | 110.31 | 110.51 | 110.58 | 110.41 | 109.93 | 109.71 | 109.85 | 110.23 | 110.47 | | 20 | 110.10 | 110.20 | 110.51 | 110.10 | 110.52 | 110.50 | 110.50 | 100.01 | 100.72 | 103.03 | 110.27 | 110.10 | | 21 | 110.13 | 110.19 | 110.38 | 110.49 | 110.52 | 110.56 | 110.35 | 109.91 | 109.72 | 109.86 | 110.31 | 110.46 | | 22 | 110.16 | 110.22 | 110.38 | 110.49 | 110.51 | 110.56 | 110.32 | 109.91 | 109.70 | 109.88 | 110.31 | 110.47 | | 23 | 110.19 | 110.23 | 110.39 | 110.51 | 110.50 | 110.54 | 110.30 | 109.92 | 109.69 | 109.90 | 110.32 | 110.46 | | 24 | 110.14 | 110.21 | 110.38 | 110.51 | 110.51 | 110.52 | 110.29 | 109.93 | 109.70 | 109.91 | 110.33 | 110.47 | | 25 | 110.12 | 110.25 | 110.36 | 110.49 | 110.47 | 110.53 | 110.26 | 109.91 | 109.70 | 109.93 | 110.33 | 110.49 | | | | | | | | | | | | | | | | 26 | 110.14 | 110.26 | 110.43 | 110.48 | 110.43 | 110.54 | 110.19 | 109.90 | 109.69 | 109.94 | 110.34 | 110.49 | | 27 | 110.14 | 110.27 | 110.41 | 110.52 | 110.45 | 110.55 | 110.19 | 109.89 | 109.68 | 109.95 | 110.34 | 110.49 | | 28 | 110.14 | 110.27 | 110.39 | 110.50 | 110.53 | 110.56 | 110.17 | 109.89 | 109.69 | 109.96 | 110.33 | 110.49 | | 29 | 110.12 | 110.27 | 110.37 | 110.50 | | 110.55 | 110.14 | 109.91 | 109.70 | 109.98 | 110.36 | 110.49 | | 30 | 110.11 | 110.27 | 110.39 | 110.46 | | 110.54 | 110.13 | 109.88 | 109.69 | 109.99 | 110.35 | 110.51 | | 31 | 110.15 | | 110.45 | 110.45 | | 110.56 | | 109.88 | | 110.01 | 110.37 | | | MEAN | 110.20 | 110.18 | 110.34 | 110.46 | 110.49 | 110.55 | 110.42 | 109.95 | 109.76 | 109.81 | 110.22 | 110.44 | | MAX | 110.20 | 110.18 | 110.34 | 110.40 | 110.49 | 110.55 | 110.42 | 110.08 | 109.76 | 110.01 | 110.22 | 110.44 | | MIN | 110.30 | 110.27 | 110.45 | 110.32 | 110.33 | 110.56 | 110.37 | 10.08 | 109.67 | 109.68 | 110.37 | 110.31 | | 1,1714 | TT0.TT | 110.10 | 110.23 | 110.50 | 110.13 | 110.51 | 110.13 | 107.00 | 107.00 | 107.00 | 110.03 | ±±0.57 | ### YUKON ALASKA ### FAIRBANKS NORTH STAR BOROUGH ### 644400147151501. Local number, FD00200224ABBB1001 51659. LOCATION.--Lat 64°44′00″, long 147°15′15″, Hydrologic Unit 19040506, in road right-of-way at intersection of Nelson and Laurence Roads near North Pole. Owner: U.S. Army Corps of Engineers. AQUIFER .-- Chena Alluvium of Quaternary age. WELL CHARACTERISTICS.--Diameter 4-in., depth 30 ft, screened from 27.5 to 30 ft using a 2-in. diameter well point. INSTRUMENTATION.--Strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from November 1983 to June 1995. Electronic data logger from June 1995 to present. DATUM.--Elevation of land-surface datum is 503.5 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.97 ft above land-surface datum. REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers designated as P-251. Missing record from January 25 through March 1 due to equipment malfunction. PERIOD OF RECORD.--June 1976 to May 1980 and November 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.84 ft below land-surface datum, June 7, 1992; lowest, 13.70 ft below land-surface datum, February 18-20, 1988. EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.61 ft below land-surface datum, October 5; lowest, 13.26 ft below land-surface datum, April 9-12. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---|---|--|---|----------|--|---|--|---|---|---|---| | 1
2
3
4
5 | 11.62
11.63
11.63
11.62
11.61 | 12.17
12.19
12.21
12.24
12.25 |
12.48
12.50
12.51
12.52
12.52 | 12.77
12.77
12.76
12.78
12.77 | | 13.07
13.09
13.09
13.09 | 13.21
13.21
13.21
13.23
13.23 | 12.81
12.80
12.79
12.78
12.78 | 12.92
12.93
12.93
12.94
12.96 | 12.69
12.68
12.67
12.66
12.65 | 12.28
12.26
12.22
12.19
12.16 | 11.89
11.90
11.91
11.90
11.91 | | 6
7
8
9
10 | 11.62
11.63
11.64
11.68
11.68 | 12.27
12.28
12.30
12.31
12.32 | 12.54
12.56
12.58
12.59
12.59 | 12.77
12.76
12.77
12.79
12.81 | | 13.10
13.10
13.11
13.11
13.11 | 13.23
13.24
13.25
13.25
13.25 | 12.77
12.77
12.77
12.77
12.77 | 12.96
12.96
12.94
12.92
12.91 | 12.63
12.62
12.61
12.59
12.58 | 12.14
12.11
12.09
12.08
12.06 | 11.93
11.94
11.96
11.98
11.98 | | 11
12
13
14
15 | 11.68
11.70
11.72
11.73
11.74 | 12.32
12.35
12.36
12.37
12.38 | 12.61
12.62
12.63
12.63
12.64 | 12.80
12.80
12.81
12.81
12.82 |

 | 13.10
13.12
13.13
13.13
13.13 | 13.24
13.25
13.25
13.23
13.21 | 12.78
12.77
12.78
12.78
12.79 | 12.89
12.87
12.86
12.85
12.83 | 12.57
12.57
12.56
12.55
12.53 | 12.05
12.04
12.02
12.01
11.99 | 11.99
11.99
12.00
12.04
12.07 | | 16
17
18
19
20 | 11.77
11.80
11.84
11.86
11.89 | 12.38
12.38
12.39
12.39
12.39 | 12.64
12.65
12.65
12.67
12.68 | 12.84
12.83
12.84
12.84
12.85 | | 13.14
13.15
13.15
13.16
13.16 | 13.18
13.16
13.13
13.09 | 12.81
12.82
12.84
12.86
12.87 | 12.81
12.80
12.79
12.78
12.78 | 12.53
12.52
12.51
12.50
12.50 | 11.98
11.96
11.95
11.92 | 12.09
12.10
12.13
12.15
12.16 | | 21
22
23
24
25 | 11.91
11.92
11.96
12.00
12.02 | 12.39
12.40
12.40
12.41
12.42 | 12.69
12.71
12.71
12.72
12.73 | 12.86
12.86
12.87
12.88 |

 | 13.17
13.17
13.17
13.17
13.18 | 13.04
13.01
12.98
12.96
12.94 | 12.87
12.88
12.89
12.90
12.89 | 12.77
12.76
12.75
12.75
12.75 | 12.49
12.48
12.47
12.45
12.44 | 11.90
11.89
11.88
11.87
11.86 | 12.18
12.19
12.21
12.23
12.26 | | 26
27
28
29
30
31 | 12.04
12.06
12.08
12.10
12.12 | 12.42
12.43
12.45
12.46
12.47 | 12.73
12.75
12.75
12.75
12.75
12.76 | | | 13.18
13.19
13.20
13.20
13.21
13.21 | 12.91
12.88
12.87
12.85
12.83 | 12.89
12.90
12.90
12.90
12.91
12.91 | 12.74
12.73
12.72
12.71
12.70 | 12.43
12.41
12.39
12.36
12.34 | 11.86
11.86
11.86
11.87
11.87 | 12.29
12.31
12.33
12.35
12.37 | ### YUKON ALASKA ### FAIRBANKS NORTH STAR BOROUGH—CONTINUED ### 644528147131201. Local number, FD00200307ACBD1001 51660. LOCATION.--Lat 64°45′28″, long 147°13′12″, Hydrologic Unit 19040506, inside Corps of Engineers Chena Lakes Project fenced compound, 120 ft west of headquarters building and 2 mi northeast of the intersection of Laurence and Nelson Roads. Owner: U.S. Army Corps of Engineers. AQUIFER .-- Chena Alluvium of Quaternary age. WELL CHARACTERISTICS.--Diameter 4-in., depth 31 ft, screened from 28.5 to 31 ft using a 2-in. diameter well point. INSTRUMENTATION.--Continuous strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from October 1985 to April 1995. Electronic data logger used from April 1995 to present. DATUM.--Elevation of land-surface datum is 494.7 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.91 ft above land-surface datum. REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers, designated as P-252. Water levels from water years 1986 through 1990 were not previously published and are available from WATSTORE. PERIOD OF RECORD.--June 1976 to May 1980 and October 1985 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.85 ft below land-surface datum, June 8-9, 1992; lowest, 13.20 ft below land-surface datum September 15, 1976. EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.26 ft below land-surface datum, October 6-7; lowest, 10.81 ft below land-surface datum, April 15-20. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|----------| | 1 | 8.28 | 8.74 | 9.18 | 9.71 | 10.16 | 10.44 | 10.71 | 10.62 | 10.42 | 10.28 | 10.10 | 9.57 | | 2 | 8.29 | 8.76 | 9.20 | 9.73 | 10.17 | 10.45 | 10.72 | 10.62 | 10.41 | 10.28 | 10.08 | 9.57 | | 3 | 8.29 | 8.78 | 9.22 | 9.75 | 10.19 | 10.46 | 10.72 | 10.62 | 10.40 | 10.28 | 10.05 | 9.56 | | 4 | 8.29 | 8.80 | 9.23 | 9.76 | 10.20 | 10.47 | 10.73 | 10.62 | 10.40 | 10.28 | 10.02 | 9.55 | | 5 | 8.27 | 8.82 | 9.25 | 9.78 | 10.21 | 10.48 | 10.73 | 10.62 | 10.40 | 10.27 | 10.00 | 9.55 | | | | | | | | | | | | | | | | 6 | 8.26 | 8.84 | 9.26 | 9.79 | 10.23 | 10.49 | 10.74 | 10.62 | 10.40 | 10.27 | 9.99 | 9.55 | | 7 | 8.26 | 8.86 | 9.28 | 9.81 | 10.24 | 10.50 | 10.75 | 10.62 | 10.40 | 10.27 | 9.97 | 9.56 | | 8 | 8.27 | 8.87 | 9.30 | 9.81 | 10.25 | 10.51 | 10.76 | 10.62 | 10.38 | 10.27 | 9.95 | 9.56 | | 9 | 8.30 | 8.89 | 9.33 | 9.83 | 10.26 | 10.52 | 10.77 | 10.62 | 10.37 | 10.25 | 9.94 | 9.56 | | 10 | 8.32 | 8.90 | 9.34 | 9.86 | 10.27 | 10.53 | 10.77 | 10.62 | 10.35 | 10.24 | 9.93 | 9.55 | | | | | | | | | | | | | | | | 11 | 8.32 | 8.90 | 9.37 | 9.88 | 10.28 | 10.53 | 10.78 | 10.61 | 10.34 | 10.23 | 9.92 | 9.54 | | 12 | 8.34 | 8.92 | 9.39 | 9.90 | 10.29 | 10.54 | 10.78 | 10.61 | 10.33 | 10.23 | 9.90 | 9.53 | | 13 | 8.34 | 8.94 | 9.40 | 9.91 | 10.31 | 10.55 | 10.79 | 10.61 | 10.32 | 10.22 | 9.89 | 9.53 | | 14 | 8.34 | 8.94 | 9.42 | 9.93 | 10.32 | 10.57 | 10.80 | 10.60 | 10.31 | 10.22 | 9.87 | 9.54 | | 15 | 8.34 | 8.96 | 9.44 | 9.94 | 10.33 | 10.58 | 10.80 | 10.60 | 10.31 | 10.21 | 9.84 | 9.57 | | 16 | 8.36 | 8.98 | 9.45 | 9.95 | 10.34 | 10.58 | 10.81 | 10.58 | 10.30 | 10.21 | 9.83 | 9.58 | | 17 | 8.38 | 8.99 | 9.46 | 9.97 | 10.34 | 10.60 | 10.80 | 10.57 | 10.29 | 10.20 | 9.81 | 9.58 | | 18 | 8.41 | 9.00 | 9.48 | 9.98 | 10.35 | 10.61 | 10.80 | 10.58 | 10.28 | 10.20 | 9.79 | 9.58 | | 19 | 8.44 | 9.01 | 9.49 | 9.99 | 10.36 | 10.62 | 10.81 | 10.58 | 10.27 | 10.20 | 9.75 | 9.59 | | 20 | 8.47 | 9.02 | 9.51 | 10.01 | 10.37 | 10.62 | 10.80 | 10.57 | 10.26 | 10.20 | 9.73 | 9.60 | | | | | | | | | | | | | | | | 21 | 8.50 | 9.03 | 9.53 | 10.02 | 10.38 | 10.64 | 10.79 | 10.57 | 10.26 | 10.20 | 9.72 | 9.60 | | 22 | 8.51 | 9.04 | 9.55 | 10.03 | 10.39 | 10.64 | 10.78 | 10.56 | 10.26 | 10.18 | 9.70 | 9.60 | | 23 | 8.52 | 9.05 | 9.57 | 10.05 | 10.41 | 10.65 | 10.75 | 10.55 | 10.26 | 10.18 | 9.67 | 9.61 | | 24 | 8.56 | 9.06 | 9.59 | 10.06 | 10.41 | 10.66 | 10.73 | 10.55 | 10.26 | 10.19 | 9.66 | 9.62 | | 25 | 8.59 | 9.07 | 9.60 | 10.08 | 10.42 | 10.66 | 10.71 | 10.51 | 10.26 | 10.19 | 9.64 | 9.63 | | 26 | 8.62 | 9.09 | 9.61 | 10.09 | 10.42 | 10.66 | 10.69 | 10.49 | 10.27 | 10.19 | 9.63 | 9.66 | | 26
27 | 8.64 | 9.09 | 9.63 | 10.09 | 10.42 | 10.66 | 10.69 | 10.49 | 10.27 | 10.19 | 9.63 | 9.66 | | 28 | 8.66 | 9.11 | 9.63 | 10.10 | 10.42 | 10.67 | 10.66 | 10.47 | 10.27 | 10.18 | 9.62 | 9.67 | | 26
29 | 8.69 | 9.13 | 9.65 | 10.12 | | 10.68 | 10.64 | 10.45 | 10.27 | 10.17 | 9.61 | 9.09 | | 30 | 8.70 | 9.15 | 9.68 | 10.13 | | 10.68 | 10.63 | 10.45 | 10.27 | 10.16 | 9.50 | 9.71 | | 31 | 8.71 | 9.10 | 9.00 | 10.14 | | 10.69 | 10.62 | 10.44 | | 10.14 | 9.56 | 9.73 | | 31 | 0./1 | | 9.10 | 10.13 | | 10.70 | | 10.13 | | 10.12 | 9.31 | - | ### YUKON ALASKA ### FAIRBANKS NORTH STAR BOROUGH—CONTINUED ### 645434147385101. Local number, FB00100113DDBC2001 50673. LOCATION.--Lat 64°54′34″, long 147°38′51″, Hydrologic Unit 19040506, in road right-of-way at 2.3 mi McGrath Road, off Farmers' Loop Road near Fairbanks. Owner: U.S. Geological Survey. AQUIFER.--Quartz-mica schist of pre-Jurassic age. WELL CHARACTERISTICS.--Diameter 6-in., depth 100 ft, metal casing to 98.5 ft, perforated openings from 88.5 ft to 98.5 ft, and open hole to 100 ft. INSTRUMENTATION.--Digital recorder, from October 1983 to June 1995. Electronic data logger from June 1995 to May 1996. Digital recorder, from May 1996 to September 1997. Electronic data logger from October 1997 to present. DATUM.--Elevation of land-surface datum is 740 ft above sea level (determined from topographic map). Measuring point is top of casing 1.00 ft above land-surface datum. REMARKS.--Observation well drilled by the U.S. Geological Survey, designated as McGrath Well, replaces old McGrath Estates well, 645429147383801. Missing record from Jan. 29 through Feb. 3 due to equipment malfunction. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.13 ft below land-surface datum, October 28, 1983; lowest, 44.85 ft below land-surface datum, July 3, 1990. EXTREMES FOR CURRENT YEAR.--Highest water level measured, 42.33 ft below land-surface datum, September 13; lowest, 43.00 ft below land-surface datum, June 26. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | 42.89 | 42.70 | 42.64 | 42.50 | | 42.60 | 42.62 | 42.61 | 42.54 | 42.73 | 42.58 | 42.46 | | 2 | 42.96 | 42.66 | 42.64 | 42.58 | | 42.65 | 42.70 | 42.56 | 42.58 | 42.73 | 42.55 | 42.51 | | 3 | 42.93 | 42.65 | 42.67 | 42.42 | | 42.66 | 42.52 | 42.55 | 42.56 | 42.69 | 42.52 | 42.48 | | 4 | 42.83 | 42.72 | 42.64 | 42.44 | 42.69 | 42.71 | 42.52 | 42.56 | 42.71 | 42.65 | 42.53 | 42.49 | | 5 | 42.71 | 42.75 | 42.48 | 42.54 | 42.71 | 42.66 | 42.60 | 42.56 | 42.62 | 42.66 |
42.59 | 42.46 | | 6 | 42.70 | 42.75 | 42.49 | 42.56 | 42.62 | 42.65 | 42.64 | 42.63 | 42.59 | 42.61 | 42.61 | 42.51 | | 7 | 42.70 | 42.71 | 42.69 | 42.40 | 42.62 | 42.60 | 42.64 | 42.53 | 42.57 | 42.63 | 42.65 | 42.57 | | 8 | 42.74 | 42.72 | 42.72 | 42.40 | 42.53 | 42.64 | 42.73 | 42.53 | 42.55 | 42.68 | 42.67 | 42.58 | | 9 | 42.88 | 42.69 | 42.62 | 42.47 | 42.52 | 42.56 | 42.77 | 42.56 | 42.52 | 42.66 | 42.60 | 42.60 | | 10 | 42.76 | 42.58 | 42.50 | 42.65 | 42.58 | 42.55 | 42.68 | 42.56 | 42.54 | 42.56 | 42.57 | 42.50 | | 11 | 42.75 | 42.58 | 42.54 | 42.60 | 42.54 | 42.47 | 42.58 | 42.54 | 42.61 | 42.56 | 42.56 | 42.44 | | 12 | 42.68 | 42.63 | 42.66 | 42.49 | 42.57 | 42.50 | 42.59 | 42.54 | 42.60 | 42.58 | 42.57 | 42.34 | | 13 | 42.68 | 42.60 | 42.59 | 42.48 | 42.64 | 42.61 | 42.68 | 42.53 | 42.56 | 42.60 | 42.56 | 42.33 | | 14 | 42.63 | 42.60 | 42.58 | 42.56 | 42.65 | 42.67 | 42.75 | 42.46 | 42.56 | 42.61 | 42.48 | 42.38 | | 15 | 42.63 | 42.65 | 42.55 | 42.54 | 42.62 | 42.57 | 42.81 | 42.46 | 42.62 | 42.61 | 42.49 | 42.52 | | 16 | 42.65 | 42.66 | 42.53 | 42.57 | 42.52 | 42.57 | 42.71 | 42.48 | 42.62 | 42.64 | 42.47 | 42.52 | | 17 | 42.71 | 42.64 | 42.52 | 42.46 | 42.48 | 42.63 | 42.67 | 42.50 | 42.55 | 42.71 | 42.50 | 42.54 | | 18 | 42.75 | 42.64 | 42.45 | 42.46 | 42.54 | 42.74 | 42.67 | 42.50 | 42.59 | 42.70 | 42.50 | 42.51 | | 19 | 42.79 | 42.70 | 42.50 | 42.45 | 42.64 | 42.78 | 42.72 | 42.54 | 42.60 | 42.66 | 42.53 | 42.51 | | 20 | 42.74 | 42.67 | 42.55 | 42.51 | 42.66 | 42.74 | 42.68 | 42.64 | 42.56 | 42.66 | 42.45 | 42.45 | | 21 | 42.71 | 42.57 | 42.55 | 42.57 | 42.71 | 42.74 | 42.66 | 42.58 | 42.56 | 42.68 | 42.47 | 42.39 | | 22 | 42.65 | 42.57 | 42.58 | 42.58 | 42.70 | 42.72 | 42.66 | 42.50 | 42.74 | 42.66 | 42.51 | 42.35 | | 23 | 42.70 | 42.65 | 42.57 | 42.57 | 42.64 | 42.61 | 42.62 | 42.49 | 42.62 | 42.70 | 42.46 | 42.39 | | 24 | 42.83 | 42.67 | 42.56 | 42.58 | 42.64 | 42.54 | 42.62 | 42.54 | 42.58 | 42.72 | 42.46 | 42.51 | | 25 | 42.74 | 42.67 | 42.40 | 42.58 | 42.51 | 42.48 | 42.62 | 42.52 | 42.70 | 42.71 | 42.49 | 42.56 | | 26 | 42.73 | 42.72 | 42.40 | 42.51 | 42.45 | 42.50 | 42.61 | 42.49 | 42.87 | 42.66 | 42.50 | 42.56 | | 27 | 42.72 | 42.77 | 42.48 | 42.46 | 42.35 | 42.53 | 42.51 | 42.51 | 42.75 | 42.65 | 42.54 | 42.56 | | 28 | 42.75 | 42.78 | 42.55 | 42.51 | 42.36 | 42.58 | 42.51 | 42.55 | 42.68 | 42.61 | 42.53 | 42.56 | | 29 | 42.79 | 42.70 | 42.44 | | | 42.65 | 42.53 | 42.65 | 42.68 | 42.58 | 42.47 | 42.54 | | 30 | 42.67 | 42.68 | 42.42 | | | 42.59 | 42.57 | 42.65 | 42.75 | 42.60 | 42.41 | 42.52 | | 31 | 42.67 | | 42.45 | | | 42.58 | | 42.54 | | 42.58 | 42.41 | | | Page | Page | |---|---| | Alagnak River, 13 miles above mouth near | Jordan Creek above Yandukin Ave near 371 | | Lower Barge near Levelock | Jordan Creek at Amalga St near 370 | | 27 mi above mouth near McCormick | Jordan Creek at Jennifer St near370 | | near Levelock | Jordan Creek at Nancy St near | | below Nonvianuk River near Igiugig 380, 408 | Jordan Creek below Egan Dr near 66, 371 | | Aleknagik, Moody Creek at | Jordan Creek below Thunder Mtn Trailer | | Alsek River near Yakutat | Park near | | Analyses of samples collected at miscellaneous | Jordan Creek near371 | | sites387 | Jordan Creek Tributary at Thunder Mtn | | Anchorage, Municipality of, ground water levels 434 | Trailer Park near | | Anchorage, Chester Creek at Arctic Blvd at 212 | Mendenhall River at Brotherhood | | Little Rabbit Creek at Goldenview | Bridge at371, 388 | | Dr near | Mendenhall River near70 | | Rabbit Creek at Porcupine Trail Rd | Montana Creek near | | near | Montana Creek at mouth near 371 | | Ship Creek near | North Fork Peterson Creek near358, 375 | | South Branch of South Fork Chester | Nugget Creek above diversion near 69 | | Creek at tank trail near | Peterson Creek below North Fork near 135 | | South Fork Campbell Creek near 205 | Peterson Creek tributary No 2 near 375 | | South Fork Campbell Creek At Canyon | Peterson Creek tributary No 3 near 375, 389 | | Mouth near | Peterson Creek tributary No 4 near 375, 389 | | Anchor Point, Anchor River at | Peterson Creek tributary No 6 near 375, 389 | | Anchor River near | Peterson Creek tributary No 7 near 374, 389 | | Chakok River 7.5 mi above mouth | Peterson Creek tributary No 8 near 374, 389 | | near377, 396 | Upper Peterson Creek near | | Stariski Creek near | | | Anchor River, above Twitter Creek | Banner Creek at Richardson | | near Homer | Barrow, Nunavak Creek near | | at Anchor Point | Battle Creek diversion above Bradley Lake | | Chakok River 7.5 mi above mouth near 396 | near Homer161 | | near Anchor Point | Beaver Creek 2 mi above mouth near Bald | | near Bald Mountain near Homer 377, 394 | Mtn near Homer | | Angoon, Favorite Creek near | Berry Creek near Dot Lake | | Aniak, Kuskokwim River at | Big Boulder Creek at mi 135 near Haines 372 | | Antler River below Antler Lake near Auke Bay74 | Big Delta, Central Creek near308 | | Anvik River near Anvik | Goodpaster River near | | Arctic Creek above tributary near Nome 367, 384 | Liese Creek near | | Arctic Slope Alaska, crest-stage partial-record | Sonora Creek near | | stations in | Sonora Creek above Tributary near 304 | | discharge measurement at miscellaneous | Upper West Creek near | | sites in | Bonanza Creek tributary near Prospect | | gaging-station records for350 | Camp | | Atigun River near Pump Station 4 | Boulder Creek (Copper River basin) near | | Atigun River tributary near Pump Station 4 368, 386 | Tiekel | | Auke Bay, Antler River below Antler Lake near74 | Boulder Creek (Yukon River basin) near | | Duck Creek above Kodzoff Trailer | Central | | Park near | Bradley River, below dam near Homer 166 | | Duck Creek at Duran St near | Middle Fork, below North Fork Bradley | | Duck Creek at Mendenhall Blvd near 371 | River near Homer | | Duck Creek at Steven Richards Blvd near 372 | Middle Fork, near Homer | | Duck Creek at Taku Blvd near | near Homer | | Duck Creek below Nancy St near 73, 372 | near tidewater near Homer | | Pa | ige | | Page | |---|-----|---|------| | Camp Creek near Sheep Mtn Lodge247 | 7 I | Donnelly, Ruby Creek above Richardson | | | Cantwell, Slime Creek near 364, 383 | 3 | Highway near | 364 | | Central Creek near Big Delta308 | 8 I | Oorothy Lake outlet near Juneau | . 55 | | Central, Boulder Creek near | 1 I | Oot Lake, Berry Creek near 364, | 382 | | Quartz Creek near363, 382 | 2 I | Oragonfly Creek near Healy365, | 383 | | Chakok River, 7.5 mi above mouth near 377, 396 | | Ory Creek (Copper River basin) near | | | near Anchor Point377 | 7 | Glennallen | 376 | | Chena River, at Fairbanks | 6 I | Duck Creek, above Kodzoff Trailer Park | | | below Hunts Creek near Two Rivers 382 | 2 | near Auke Bay | 372 | | below Moose Creek Dam383 | 3 | at Duran St near Auke Bay | 372 | | near Two Rivers | 3 | at Mendenhall Blvd near Auke Bay | 371 | | Chester Creek at Arctic Blvd at Anchorage 212 | 2 | at Steven Richards Blvd near Auke Bay | 372 | | Chichagof Island, stream on, gaging-station | | at Taku Blvd near Auke Bay | 371 | | records for | 7 | below Nancy St near Auke Bay 73, | 372 | | Chicken, Wade Creek Tributary near289 | 9 | | | | Chikat River near Klukwan372 | 2 I | Eagle, Yukon River at | 290 | | Chinkelyes Creek Tributary near | I | Eklutna Lake near Palmer | 244 | | Pedro Bay | O I | Eldorado Creek near Teller | 384 | | Chiroskey River near Unalakleet 367, 384 | 4 I | Etta Creek near Council | 384 | | Chulitna River near Port Alsworth (southwest) 380 | 0 I | Exit Glacier Channel at mi 0.1 of Harding Trail | | | Coffman Creek near Cold Bay | 3 | near Seward | 390 | | Cold Bay, Frosty Creek near | 0 I | Exit Glacier Creek Tributary at mi 0.6 of Harding | | | Russell Creek near | 7 | Trail near Seward 376, | 390 | | Stapp Creek near | 9 I | Exit Glacier Distributary at Exit Glacier Road | | | Coldfoot, Slate Creek at | 3 | near Seward | 391 | | Competition Creek near Kivalina | 5 I | Explanation of the records | . 14 | | Cooper Creek at mouth near Cooper Landing 183 | 1 | | | | Cooper Landing, Cooper Creek at mouth near 181 | 1 F | Fairbanks, Chena River at | 316 | | Kenai River at | 9 | ground-water levels | | | Cordova, Nicolet Creek near146 | 6 | Little Chena River near | 314 | | Cottonwood Creek near Wasilla | 9 | Tanana River at | 312 | | Council, Etta Creek near | 4 F | Favorite Creek near Angoon | 126 | | Crest-stage partial-record stations | 8 I | Fish Creek (on Revillagigedo Island) near | | | Crooked Creek, Kuskokwim River at | | Ketchikan | | | Cupola Peak Creek at Bear Cove | | Fort Yukon, Porcupine River near | | | near Sitka | | Fritz Creek near Homer | | | Currant Creek at mouth near Port Alsworth 380 | 0 I | Frosty Creek near Cold Bay | 380 | | Dahl Creek near Kobuk | 3 (| Glacier Creek at Bruno Road near Seward360, | 377 | | Deadhorse, Kuparuk River near | 2 (| Glacier Fork near Summit Lake near | | | Sagavanirktok River tributary near 368, 386 | 6 | Port Alsworth | 406 | | Deep Creek 0.6 mi above Sterling Highway | (| Glennallen, Dry Creek near359, | | | near Ninilchik | 0 | Tazlina River near | 376 | | Definition of terms | 0 (| Globe Creek near Livengood 365, | 383 | | Denali, Raft Creek near | 9 (| Gold Creek, (Southeast) at Juneau | . 63 | | Dennison Fork near Tetlin Junction | 1 | near Juneau370, | 387 | | Deshka River near Willow | 2 (| Gold Creek, (South-central), Susitna River at | 258 | | Discontinued surface-water discharge or | | Gold Creek (Southwest) at Takotna 362, | | | stage-only stations xii | | Goldengate Creek near Nome | | | Discontinued surface-water-quality stations xxiv | | Goodpaster River near Big Delta | | | Dome Creek, King Creek near | 1 (| Green Lake (on Baranof Island) near Sitka | 123 | | Page | Page |
---|--| | Greens Creek (on Admiralty Island) at Greens | Indian River (Southeast), above CBC Pumphouse | | Creek Mine near Juneau | near Sitka | | Ground-water level data, selected wells 417 | at Sitka | | City and Borough of Juneau417 | near Sitka | | Fairbanks-North Star Borough435 | Diversion to Sheldon Jackson College at | | Municipality of Anchorage | Sawmill Creek Road at Sitka 374 | | Grouse Creek at Grouse Lake outlet near | Indian River (Yukon), at Utopia 366, 384 | | Seward | International Boundary, Yukon Territory, | | Gulkana River, at Gulkana | Porcupine River near | | at Sourdough | International Gaging Station Network, | | Gustavus, Kahtaheena River near | description | | Kahtaheena River above upper falls near78 | records | | Haines, Big Boulder Creek at mi 135 near 372 | Johnson River above Lateral Glacier near | | Kakuhan Creek near | Tuxedni Bay | | Halfmile Creek above diversion near Klawock 97 | Jordan Creek, above Yandunkin Ave near | | Halfmile Creek below Highway near Klawock 373 | Auke Bay | | Happy Valley Camp, Sagavanirktok River | at Amalga St near Auke Bay 370 | | tributary near | at Jennifer St near Auke Bay 370 | | Harding River near Wrangell | at Nancy St near Auke Bay | | Healy, Dragonfly Creek near | below Egan Dr near Auke Bay 66, 371 | | Lignite Creek above mouth near | below Thunder Mtn Trailer Park near | | Healy Creek at Suntrana near Healy | Auke Bay | | Homer, Anchor River above Twitter | near Auke Bay | | Creek near | Tributary at Thunder Mtn Trailer Park | | Anchor River near Bald Mtn near 377, 394 | near Auke Bay | | Battle Creek diversion above Bradley | Juneau, Dorothy Lake outlet near55 | | Lake near | Gold Creek at | | Beaver Creek 2 mi above mouth near | Gold Creek near | | Bald Mtn near | Greens Creek at Greens Creek Mine near 124 | | Bradley River below dam near 166 | Salmon Creek near | | Bradley River near | Taku River near | | Bradley River near Tidewater near | ground-water levels | | Fritz Creek near | ground water revers | | Middle Fork Bradley River below North | Kadashan River (on Chichagof Island) above | | Fork Bradley River near | Hook Creek near Tenakee | | Middle Fork Bradley River near | Kahtaheena River near Gustavus | | Upper Bradley River near Nuka Glacier near 163 | Kahtaheena River above upper falls near Gustavus | | | Kakuhan Creek near Haines | | Upper Nuka River near park boundary near 159 | Kandik River near Nation | | Hope, Sixmile Creek near | Kasaan, Old Tom Creek near | | Hydaburg, Reynolds Creek below Lake Mellen near98 | | | Metien flear98 | Kenai River, at Cooper Landing | | Initialization Albaniala Discontratory National Discontratory | at Soldotna | | Igiugig, Alagnak River below Nonvianuk River | below mouth of Killey River near Sterling 190 | | near | below Skilak Lake Outlet near Sterling 184 | | Ikalukrok Creek 0.6 mi below Red Dog Creek | Ketchikan, Fish Creek near | | near Kivalina | Swan Lake near | | Ikalukrok Creek, below Dudd Creek near Kivalina 385 | Kiana, Kobuk River near | | above Red Dog Creek near Kivalina 385 | Kijik River at mouth near Port Alsworth | | below Red Dog Creek near Kivalina 347 | King Creek near Dome Creek | | Iliamna River near Pedro Bay280 | Kivalina, Competition Creek near | | Page | Page | |---|---| | Ikialukrok Creek 0.6 mi below Red Dog | McCarthy Creek at McCarthy359, 376 | | Creek near | McCarthy, McCarthy Creek at 359, 376 | | Ikalukrok Creek above Red Dog Creek near . 385 | Mendenhall River at Brotherhood Bridge | | Ikalukrok Creek below Dudd Creek near385 | at Auke Bay | | Ikalukrok Creek below Red Dog Creek near . 347 | Mendenhall River above Montana Creek | | North Fork Red Dog Creek near 368, 385 | near Auke Bay371 | | Red Dog Creek above North Fork Red Dog | Mendenhall River near Auke Bay70 | | Creek near | Middle Fork Bradley River, below North Fork | | Red Dog Mine clean water ditch near 385 | Bradley River near Homer 169 | | Red Dog Mine above mouth near385 | Middle Fork Bradley River near Homer167 | | Tutak Creek near | Middle Basin Creek near Tenakee | | Wulik River above Ferric Creek near345 | Mineral Creek near Valdez | | Wulik River below Tutak Creek near348 | Miscellaneous sites, discharge at | | Klawock, Halfmile Creek above Diversion near 97 | Montana Creek, at mouth near Auke Bay371 | | Halfmile Creek below Highway near373 | near Auke Bay72 | | North Fork Staney Creek near | Moody Creek at Aleknagik | | Staney Creek near92 | Moose Creek, above Wishbone Hill near | | Threemile Creek below Hwy near 373 | Sutton | | Threemile Creek near | near Palmer250 | | Threemile Creek Tributary near | Moose Creek Dam, Chena River below 383 | | Threemile Tributary Creek below Canyon | Municipal Reserve Creek at Pilot Station 366, 384 | | near372 | Myrtle Creek near Kodiak | | Klukwan, Chilkat River near372 | | | Knik River near Palmer245 | Nabesna, Little Jack Creek near | | Kobuk, Dahl Creek near | Nancy Lake tributary near Willow 361, 379 | | Kobuk River near Kiana | Nation, Nation River near | | Kodiak, Myrtle Creek near | Kandik River near | | Terror River at mouth near | Nation River near Nation | | Kodiak Island, streams on, crest-stage partial- | Nenana, Tanana River at | | record stations on | Nicolet Creek near Cordova | | gaging-station records for272 | Ninilchik, Deep Creek 0.6 mi above Sterling | | Kuparuk River near Deadhorse352 | Highway near Ninilchik 378, 400 | | Kuskokwim River, at Aniak | Ninilchik River at | | at Crooked Creek | Ninilchik River 1.5 mi below tributary | | at Liskys Crossing near Stony River 284 | near | | | Ninilchik River below tributary 3 near 378, 401 | | Lake Clark outlet near Port Alsworth | North Fork Deep Creek 4 mi above | | Lawing, Wolverine Creek near | mouth near | | Levelock, Alagnak River 13 mi above | Stariski Creek 2 mi below unnamed | | mouth near lower barge near | tributary near | | Alagnak River 27 miles above mouth | Nome, Arctic Creek above tributary near 367, 384 | | near McCormick near | Goldengate Creek near | | Liese Creek near Big Delta301 | Washington Creek near | | Lignite Creek above mouth near Healy330 | North Fork Deep Creek 4 mi above mouth | | Little Chena River near Fairbanks | near Ninilchik | | Little Jack Creek near Nabesna | North Fork Peterson Creek near Auke Bay 358, 375 | | Little Rabbit Creek, at Goldenview Drive | North Fork Red Dog Creek near Kivalina 368, 385 | | near Anchorage | North Fork Staney Creek near Klawock | | Little Susitna River near Palmer | (on Prince of Wales Island) 88 | | Livengood, Globe Creek near | North Fork Tlikakila River near Port Alsworth 407 | | Matanuska River near Palmer | | | Page | Page | |---|--| | Northwest Alaska, crest-stage partial-record | Portage, Twentymile River below Glacier | | stations in | River near | | discharge measurements at miscellaneous | Portage Creek at Portage Lake outlet near | | sites in | Whittier | | gaging-station records for340 | Premier Creek near Sutton | | Noyes Slough at Minnie Street Bridge 383 | Prince of Wales Island, streams on, gaging- | | Nugget Creek (Southeast) above diversion | station records for | | near Auke Bay69 | Prospect Camp, Bonanza Creek tributary | | Nugget Creek (Yukon) near Wiseman 365, 383 | near | | Nunavak Creek near Barrow350 | Prospect Creek near | | | Prospect Creek near Prospect Camp | | Old Tom Creek (on Prince of Wales Island) near | Ptarmigan Creek tributary near Valdez 359, 376 | | Kasaan | Pump Station 4, Atigun River tributary near . 368, 386 | | Ophir Creek, at Airport Rd at Yakutat | Atigun River near | | near Yakutat | Pump Station 10, Suzy Q Creek near 364, 382 | | tributary at confluence near Yakutat375 | | | • | Quality of ground water | | Palmer, Eklutna Lake near | Southcentral | | Knik River near | Southeast | | Little Susitna River near256 | Yukon | | Matanuska River near | Quartz Creek near Central | | Moose Creek near | Quality Officer from Community (1977) | | Wasilla Creek near | Rabbit Creek, at Porcupine Trail Road | | Partial-record stations | near | | Paxson, Phelan Creek near | Raft Creek near Denali | | Pedro Bay, Chinkelyes Creek tributary near 362, 380 | Ray River tributary near Stevens Village 363, 382 | | Iliamna River near | Red Dog Creek, above mouth near Kivalina 385 | | Peterson Creek, below North Fork near Auke Bay. 135 | above North Fork Red Dog Creek near | | Tributary No 2 near Auke Bay | Kivalina | | Tributary No 3 near Auke Bay 375, 389 | Red Dog Mine clean water ditch near Kivalina 385 | | Tributary No 4 near Auke Bay 375, 389 | Revillagigedo Island, streams on, gaging-station | | Tributary No 6 near Auke Bay | records for | | Tributary No 7 near Auke Bay | Reynolds Creek below Lake Mellen near | | Phelan Creek near Paxson | Hydaburg | | Pilot Station, Municipal Reserve Creek at 366, 384 | Richardson, Banner Creek at | | Porcupine River, at Pilot Station | Ruby Creek above Richardson Highway near | | near Fort Yukon | Donnelly | | near International Boundary, Yukon | Russell Creek near Cold Bay | | Territory | Russen creek near cold Bay | | Port Alsworth, Chulitna River near380 | Sagavanirktok River, tributary near | | Currant Creek at mouth near | Deadhorse | | Glacier Fork near Summit Lake near | tributary near Happy Valley Camp 368, 386 | | Kijik River at mouth near | Salcha River near Salchaket | | Lake Clark outlet near | Salchaket, Salcha River near | | North Fork Tlikakila River near | Salmon Creek (Southeast) near Juneau | | Tanalian River at mouth near | Sawmill Creek near Sitka | | Tlikakila River 12 mi above mouth near 407 | Seward, Exit Glacier channel at mi 0.1 of | | Tlikakila River above North Fork | Harding Trail near | | Tlikakila River near | Exit Glacier
Creek Tributary at mi 0.6 of | | Tlikakila River at mouth near380, 408 | Harding Trail near | | Tlikakila River near Summit Lake near 406 | Exit Glacier Distributary at Exit Glacier | | Threath Terror from Summit Lake flour 700 | Road near | | | 1.000 1.001 | | Page | Page | |---|--| | Glacier Creek at Bruno Rd near 360, 377 | Southwest Alaska, crest-stage partial-record | | Grouse Creek at Grouse Lake outlet near 155 | stations in | | Snow River near | discharge measurements at miscellaneous | | Spruce Creek near | sites in | | Shakespeare Creek at Whittier | gaging-station records for277 | | Sheep Mountain Lodge, Camp Creek near 247 | Special networks and programs | | Ship Creek near Anchorage | Spruce Creek near Seward | | Silver Bay Tributary at Bear Cove near Sitka122 | Staney Creek (on Prince of Wales Island) near | | Sitka, Cupola Peak Creek at Bear Cove near . 358, 374 | Klawock | | Green Lake near | Stapp Creek near Cold Bay | | Indian River above CBS Pumphouse near 373 | Stariski Creek, 2 mi below unnamed tributary | | Indian River at114 | near Ninilchik | | Indian River near | near Anchor Point | | Indian River Diversion to Sheldon Jackson | Sterling, Kenai River below mouth of Killey | | College at Sawmill Creek Rd at 374 | River near | | Sawmill Creek below Upper Tailrace near374 | Kenai River below Skilak Lake outlet near 184 | | Sawmill Creek near | Stevens Village, Ray River tributary near363, 382 | | Silver Bay Tributary at Bear Cover near 122 | Yukon River near | | Swan Lake outlet at | Stikine River near Wrangell | | Wrinklemouth Creek at mouth at | Stony River, Kuskokwim River at Liskys | | Situk River near Yakutat | Crossing near | | Sixmile Creek near Hope | Summary of hydrologic conditions | | Skagway River at Skagway | Sunrise Lake Outlet near Wrangell | | Slate Creek at Coldfoot | Susitna River at Gold Creek | | Slime Creek near Cantwell | Sutton, Moose Creek above Wishbone | | Snow River near Seward | Hill near | | Snowden Creek near Wiseman | Premier Creek near | | | | | Soldotna, Kenai River at | Suzy Q Creek near Pump Station 10 | | Solomon Gulch, at top of falls near Valdez 150 | Swan Lake (on Revillagigedo Island) | | near Valdez | near Ketchikan | | tailrace near Valdez | Swan Lake outlet at Sitka | | Solomon Lake near Valdez | Tel. 4 Cell Ceel 4 | | Sonora Creek near Big Delta | Takotna, Gold Creek at | | Sonora Creek above Tributary near Big Delta 304 | Tatalina River near | | Sourdough, Gulkana River at | Taku River near Juneau | | South-central Alaska, crest-stage partial-record | Talkeetna River near Talkeetna | | stations in | Tanalian River at mouth near Port Alsworth 380 | | discharge measurements at miscellaneous | Tanana River, at Fairbanks | | sites in | at Nenana | | gaging-station records for145 | near Tok Junction | | Southeast Alaska, crest-stage partial-record | Tatalina River near Takotna | | stations in | Tazlina River near Glennallen | | discharge measurements at miscellaneous | Teller, Eldorado Creek near | | sites in | Tenakee, Kadashan River above Hook Creek near. 127 | | gaging-station records for50 | Middle Creek Basin Creek near | | South Branch of South Fork Chester Creek, at | Terror River at mouth near Kodiak 272 | | Boniface Parkway near Anchorage 304, 340 | Tetlin Junction, Dennison Fork near362, 381 | | at tank trail near Anchorage 304, 338 | Threemile Creek, below Highway near | | South Fork Campbell Creek near Anchorage 189 | Klawock | | South Fork Campbell Creek At Canyon | near Klawock | | Mouth Near Anchorage | Tributary below Canyon near Klawock 372 | | | Tributary near Klawock | | Page | Page | |---|---| | Tiekel, Boulder Creek near | Woronkofski Island, Streams on, gaging station | | Tlikakila River, 12 mi above mouth near | records for | | Port Alsworth | Wrangell, Harding River near | | above North Fork Tlikakila River near | Stikine River near54 | | Port Alsworth | Sunrise Lake Outlet near | | at mouth near Port Alsworth380, 408 | Tyee Lake outlet near 50 | | near Summit Lake near Port Alsworth406 | Wulik River, above Ferric Creek near Kivalina 345 | | Tok Junction, Tanana River near | below Tutak Creek near Kivalina348 | | Tutak Creek near Kivalina | | | Tuxedni Bay, Johnson River above Lateral | Yakutat, Alsek River near | | Glacier near | Ophir Creek at Airport Rd at | | Twentymile River below Glacier River near | Ophir Creek near | | Portage | Ophir Creek Tributary at Confluence | | Two Rivers, Chena River below Hunts | near | | Creek near | Situk River near | | Chena River near | Situation four | | Tyee Lake Outlet near Wrangell | Yukon Alaska, crest-stage partial-record | | Tyce Lake Outlet hear Winingen | stations in | | Unalakleet, Chirosky River near | discharge measurements at miscellaneous | | Unalakleet River above Chirosky | sites in | | River near | gaging-station records for | | Unalakleet River above Chirosky River near | Yukon River, at Eagle | | Unalakleet | at Pilot Station | | Upper Bradley River near Nuka Glacier near | near Stevens Village | | Homer | ileal Stevens vinage | | Upper Nuka River near park boundary near | | | Homer | | | | | | Upper Peterson Creek near Auke Bay 374, 389 | | | Upper West Creek near Big Delta | | | Utopia, Indian River at | | | Utopia Creek at | | | Utopia Creek at Utopia | | | Valdez, Mineral Creek near | | | Ptarmigan Creek tributary near 359, 376 | | | Solomon Gulch at top of falls near | | | Solomon Gulch near | | | Solomon Gulch tailrace near | | | Solomon Lake near | | | Wada Craak Tributary noor Chiakan 290 | | | Wade Creek Tributary near Chicken | | | Washington Creek near Nome | | | Wasilla Creek near Palmer | | | Wasilla, Cottonwood Creek near | | | Whittier, Portage Creek at Portage Lake | | | outlet near | | | Shakespeare Creek at | | | Willow, Deshka River near | | | Nancy Lake Tributary near | | | Willow Creek near | | | Wiseman, Nugget Creek near | | | Snowden Creek near | | | Wolverine Creek near Lawing | | # **CONVERSION FACTORS AND VERTICAL DATUM** | Multiply | Ву | To obtain | | |--|---|----------------------------|--| | | Length | | | | inch (in.) | $2.54 \times 10^{1} $ 2.54×10^{-2} | millimeter
meter | | | foot (ft) | 3.048×10^{-1} | meter | | | mile (mi) | 1.609×10^{0} | kilometer | | | | Area | | | | acre | 4.047×10^3 | square meter | | | | 4.047×10^{-1} | square hectometer | | | | 4.047×10^{-3} | square kilometer | | | square mile (mi ²) | 2.590×10^{0} | square kilometer | | | Volume | | | | | gallon (gal) | 3.785×10^{0} | liter | | | | 3.785×10^{0} | cubic decimeter | | | | 3.785×10^{-3} | cubic meter | | | million gallons (Mgal) | 3.785×10^3 | cubic meter | | | | 3.785×10^{-3} | cubic hectometer | | | cubic foot (ft ³) | 2.832×10^{1} | cubic decimeter | | | | 2.832×10^{-2} | cubic meter | | | cubic-foot-per-second day [(ft ³ /s) d] | 2.447×10^3 | cubic meter | | | | 2.447×10^{-3} | cubic hectometer | | | acre-foot (acre-ft) | 1.233×10^3 | cubic meter | | | | 1.233×10^{-3} | cubic hectometer | | | | 1.233×10^{-6} | cubic kilometer | | | | Flow | | | | cubic foot per second (ft ³ /s) | 2.832×10^{1} | liter per second | | | 1 | 2.832×10^{1} | cubic decimeter per second | | | | 2.832×10^{-2} | cubic meter per second | | | gallon per minute (gal/min) | 6.309×10^{-2} | liter per second | | | | 6.309×10^{-2} | cubic decimeter per second | | | | 6.309×10^{-5} | cubic meter per second | | | million gallons per day (Mgal/d) | 4.381×10^{1} | cubic decimeter per second | | | | 4.381×10^{-2} | cubic meter per second | | | Mass | | | | | ton (short) | 9.072×10^{-1} | megagram or metric ton | | *Sea level:* In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.